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Abstract: Motivated by the recent work on symmetric analytic functions by using the concept of
Faber polynomials, this article introduces and studies two new subclasses of bi-close-to-convex and
quasi-close-to-convex functions associated with Janowski functions. By using the Faber polynomial
expansion method, it determines the general coefficient bounds for the functions belonging to these
classes. It also finds initial coefficients of bi-close-to-convex and bi-quasi-convex functions by using
Janowski functions. Some known consequences of the main results are also highlighted.
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1. Introduction and Preliminaries

Let A denote the set of all analytic functions f in the open unit disk E = {z : |z| < 1}.
The functions of A are normalized by

f (0) = 0 and f ′(0) = 1.

Thus, every function f ∈ A can be expressed in the series form provided as:

f (z) = z +
∞

∑
m=2

amzm. (1)

Furthermore, S is the subclass of A whose members are univalent in E. For f1,
f2 ∈ A, the function f1 is said to subordinate the function f2 in E, denoted symbolically as
f1(z) ≺ f2(z), if there exists a function u0 ∈ A with |u0(z)| < 1, u0(0) = 0, such that

f1(z) = f2(u0(z)), z ∈ E.

Some well-known subclasses of univalent functions class S are provided as:

S∗(α) =
{

f ∈ S : Re

(
z f
′
(z)

f (z)

)
> α

}
, 0 ≤ α < 1.
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K(α) =

 f ∈ S : Re


(

z f
′
(z)
)′

f ′(z)

 > α

, 0 ≤ α < 1.

C(α) =
{

f ∈ S , g ∈ S∗ : Re

(
z f
′
(z)

g(z)

)
> α

}
, 0 ≤ α < 1.

C∗(α) =

 f ∈ S , g ∈ K : Re


(

z f
′
(z)
)′

g′(z)

 > α

, 0 ≤ α < 1.

These classes are starlike functions of order α, convex functions of order α, close-to-
convex functions of order α, and qausi convex functions of order α, respectively, see [1–5].

For each function f ∈ S has an inverse function f−1 = F, defined as:

F( f (z)) = z, z ∈ E,

and
f (F(w)) = w, |w| < r0( f ), r0( f ) ≥ 1

4
.

The series of the inverse function is provided by

F(w) = w− a2w2 + (2a2
2 − a3)w3 − (5a3

2 − 5a2a3 + a4)w4 + . . . . (2)

An analytic function f is called bi-univalent in E if f and f−1are both univalent in
E, and the class of all bi-univalent functions is denoted by Σ. For f ∈ Σ, Levin [6] proved
that |a2| < 1.51 and after that Branan and Clunie [7] improved this bound and proved
that |a2| ≤

√
2. Furthermore, for f ∈ Σ, Netanyahu [8] proved that max|a2| = 4

3 (see for
details [9–12]). In these recent papers, only non-sharp estimates on the initial coefficients
were obtained.

Faber [13] introduced the Faber polynomials expansion method and used this tech-
nique to investigate the coefficient bounds |am| for m ≥ 3. These polynomials play an im-
portant role in mathematical sciences, particularly in Geometric Function Theory. Hamidi
and Jahangiri [14,15] defined new subclasses of bi-univalent functions by using the Faber
polynomials expansion technique and found some interesting and useful properties. In
1948, Schiffer [16] studied applications of the Faber polynomials in the theory of univa-
lent functions. After that, Pommerenke [17–19] provided the substantial contributions to
the available information about the structure of the Faber polynomials. Further, in 1971,
Curtiss [20] studied the Faber polynomial and the Faber series, while, in 2006, Airault [21]
used the Faber polynomials in the coordinate system to study the geometry of the manifold
of coefficients of univalent functions. Then, in 2007, Airault [22] found symmetric sums
associated with the factorizations of the Grunsky coefficients. Hamidi et al. [23] started
to apply the Faber polynomial methods for meromorphic bi-starlike functions and dis-
cussed the unpredictable behaviors of the initial coefficients. In [24,25], Altinkaya and
Yalcin also applied the Faber polynomial methods and investigated general coefficient
bounds and different behaviors of initial coefficient bounds. Bulut [26] considered a new
class of meromorphic bi-univalent functions and used the Faber polynomial technique
and produced some useful results. Recently, Jia et al. [27] studied symmetric analytic
functions by using Faber polynomials. Several different subclasses of the analytic and
bi-univalent functions were introduced and analogously studied by the many authors (see,
for example, [21,24,25,28–33]).

Now, we provide the definitions of two new subclasses of bi-close-to-convex and
bi-quasi-convex functions related with Janowski functions.
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Definition 1. A function f ∈ A is said to be bi-close-to-convex in E if both f and f−1 = F
are close-to-convex in E. Furthermore, f ∈ CΣ(A, B), the class of bi-close-to-convex functions
associated with Janowski functions, if there is a function g ∈ S∗ satisfying

z f
′
(z)

g(z)
≺ 1 + Az

1 + Bz

and
wF

′
(w)

G(w)
≺ 1 + Aw

1 + Bw
,

where, −1 ≤ B < A ≤ 1, z, w ∈ E.

Definition 2. Let f be an analytic function and be of the form (1). Then, f ∈ C∗Σ(A, B), the class of
bi-Quasi-convex functions associated with Janowski functions, if there is a function g ∈ C satisfying(

z f
′
(z)
)′

g′(z)
≺ 1 + Az

1 + Bz

and (
wF

′
(w)

)′
G′(w)

≺ 1 + Aw
1 + Bw

,

where −1 ≤ B < A ≤ 1, z, w ∈ E.

Throughout, in this article, we assume −1 ≤ B < A ≤ 1.

2. The Faber Polynomial Expansion Method and Its Applications

Using the Faber polynomial technique for the analytic function f , the coefficients of its
inverse map F can be written as follows (see [21,22]):

F(w) = f−1(w) = w +
∞

∑
m=2

1
m
Sm

m−1(a2, a3, . . . , am)wm,

where

S−m
m−1 =

(−m)!
(−2m + 1)!(m− 1)!

am−1
2 +

(−m)!
[2(−m + 1)]!(m− 3)!

am−3
2 a3

+
(−m)!

(−2m + 3)!(m− 4)!
am−4

2 a4

+
(−m)!

[2(−m + 2)]!(m− 5)!
am−5

2

[
a5 + (−m + 2)a2

3

]
+

(−m)!
(−2m + 5)!(m− 6)!

am−6
2 [a6 + (−2m + 5)a3a4]

+ ∑
j≥7

aj−m
2 Qm,

and Qm is a homogeneous polynomial in the variables a2, a3, . . . , am, for 7 ≤ j ≤ m.
Particularly, the first three terms of S−m

m−1 are

1
2
S−2

1 = −a2,
1
3
S−3

2 = 2a2
2 − a3,

1
4
S−4

3 = −(5a3
2 − 5a2a3 + a4).
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In general, for r ∈ Z (Z := 0,±1,±2, . . .) and m ≥ 2, an expansion of Sr
m is of the

form:

Sr
m = ram +

r(r− 1)
2

V2
m +

r!
(r− 3)!3!

V3
m + . . . +

r!
(r−m)!(m)!

Vm
m ,

where
V r

m = V r
m(a2, a3, . . .),

and, by [22], we have

Vv
m(a2, . . . , am) =

∞

∑
m=1

v!(a2)
µ1 . . . (am)µm

µ1!, . . . , µm!
, for a1 = 1 and v ≤ m.

The sum is adopted over all non-negative integers µ1, . . . , µm which satisfy

µ1 + µ2 + . . . + µm = v

and
µ1 + 2µ2 + . . . + mµm = m.

For more details, see [34]. Clearly,

Vm
m (a1, . . . , am) = Vm

1 ,

and the first and last polynomials are

Vm
m = am

1 , and V1
m = am.

To prove our main results, we shall need the following well-known lemmas (see
Jahangiri [35], Duren [1]).

Lemma 1. Let Φ(z) = 1 +
∞
∑

m=1
cmzm be a positive real part function so that

ReΦ(z) > 0

for |z| < 1. If α ≥ − 1
2 , then ∣∣∣c2 + αc2

1

∣∣∣ ≤ 2 + α|c1|2.

Lemma 2. Let ϕ(z) =
∞
∑

m=1
ϕmzm be a Schwarz function so that

|ϕ(z)| < 1

for |z| < 1. If γ ≥ 0, then ∣∣∣ϕ2 + γϕ2
1

∣∣∣ ≤ 1 + (γ− 1)|ϕ1|2.

Now, by using the Faber Polynomial technique, we obtain general coefficients |am|, for
the classes CΣ(A, B) and C∗Σ(A, B). We also show the unpredictable behavior of the initial
coefficients for these classes.

3. Main Results

Theorem 1. Let f ∈ CΣ(A, B) be an analytic function and if ak = 0, 2 ≤ k ≤ m− 1, then

|am| ≤
(A− B)

m
+ 1, for m ≥ 3.



Symmetry 2023, 15, 604 5 of 13

Proof. For f ∈ CΣ(A, B), there exists a function g ∈ S∗, then the Faber polynomial

expansion for z f
′
(z)

g(z) is provided by

z f
′
(z)

g(z)
= 1 +

∞

∑
m=2

[
(mam − bm)

m−2

∑
l=1

S−1
l (b2, b3, . . . bl+1)((m− l)am−l − bm−l)

]
zm−1. (3)

For the inverse mappings F = f−1 and G = g−1, the Faber polynomial expansion for
wF
′
(w)

G(w)
is

wF
′
(w)

G(w)
= 1 +

∞

∑
m=2

 (mAm − Bm)
m−2
∑

l=1
S−1

l (B2, B3, . . . Bl+1)

((m− l)Am−l − Bm−l)

wm−1. (4)

As opposed to that, since z f
′
(z)

g(z) ≺
1+Az
1+Bz in E, by the definition of subordination, there

exist a Schwarz function

w(z) =
∞

∑
m=1

cmzm, z ∈ E

such that

z f
′
(z)

g(z)
=

1 + Aw(z)
1 + Bw(z)

=

= 1 +
∞

∑
m=1

(A− B)S−1
m (c1, c2, . . . cm, B)zm. (5)

Similarly, wF
′
(w)

G(w)
≺ 1+Az

1+Bz in E, there exists a Schwarz function

φ(w) =
∞

∑
m=1

dmwm

such that

wF
′
(w)

G(w)
=

1 + Aφ(w))

1 + Bφ(w))

= 1 +
∞

∑
m=1

(A− B)S−1
m (d1, d2, . . . dm, B)wm. (6)

In general (e.g., see [21,28]), the coefficients Sp
m(k1, k2, . . . km, B) are provided by

S
p
m(k1, k2, . . . km, B) =

p!
(p−m)!m!

km
1 Bm−1 +

p!
(p−m + 1)!(m− 2)!

km−2
1 k2Bm−2

. . . +
p!

(p−m + 2)!(m− 3)!
km−3

1 k3Bm−3

+
p!

(p−m + 3)!(m− 4)!
km−4

1

[
k4Bm−4 +

p−m + 3
2

k2
3B
]

+
p!

(p−m + 4)!(m− 5)!
km−5

1

[
k5Bm−5 + (p−m + 4)k3k4B

]
+

∞

∑
j≥6

km−j
1 Xj,

where Xj is a homogeneous polynomial of degree j in the variables k1, k2, . . . km.
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Evaluating the coefficients of Equations (3) and (5), for any m ≥ 2, yields (mam − bm)
m−2
∑

l=1
S−1

l (b2, b3, . . . bl+1)

×((m− l)am−l − bm−l)

 = (A− B)S−1
m−1(c1, c2, . . . cm−1, B). (7)

Evaluating the coefficients of Equations (4) and (6) for any m ≥ 2, yields
(mAm − Bm)

m−2
∑

l=1
S−1

l (B2, B3, . . . Bl+1)

×((m− l)Am−l − Bm−l)

 = (A− B)S−1
m−1(d1, d2, . . . dm−1, B). (8)

For special case m = 2, from Equations (7) and (8), we obtain

2a2 − b2 = (A− B)c1

2A2 − B2 = (A− B)d1.

Solving for a2 and adopting the absolute values for the coefficients of the Schwarz
functions p and q,, e.g., |cm| ≤ 1 and |dm| ≤ 1 (e.g, see Duren [1]), we can obtain

|a2| ≤
(A− B)

2
+ 1.

Furthermore, from the assumption 2 ≤ k ≤ m− 1, and ak = 0, respectively, we obtain

Am = −am

and

mam − bm = (A− B)cm−1, (9)

−mam − Bm = (A− B)dm−1. (10)

By solving Equations (9) and (10) for am, determining the absolute values, and by the
Caratheodory Lemma [1], we obtain

|am| ≤
(A− B)

m
+ 1,

upon noticing that
|bm| ≤ m and |Bm| ≤ m.

This completes Theorem 1.

For A = 1− 2α and B = −1, 0 ≤ α < 1, in Theorem 1, we obtain a well-known
corollary that was proved in [14].

Corollary 1. Let f ∈ CΣ(α) if ak+1 = 0, 1 ≤ k ≤ m. Then,

|am| ≤ 1 +
2(1− α)

m
, for m ≥ 3.

Theorem 2. If an analytic function f provided by (1) belongs to the class CΣ(A, B), then

|a2| ≤


√

B(B− A), B ≤ 0 < A,

(A− B), A ≤ 0,
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|a3| ≤


(A−B)

2 (1 + |B|(A− B)), B ≤ 0 < A,

B(B− A), A ≤ 0,

∣∣∣a3 − a2
2

∣∣∣ ≤ (A− B)
2

.

Proof. For the function g = f in the proof of Theorem 1, we obtain am = −bm. For m = 2,
Equations (7) and (8), respectively, yield

a2 = (A− B)c1 (11)

−a2 = (A− B)d1. (12)

From (11) and (12), we have
c1 = −d1. (13)

If we adopt the absolute values of any of these two equations, for the coefficients of
the Schwarz functions p and q, that is |cm| ≤ 1 and |dm| ≤ 1 (e.g., see Duren [1]), we obtain

|a2| ≤ (A− B).

For m = 3, Equations (7) and (8), respectively, yield

a2
2 − 2a3 = (A− B)

(
Bc2

1 − c2

)
(14)

and
2a3 − 3a2

2 = (A− B)
(

Bd2
1 − d2

)
. (15)

Adding (14) and (15), we arrive at

−2a2
2 = −(A− B)

[(
c2 − Bc2

1

)
+
(

d2 − Bd2
1

)]
= −(A− B)

[(
c2 + (−B)c2

1

)
+
(

d2 + (−B)d2
1

)]
.

For the coefficients of the Schwarz functions p and q, that is |cm| ≤ 1 and |dm| ≤ 1
(e.g., see Duren [1]), we have

2|a2|2 ≤ (A− B)
[∣∣∣c2 + (−B)c2

1

∣∣∣+ ∣∣∣d2 + (−B)d2
1

∣∣∣].
If B ≤ 0 < A, then using Lemma 2, we have

2|a2|2 ≤ (A− B)
[
1 + (−B− 1)|c1|2 + 1 + (−B− 1)|d1|2

]
.

For the coefficients of the Schwarz functions p and q, that is |cm| ≤ 1 and |dm| ≤ 1
(e.g., see Duren [1]), we obtain

|a2| ≤
√

B(B− A).

Consequently, we note that, if B ≤ 0 < A, then√
B(B− A) < B(B− A).

Multiplying Equation (14) by 3 and adding it to (15), we obtain

a3 =
A− B

4

[
3
(

c2 + (−B)c2
1

)
+
(

d2 + (−B)d2
1

)]
,
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then, using Lemma 2, we have

|a3| ≤
A− B

4

[
3(1 + (−B− 1))|c1|2 + 1 + (−B− 1)|d1|2

]
.

Since |cm| ≤ 1 and |dm| ≤ 1 (e.g., see Duren [1]), we obtain

|a3| ≤ B(B− A).

Substituting a2 = (A− B)c1 in (14), we obtain

2a3 = (A− B)
(

c2 − B(A− B)c2
1

)
.

Using the triangle inequality, we have

2|a3| ≤ (A− B)
(
|c2|+ |B|(A− B)

∣∣∣c2
1

∣∣∣).

Since |cm| ≤ 1 and |dm| ≤ 1, we obtain

|a3| ≤
(A− B)

2
(1 + |B|(A− B)).

Lastly, subtracting Equations (14) from (15), and using the fact (13)

a3 − a2
2 =

(A− B)
4

|c2 − d2|.

Since |cm| ≤ 1 and |dm| ≤ 1, we obtain∣∣∣a3 − a2
2

∣∣∣ ≤ (A− B)
2

.

For A = 1− 2α and B = −1, 0 ≤ α < 1, in Theorem 2, we obtain the following known
result provided in [14].

Corollary 2. Let f ∈ CΣ(α) be provided by (1). Then,

|a2| ≤
{ √

2(1− α) if 0 ≤ α < 1
2 ,

2(1− α) if 1
2 ≤ α < 1,

|a3| ≤
{

(1− α) if 0 ≤ α < 1
2 ,

(1− α)(3− 2α) if 1
2 ≤ α < 1.

Theorem 3. Let f ∈ C∗Σ(A, B) be provided by (1), if ak = 0, 2 ≤ k ≤ m− 1. Then,

|am| ≤
1
m

(
A− B

m
+ 1
)

, for m ≥ 3.

Proof. For f ∈ C∗Σ(A, B), there exists a function g ∈ C, then the Faber polynomial expansion

for

(
z f
′
(z)
)′

g′ (z)
is(

z f
′
(z)
)′

g′(z)
= 1 +

∞

∑
m=2

[
m(mam − bm)

m−2

∑
l=1

S−1
l (b2, b3, . . . bl+1)((m− l)[(m− l)am−l − bm−l ])

]
zm−1. (16)
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For the inverse mapping F = f−1 and G = g−1, we obtain the Faber polynomial

expansion for

(
wF
′
(w)

)′
G′ (w)

, which is

(
wF

′
(w)

)′
G′(w)

= 1 +
∞

∑
m=2

 m(mAm − Bm)
m−2
∑

l=1
S−1

l (B2, B3, . . . Bl+1)

×((m− l)[(m− l)Am−l − Bm−l ])

wm−1. (17)

Opposite that, since

(
z f
′
(z)
)′

g′ (z)
≺ 1+Az

1+Bz in E, by the definition of subordination, there

exist a Schwarz function

w(z) =
∞

∑
m=1

cmzm, z ∈ E

such that (
z f
′
(z)
)′

g′(z)
=

1 + Aw(z))
1 + Bw(z))

=

= 1 +
∞

∑
m=1

(A− B)S−1
m (c1, c2, . . . cm, B)zm. (18)

Similarly

(
wF
′
(w)

)′
G′ (w)

≺ 1+Az
1+Bz in E, by the definition of subordination, there exist a

Schwarz function

φ(w) =
∞

∑
m=1

dmwm

such that (
wF

′
(w)

)′
G′(w)

=
1 + Aφ(w))

1 + Bφ(w))

= 1 +
∞

∑
m=1

(A− B)S−1
m (d1, d2, . . . dm, B)wm. (19)

In general (e.g., see [21,28]), the coefficients Sp
m(k1, k2, . . . km, B) are provided as:

S
p
m(k1, k2, . . . km, B) =

p!
(p−m)!m!

km
1 Bm−1 +

p!
(p−m + 1)!(m− 2)!

km−2
1 k2Bm−2

. . . +
p!

(p−m + 2)!(m− 3)!
km−3

1 k3Bm−3

+
p!

(p−m + 3)!(m− 4)!
km−4

1

[
k4Bm−4 +

p−m + 3
2

k2
3B
]

+
p!

(p−m + 4)!(m− 5)!
km−5

1

[
k5Bm−5 + (p−m + 4)k3k4B

]
+

∞

∑
j≥6

km−j
1 Xj,

where, Xj is a homogeneous polynomial of degree j in the variables k1, k2, . . . km.
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Evaluating the coefficients of Equations (16) and (18), for any m ≥ 2, yields m(mam − bm)
m−2
∑

l=1
S−1

l (b2, b3, . . . bl+1)

×((m− l)[(m− l)am−l − bm−l ])

 = (A− B)S−1
m−1(c1, c2, . . . cm−1, B). (20)

Evaluating the coefficients of Equations (17) and (19), for any m ≥ 2, yields
m(mAm − Bm)

m−2
∑

l=1
S−1

l (B2, B3, . . . Bl+1)

×((m− l)[(m− l)Am−l − Bm−l ])

 = (A− B)S−1
m−1(d1, d2, . . . dm−1, B). (21)

For special case m = 2, from Equations (20) and (21), we obtain

2(2a2 − b2) = (A− B)c1,

2(2A2 − B2) = (A− B)d1.

Solving for a2 and adopting the absolute values for the coefficients of the Schwarz
functions p and q, that is |cm| ≤ 1 and |dm| ≤ 1 (e.g., see Duren [1]), we can obtain

|a2| ≤
1
2

(
(A− B)

2
+ 1
)

.

Furthermore, from the assumption, 2 ≤ k ≤ m− 1, and ak = 0, respectively, yields:

Am = −am,

m(mam − bm) = (A− B)cm−1, (22)

and
m(−mam − Bm) = (A− B)dm−1. (23)

By solving Equations (22) and (23) for am and determining the absolute values and
using the Caratheodory Lemma provided in [1], we obtain

|am| ≤
1
m

(
(A− B)

m
+ 1
)

,

upon noticing that
|bm| ≤ m and |Bm| ≤ m.

This completes Theorem 3.

Theorem 4. Let f ∈ C∗Σ(A, B) be provided by (1). Then,

|a2| ≤
{ √

B(B−A)
2 if B ≤ 0 < A,

(A−B)
2 if A ≤ 0,

|a3| ≤
{

B(B−A)
2 if B ≤ 0 < A,

(A−B)
6 (1 + |A− 2B|) if A ≤ 0

and ∣∣∣a3 − a2
2

∣∣∣ ≤ A− B
6

.
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Proof. For the function g
′
= f

′
in the proof of Theorem 1, we obtain am = −bm. For m = 2,

Equations (20) and (21), respectively, yield

2a2 = (A− B)c1 (24)

−2a2 = (A− B)d1. (25)

From (24) and (25), we have
c1 = −d1. (26)

If we adopt the absolute values of any of these two equations, for the coefficients of
the Schwarz functions p and q, that is |cm| ≤ 1and |dm| ≤ 1 (e.g., see Duren [1]), we obtain

|a2| ≤
(A− B)

2
.

For m = 3, Equations (20) and (21), respectively, yield

4a2
2 − 6a3 = (A− B)

(
Bc2

1 − c2

)
(27)

and
6a3 − 8a2

2 = (A− B)
(

Bd2
1 − d2

)
. (28)

Adding (27) and (28), we arrive at

−4a2
2 = −(A− B)

[(
c2 − Bc2

1

)
+
(

d2 − Bd2
1

)]
= −(A− B)

[(
c2 + (−B)c2

1

)
+
(

d2 + (−B)d2
1

)]
.

Since |cm| ≤ 1 and |dm| ≤ 1, we have

4|a2|2 ≤ (A− B)
[∣∣∣c2 + (−B)c2

1

∣∣∣+ ∣∣∣d2 + (−B)d2
1

∣∣∣].
If B ≤ 0 < A, then using Lemma 2, we have

4|a2|2 ≤ (A− B)
[
1 + (−B− 1)|c1|2 + 1 + (−B− 1)|d1|2

]
.

Since |cm| ≤ 1 and |dm| ≤ 1, we obtain

|a2| ≤
√

B(B− A)

2
.

Consequently, we note that, if B ≤ 0 < A,√
B(B− A)

2
<

B(B− A)

2
.

Multiplying Equation (14) by 2 and adding it to (15), we obtain

−6a3 = (A− B)
[
2
(

c2 + (−B)c2
1

)
+
(

d2 + (−B)d2
1

)]
,

then using Lemma 2, we have

|a3| ≤
A− B

6

[
2
(

1 + (−B− 1)|c1|2
)
+ 1 + (−B− 1)|d1|2

]
.
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Since |cm| ≤ 1 and |dm| ≤ 1, we obtain

|a3| ≤
B(B− A)

2
.

Substituting a2 = (A−B)
2 c1 in (27) and using the triangle inequality, we have

6|a3| ≤ (A− B)
(
|c2|+ |A− 2B|

∣∣∣c2
1

∣∣∣).

Since |cm| ≤ 1 and |dm| ≤ 1, we obtain

|a3| ≤
(A− B)

6
(1 + |A− 2B|).

Lastly, subtract Equations (27) from (28) and use the fact (26)

a3 − a2
2 =

(A− B)
12

|c2 − d2|.

Since |cm| ≤ 1 and |dm| ≤ 1, we obtain∣∣∣a3 − a2
2

∣∣∣ ≤ A− B
6

.

4. Conclusions

The Faber polynomial expansion method is a useful tool that has been widely used to
find the coefficient bounds of analytic functions. In this article, we have defined two new
subclasses of bi-univalent functions associated with Janowski functions. We derived bounds
on the initial as well as on the general coefficients for each of the defined classes. In addition,
we have provided some intriguing corollaries as special cases of our obtained results.
Furthermore, for future work, certain coefficient problems, such as Hankel determinants,
Zalcman inequalities, Krushkal inequalities, etc., can be found for these classes of functions.
For more about said coefficient problems, see [36–40].
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