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Abstract
Fatty acid binding protein 4 (FABP4), a subtype of fatty acid-binding protein famil

stimulated in vitro models on NRK-52E and NRK-49F cells, and in vivo UUO
The results showed that comparing with control groups or sham groups;

levels of BUN, Cr were significantly increased with large amounts of ¢
investigation showed that compared with control groups or sham gro
stimulated cells and UUO animals were significantly increz lting 'n down- regulating the expression levels of
PPARy, upregulating the levels of p65 and ICAM-1, and”C the expression levels of ACADM, ACADL, SCP-2,

CPT1, EHHADH, and ACOX1. To deeply explore the FABP4 in RIF, FABP4 siRNA and inhibitor interfered
i e used. The results showed that the expression levels
he deposition of lipid droplets decreased, and the

of a-SMA, COL1A, and COL3A were significa
contents of TC, TG, and free fatty acids w
, and ACOX1 were upregulated, the levels of p65 and ICAM-1
were downregulated, and the mRNA Jévels of IL-1 -6, and TNF-a were decreased. Our results supported that FABP4
contributed to RIF via promoting infammation and lipid metabolism, which should be considered as one new drug
target to treat RIF.

Introduction
Renal fibrosis, a

interstitial lesions are more important than glomerular
logical process during the  lesions to demonstrate the severity of renal function decline
disease (CKD) to the end and prognostic prediction'. RIF with the accumulation of

, includes glomerular sclerosis  collagen components in renal interstitium can be caused by
tial fibrosis (RIF), in which renal various pathogenic factors including glomerulonephritis,
chronic pyelonephritis, obstructive nephropathy, diabetic
nephropathy, hypertensive nephropathy, and kidney trans-
plantation®. Thus, RIF, an important global public health
issue, can seriously threaten human health and bring great

ent of Pharmacy, The First Affiliated Hospital of Dalian Medical economic burden to families and society.
- . S ) At present, the detailed molecular mechanisms of RIF
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changes including inflammation, apoptosis and oxidative
stress can cause fibrosis. Recent studies have found that
massive proteinuria can cause the overload of free fatty
acids (FFAs) in renal interstitial cells and lipid hydroper-
oxides after oxidization in mitochondria and lysosomes®.
The molecules associated with reactive oxygen species
(ROS) can destroy cell membrane, and cause severe renal
interstitial damage and fibrosis. It has also been found that
increased absorption of FFAs can result in apoptosis and
damage of renal interstitial cells*. Under normal condi-
tions, fatty acid oxidation can produce energy for renal
tubular epithelial cells. However, reduced fatty acid
metabolism can cause ATP depletion, cell death, lipid
accumulation, and ultimately lead to RIF. On the other
hand, transforming growth factor-p (TGF-pB) can reduce
fatty acid oxidation in renal tubular epithelial cells to
promote renal fibrosis®. In addition, macrophages, the
predominant infiltrating immune cells, can produce var-
ious proinflammatory cytokines, which are closely asso-
ciated with renal fibrosis®. Monocyte chemoattractant
protein-1 (MCP-1), an important proinflammatory cyto-
kine, has important role in the progression of tubu-
lointerstitial fibrosis’. Thus, regulating lipid metabolism
and inflammation should be one effective method to
control RIF.

Fatty acid-binding protein 4 (FABP4), a subtype of fatty
acid-binding protein family, is a key transmitter 4 3lip)s
metabolism and inflammatory reaction®. FABP#Nis P i
tively correlated with FFAs, and high level gff }ABP4 ca:
directly damage endothelial cells, while\ the ¥njured
endothelial cells can promote FABP4flevel, folloved by
deposition of triglyceride and chole¢ erol, together with
lipid metabolism disorders’. It has \ Jan reported that
peroxisome proliferator activat@yreceptory (PPARy), one
target gene of FABP4, can be negatiy < Jedback controlled
by FABP4'?. However, ARy is\able to decrease NE-kB
activity, which can alfy effi ctively”inhibit the expression
levels of intercellyder ce_adhesion molecule-1 (ICAM-1)
and vascular A0 adhesi ¥ molecule 1 (VCAM-1).
Activated PPARY %, suppress the production of tumor
necrosis factor-a (TN?-«), Interleukin-1 (IL-1), IL-4, and
IL-6 wil Jarhi-inlammatory effect'”>. Meanwhile, PPARy
capgiegulal the/processes of fatty acid transport, oxida-
#on [ hd deomposition by regulating the expression
Ie WS"C ity acid transporter, fatty acid binding protein,
and"_prnitine palmitoyltransferase-1 (CPT1)™. In addi-
tion, /FABP4 can adjust the eicosanoid balance by reg-
ulating the activities of cyclooxygenase 2 (COX2) and
leukotriene A4 (LTA4), and ultimately affect the functions
of macrophages and inflammation'*. Moreover, FABP4
can regulate obesity-induced neuroinflammation through
FABP4-uncoupling protein 2 (UCP2) axis'®. In diabetic
nephropathy, FABP4 can regulate apoptosis of renal
interstitial cells via adjusting endoplasmic reticulum
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stress, which may also serve as a marker of renal injury'®.
In addition, inhibition of FABP4 can reduce hepatic liver
ischemia- reperfusion injury'’. Hence, FABP4 plays cri-
tical roles in regulating inflammation and lipid metabo-
lism. However, there have no studies concerning the roles
of FABP4 in RIF. Therefore, the aim of the presepmwork
was to investigate the function of FABP4 in
regulating RIF.

Materials and methods
Chemicals and materials

Dulbecco’s Modified Eagle’s M edium (DFIEM) was
purchased from KeyGEN (Jiapgsu, §hina)./The assay kits
of blood urea nitrogen (BUIN; greac:i (Cr), total cho-
lesterol (TC), triglyceridg/('1'G), & free fatty acids (FFAs)
were obtained from J{ai g Jiangneng Institute of Bio-
technology (Nanjing, ‘Chiri{ ) Tissue Protein Extraction
Kit and the Bigihciy hinic acid (BCA) Protein Assay Kit
were purchasec hor stime Institute of Biotechnology
(Jiangsu, China). < ¥, sodium dodecyl sulfate (SDS) and
4,6-diamit 2-phenylindole (DAPI) were purchased
from Sigmia ASt; Louis, MO, USA). Lipopolysaccharide
(LPS) and Qil red O staining solution were purchased
i WSolarbio Technology Co., Ltd (Beijing, China) and
KeyG N (Jiangsu, China). CCK-8 was purchased from
¢ Megk Chemicals (Houston, USA). Lipofectamine 2000
was obtained from GenePharma (Shanghai, China).
RNAisoPlus, PrimeScript®RT reagent Kit with DNA
Eraser (Perfect Real Time) and SYBR®Premix Ex TaqT-
MII (Tli RNaseH Plus) were purchased from TaKaRa
Biotechnology Co., Ltd. (Dalian, China). FABP4 siRNA
was purchased from RIBOBIO Co., Ltd. (Guangzhou,
China). Mouse and Rat FABP4 ELISA Kits were pur-
chased from Boster Biological Technology Co., Ltd.
(California, USA). FABP4 inhibitor BMS309403 was
purchased from MedChemExpress (Shanghai, China).

Cell culture

NRK-52E cell line (a rat proximal tubular epithelial cell)
and NRK-49F cell line (a kind of rat fibroblast) were
purchased from the Institute of Biochemistry Cell Biology
(Shanghai, China) and BeNa Culture Collection (Beijing,
China), which were maintained in DMEM or MEM
NEAA supplemented with 10% FBS and antibiotics
(100 IU/mL penicillin and 100 mg/mL streptomycin) in a
humidified atmosphere of 5% CO, and 95% O, at 37 °C.

LPS-induced cell proliferation

NRK-52E and NRK-49F cells were plated in 96-well
plates at a density of 1x 10° cells/mL for 24 h before
challenge with various concentrations of LPS (0, 25, 50,
100, 200, and 400 ng/mL) for different times (3, 6, 12, and
24 h). Then, CCK-8 solution was added to the plates for
4 h incubation at 37 °C, and the absorbance was measured
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at 450 nm with a microplate reader (Thermo, Waltham,
MA, USA).

Unilateral ureteral obstruction (UUO) model on rats and
mice

Male Sprague Dawley rats (180-220g) and Male
C57BL/6] mice (18-22g) were purchased from the
Experimental Animal Center of Dalian Medical Uni-
versity (Dalian, China) (SCXK (Liao): 2013-0003). FABP4
knockout (KO) and WT mice (20-22 g) were purchased
from Nanjing Biomedical Research Institute of Nanjing
University (Nanjing, China) (SCXK (Su): 2015-0001).
The animals were maintained in a controlled environ-
ment under standard conditions with temperature at
21-25°C and relative humidity at 55-70%. The animals
were provided with ample food and water and main-
tained on a 12 h/12 h light-dark cycle. The rats and mice
were randomly divided into sham group and UUO model
group (n=7). FABP4 KO and WT mice were randomly
divided into sham group of WT mice, UUO model group
of WT mice, sham group of FABP4-KO mice, and UUO
model group of FABP4-KO mice (n = 5). The animals in
UUO groups were achieved by ligating the left ureter
with 3-0 silk through a left lateral incision. The animals
in sham-operated groups were used as the control. Aftef
4 weeks of rats and 7 days of mice'®!’, the animals e
sacrificed. The blood samples were obtained to p
serum after centrifugation (1200 x g, 4 °C), wieh V ye
stored at —20°C. The kidney samples wef Bharveste:
and stored at —80 °C.

dude

Assessment of biochemical paramete

The protein samples from NRK-5i hcells/and NRK-
49F cells were extracted using@mald lysis buffer contain-
ing 1 mM phenylmethyl sulforiyl J:&ide according to
the protocol, and the #@ents \weré determined using
BCA Protein Assay J% Thxlevels of TC, TG, and FFAs
in cell lysates wée i Hsured using the commercial
kits*®. The sepd{levels 6 BUN, Cr, TC, TG, and FFAs
of rats and mice wi_halso detected using the commercial
kits acco#ding to thejinanufacturer’s instructions.

ELISA assa;
The seruny’protein levels of FABP4 in rats and mice
w i tacibured using the assay kits according to the

- . . 21
mary, pcturer’s instructions”.

Histological assay

Formalin-fixed renal tissue was embedded in paraffin.
The portion of renal cortex was separated and fixed in
formaldehyde (10%), and then the section with 5 pm thick
was stained with H&E, Masson, Sirius red staining assays.
Images were acquired and the histological evaluations
were performed using a light microscope (Nikon Eclipse
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TE2000-U, NIKON, Japan) with 400x magnification. In
addition, the images of Sirius red polarization assay were
captured using a polarized light microscope (NIKON
Eclipse Ci, NIKON, Japan) with 400x magnification.

Oil Red O staining of cells and renal tissues

The frozen tissue slices or formal in-fixed gélls\were
washing with PBS, and then Oil red O solution wi_dded
and incubated at room temperature i the dai Wor
30 min, which were finally washed with{_%% isopippanol
and PBS. Then, the images wepe™eapti W Asing a
microscope  (Olympus, Tokyo/| Japan) vith 400x
magnification.

Immunofluorescence ass#y

For immunofluoregfei W, staininig of FABP4, a-SMA,
and COL1A, the tissue slicc e formal in-fixed cells were
incubated with” ai i-FABP%4, anti-a-SMA, and anti-
COL1A antib tieg pectively, in one humidified
chamber at 4 °C oV haight, followed by incubation with an
alexa fluo, Wpain-labeled secondary antibody at 37 °C for
1 h. Eventually,"¢-1l nuclei were stained with DAPI (5 mg/
mL) for 15¥min. Then, the immune stained images were
cap. med using a fluorescence microscope (Olympus,
Toky\ | Japan) with 400x magnification.

Western blot assay

Total protein samples from kidney tissues of rats and
mice, NRK-52E and NRK- 49F cells were extracted using
cold lysis buffer containing 1 mM phenylmethyl sulfonyl
fluoride according to the manufacturer’s protocol, and the
protein content was determined using the BCA protein
assay kit. The protein samples were loaded onto SDS-
PAGE gel (8-12%), electrophoretically separated and
transferred onto a PVDF membrane (Millipore, USA).
After blocking nonspecific binding sites for 1h with 5%
dried skim milk in TTBS at 37°C, the membrane was
individually incubated for overnight at 4 °C with the pri-
mary antibodies listed in Supplemental Table S1. Then,
the membrane was incubated at room temperature for 2 h
with horseradish peroxidase-conjugated antibodies at a
1:2000 dilution. Protein expression was detected by the
enhanced chemiluminescence (ECL) method. Protein
bands were imaged using a Bio-Spectrum Gel Imaging
System (UVP, Upland, CA, USA) and normalized with
GAPDH as an internal control (IOD of objective protein
versus 10D of GAPDH protein).

Quantitative real-time PCR assay

Total RNA samples were obtained from kidney tis-
sues, NRK-52E, and NRK-49F cells using RNAiso Plus
reagent following the manufacturer’s protocol. Each
RNA sample was reverse transcribed into cDNA using
the PrimeScriptl RT reagent Kit. The forward (F) and
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reverse (R) primers used in the present study are given
in Supplemental Table S2. Among the data from each
sample, the Ct value of the target genes was normalized
to that of GAPDH. The unknown template in our study
was calculated using the standard curve for quantitative
analysis.

FABP4 siRNA treatment

FABP4-targeted siRNA and control siRNA were dis-
solved in DMEM or MEM NEAA and then equilibrated
for 5min at room temperature. NRK-52E and NRK-49F
cells were transfected with FABP4 siRNA or non-binding
control siRNA using Lipofectamine 2000 reagent
according to the protocol. Then, the levels of TC, TG, and
FFAs were detected. Oil Red O staining and immuno-
fluorescence assay were carried out for detecting lipid
droplets and the expression levels of a-SMA, COL1A, and
FABP4 after transfection. In addition, the protein levels of
FABP4, PPARy, SCP2, ACADM, ACADL, EHHADH,
CPT1, ACOX1, p65, ICAM-1, and the mRNA levels of -
SMA, COL1A, COL3A, IL-1p, IL-6, and TNF-a were
measured after transfection.
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Renal fibrosis and lipid metabolism disorders in vitro and in vivo. a The mRNA levels of a-SMA, COL1A, COL3A, and the protein levels of

Page 4 of 12

Statistical analysis

The data and statistical analysis in this study comply
with the recommendations on experimental design and
analysis in pharmacology. The data are expressed as the
mean + SD. GraphPad Prism 6.01 software (Paragraph
Software, Inc, La Jolla, CA, USA) was used to handlmthese
data and only when a minimum of n=5 in
samples was acquired. Statistical significance
mined by one-way ANOVA. Analysis befween tw
vidual groups was determined by St t-te
results were considered to be statistj
0.05.

si

Results
Fibrosis and lipid metab,
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As shown in Fi
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NRK-52
Suppleme

s in cells caused by

ession levels of a-SMA,
1 were significantly increased (p <
-49F cells after LPS treatment
I groups. (The survival rates of
-49F treated by LPS are shown in
. S1). Based on these results, LPS at the
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a-SMA and COL1A based on immunofluorescence staining (400x original magnification) in NRK-52E and NRK-49F cells (n = 3). b The lipid droplets
based on Oil Red O staining (400x original magnification), and the levels of TG, TC, and FFAs in NRK-52E and NRK-49F cells (n =5). ¢ The serum Cr
and BUN levels, and H&E staining (400x original magnification) of the kidney tissues in mice and rats (n = 7). d Masson and Sirius red staining (400x
original magnification), and Sirius red polarized light observation (400x original magnification) of the kidney tissues in mice and rats. e The mRNA
levels of a-SMA, COL1A1, COL3A1, and the protein levels of a-SMA and COL1A in the kidney tissues of mice and rats based on immunofluorescence
staining (400X original magnification). f The lipid droplets based on Qil O Red staining (400x original magnification), and the levels of TG, TC, and
FFAs in mice and rats (n = 7). Data are presented as the mean + SD. *p < 0.05, **p < 0.01, and ***p < 0.001 compared with sham groups or
control groups
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concentration of 200 ng/mL for NRK52E cells, and 25 ng/
mL for NRK49F cells under 3 h treatment were selected in
the rest of the experiments. The results of immuno-
fluorescence assay also showed the high expression levels
of a-SMA (green light) and COL1A (red light) in LPS-
stimulated cells. In addition, as shown in Fig. 1b, Oil red
O staining revealed that lipid droplets were accumulated
in NRK-52E and NRK-49F cells after LPS treatment
compared with control groups. Furthermore, the levels of
TC, TG and FFAs were significantly increased by 38.76,
79.57, and 85.73% in LPS-induced NRK-52E cells com-
pared with un-treated cells, and increased by 30.97, 70.07,
and 85.16% in LPS-induced NRK-49F cells compared with
control group.

Renal injury and histopathological changes in UUO rats
and mice

As shown in Fig. 1c, compared with sham groups, the
levels of serum Cr (mice 25.506 +4.596 umol/L; rats
53.344 + 16.458 umol/L) and BUN (mice 10.833t
1.803 mmol/L; rats 8.333 + 1.883 mmol/L) in UUO ani-
mals were significantly increased. The results of H&E
staining showed that the kidneys of the animals in sham
groups exhibited integral tubular cell structure. However,
the histopathological changes including swelling in renal
tubular epithelial cells, vacuoles degeneration, disapp€udi-
ing of brush border, coagulation necrosis, and = %ssils
inflammatory cells infiltration in UUO anipfals W ye
obviously found compared with sham groupé

UUO induces RIF and lipid metabolismy/disorders

As shown in Fig. 1d, compared wita sham groups, the
interstital and perivascular collageri Mepositions were
obviously found in UUO anifgsls, and the expression
levels of COL1A (green) and COLZZ Worange red) were
heavily increased compa@@,with'\§ham groups, as well as
the results of polarize@)ligh' abservation. As shown in Fig.
le, the mRNA levgisof ©. SMA,"COL1A1, and COL3A1 in
UUO animals A e mark{ dy increased compared with
sham group\ In"{_Mdition, immunofluorescence assay
showed tiat ‘the expi ssion levels of a-SMA (green) and
COL1A jedhinYUUO animals were markedly increased
compared < ¥sh sham groups. As shown in Fig. 1f, Oil Red
@ sta ling inuicated that the lipid droplets in renal tissue
W sig-icantly increased in UUO animals. At the same
time, Jempared with sham groups, the levels of TC, TG,
and PFAs were significantly increased by 21.19, 29.43, and
40.38% in UUO mice, and increased by 44.74, 61.81, and
34.38% in UUO rats.

Expression levels of FABP4 in RIF

As shown in Fig. 2a, b, in LPS-induced cells, the
expression levels of FABP4 were significantly increased
compared with control groups. Similarly, in UUO rats and
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mice, the expression levels of FABP4 were significantly
increased compared with sham groups (Fig. 2¢c, d). In
addition, the serum protein levels of FABP4 in UUO rats
and mice were significantly increased with p <0.01 com-
pared with sham groups (Fig. 2e).

FABP4 adjusts PPARYy to regulate inflammation zAd fatty
acid oxidation

As shown in Fig. 3a, the protein levels of PPARYy iri 95-
stimulated cells or UUO animals s % significantly
reduced compared with control gredps or< han¥ groups
in vitro and in vivo. As shown in Ef5. 3b, the mKXNA levels
of IL-1B, IL-6, and TNF-a im LI § -stimylated cells or
UUO animals were significafit, Jincre and the protein
levels of p65 and ICAM-Zwere a:_significantly increased
compared with contrgl g Wips or siiam groups. As shown
in Fig. 3c, the expression %els of some proteins asso-
ciated with fafty\ cid oxidation including ACADL,
ACADM, CPL )AL SCP-2, and EHHADH were
significantly decréi d, in LPS-treated cells or UUO ani-
mals con, Bmad witn control groups or sham groups
(Details of\fgla“yiianges and significances of the proteins
in western Hlot assay are shown in Supplemental Fig. S2).

EABF| siRNA inhibits inflammation and reinforces PPARy
= malin vitro

»is shown in Fig. 4a, the expression levels of FABP4
were massively reduced in FABP4 siRNA groups com-
pared with LPS-stimulated cells. Besides, western blotting
assay illustrated that the expression levels of FABP4 were
markedly decreased in FABP4 siRNA groups compared
with LPS-stimulated cells. In contrast, the expression
levels of PPARy in FABP4 siRNA-treated NRK-52E and
NRK-49F cells were significantly increased compared with
LPS-stimulated cells. In addition, compared with LPS-
stimulated cells, FABP4 siRNA suppressed inflammation
by decreasing the mRNA levels of IL-1p, IL-6, and TNF-«
in NRK-52E and NRK-49F cells, and the protein levels
p65 and ICAM-1 were also obviously reduced (Fig. 4b).
Besides, the data in Fig. 4c showed that, compared with
LPS-stimulated cells, FABP4 inhibition improved fatty
acid oxidation via reinforcing PPARY signal by affecting
the protein levels ACADL, ACADM, CPT1, ACOX1,
SCP-2, and EHHADH (Details of fold changes and sig-
nificances of these proteins in western blot assay are
shown in Supplemental Fig. S3).

FABP4 siRNA attenuates fibrosis and lipid metabolism
disorders in cells

As shown in Fig. 4d, compared with LPS-stimulated cells,
the mRNA levels of a-SMA, COL1A1, and COL3A1 were
significantly decreased in FABP4 siRNA groups. Mean-
while, FABP4 siRNA attenuated LPS-induced fibrosis
in vitro by reducing the expression levels of a-SMA (green)
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and COL1A (red). As shown in Fig. 4e, the levels of TC, TG,
and FFAs in FABP4 siRNA-treated NRK-52E cells were
reduced by 55.27, 33.33, and 42.13%, and decreased by
51.01, 33.41, and 53.65% in NRK-49F cells compared with
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LPS-stimulated cells. Furthermore, the results of Oil Red O
staining showed that the depositions of lipid droplets in
FABP4 siRNA-treated cells were obviously reduced com-
pared with LPS-stimulated cells.
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As’shown in Fig. 5a, the expression levels of FABP4,
p65, and ICAM were decreased in FABP4 inhibitor
groups, while the expression levels of PPARy in FABP4
inhibitor-treated NRK-52E and NRK-49F cells were
increased compared with LPS stimulated cells. The data
in Fig. 5b showed that the expression levels of ACADL,
ACADM, CPT1, ACOX1, SCP-2, and EHHADH in
NRK-52E and NRK-49F cells were increased by FABP4
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inhibitor compared with LPS-stimulated cells. In addi-
tion, as shown in Fig. 5¢, the mRNA levels of a-SMA,
COL1A1 and COL3A1 were significantly decreased in
FABP4 inhibitor groups and the expression levels of
a-SMA (green) and COL1A (red) were reduced com-
pared with LPS groups (p < 0.05). Moreover, the results
of Oil Red O staining in Fig. 5d showed that the
depositions of lipid droplets, and the levels of TC, TG,
and FFAs in FABP4 inhibitor-treated cells were
significantly decreased compared with LPS-stimulated
cells (p < 0.05).
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FABP4 KO downregulates FABP4 expression and reinforces
PPARYy signal in mice

As expected, the expression level of FABP4 in FABP4
KO mice was not detected (Fig. 6a). As shown in Fig. 6b,
the expression level of PPARy was significantly increased
in UUO FABP4 KO mice compared with WT mice. In
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addition, compared with UUO WT animal, the mRNA
levels of IL-1, IL-6, and TNF-a in UUO FABP4 KO mice
were reduced, and the protein levels of p65 and ICAM-1
were also decreased (Fig. 6¢, d). In addition, the data in
Fig. 6d showed that, compared with UUO WT mice,
FABP4 knockdown attenuated lipid metabolism disorders
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immunofluorescence staining (400x magnification) and western blotting assay in FABP4 KO mi RNA levels of IL-1(3, IL-6, and TNF-a in

FABP4 KO mice. Data are presented as the

via inhibiting PPARYy signal by affecting the protein levels
of ACADL, ACADM, CPT1, ACOX1, SCP-2, and
EHHADH in UUO FABP4 KO mice (Details of
changes and significances of these proteins in e
blot assay are shown in Supplemental Fig. S4)

FABP4 KO protects renal function in mic

As shown in Fig. 7a, the level
8.991 umol/L) and BUN (13.720 +
significantly increased in UUO W
FABP4 KO mice after UUO
(18.975 + 4.959 pmol/L) and B
were significantly red
showed that in U

e levels of Cr
+1.316 mmol/L)

ugtes RIF and lipid metabolism disorders in

ith UUO WT mice, collagen deposition
«led and fibrosis degree was significantly
. 92d in UUO FABP4 KO mice (Fig. 7b). Under
polarized light observation, the expression levels of
COLI1A (green) and COL3A (orange red) were heavily
decreased in UUO FABP4 KO mice compared with UUO
WT mice. At the same time, as shown in Fig. 7c, the
mRNA levels of a-SMA, COL1A1, and COL3A1 were
significantly decreased in UUO FABP4 KO mice com-
pared with UUO WT mice. In addition, Oil Red O
staining observed that the deposition of lipid droplets was

pare
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FABP4 KO mice. d The protein levels of p65, ICAM-1, EHHADH, ACOX1, SCP-2, CPT1, ACAI and ACA
mean + SD (n = 3). **p <001 Sham group compared with UUO mice; *#p < 0.01 and *p mice compared with UUO FABP4~/~mice

antly‘rleduced in FABP4 KO UUO mice compared
O WT mice (Fig. 7d). Furthermore, the levels of
G, and FFAs were also significantly reduced by
8t74, 48.28, and 44.30%.

Discussion

RIF is the pathological basis or pathological feature that
leads to chronic renal failure, which is also the best his-
tologic predictor of renal functional decline in CKD™.
Therefore, it is necessary to explore effective drug targets
for research and development of innovative drugs to
treat RIF.

Recently, some works have reported that dyslipidemia
associated with lipid metabolism disorder plays an
important role in the pathogenesis of RIF*>. Lemos et al.
have observed that inhibiting Interleukin-1R (IL-1R) sig-
nal transducer kinase IRAK4 (Interleukin-1 receptor-
associated kinase 4) can abrogate fibrosis and reduce
tubular injury*®. In our study, the survival rates of NRK-
52E and NRK-49F after challenge with LPS were detected
and UUO models in mice for 7 days and rats for 4 weeks
were established®?, The results showed that in vivo
experiments, compared with sham groups, the levels of
serum Cr and BUN in UUO animals were significantly
increased (p<0.05), as well as the histopathological
changes. At the same time, the levels of inflammation-
related factors including IL-1pB, IL-6, and TNF-a were
increased in UUO mice and rats. In addition, we also
found that the levels of TC, TG, and FFAs were increased,
and lipid depositions were obvious in UUO animals. The
same results were verified in vitro experiments. Therefore,
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inflammation and lipid metabolism disorders played
important roles in the process of RIF.

Therefore, it is important to find drug targets that can
regulate inflammation and lipid metabolism to treat RIF.
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FABP4, a member of the fatty acid-binding protein family,
is involved in lipid metabolism and inflammation®”*,
Recent studies have shown that FABP4 inhibitor can
reduce lipid-induced ER stress-associated inflammation,
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ameliorate lipid deposits and suppress ROS and nuclear
factor-kappaB (NF-kB) nuclear translocation®. In other
hand, FABP4 deficiency can alter adipocyte biology and
fatty acid metabolism to regulate systemic insulin resis-
tance, dyslipidemia, and lipotoxicity?’o. However, the
mechanisms of FABP4 in RIF via regulating inflammation
and dyslipidemia remain poorly defined.

Some reports have shown that FABPs can correlate with
PPARy, in which FABP4 can specifically connect with
PPARy’!. Besides, in FABP4-deficient macrophages, the
cholesterol accumulation and alterations in pro-
inflammatory responsiveness can be suppressed32. At the
same time, the shortage of FABP4 alters lipid composition
in macrophages and enhances PPARYy activity, leading to
the elevated expression of CD36 and enhanced uptake of
modified low density lipoprotein®®. In our present study,
the results showed that the occurrences of RIF were
accompanied with the increased expression of FABP4 and
the decreased expression of PPARYy in vivo and in vitro
experiments. Then, FABP4 siRNA and inhibitor interfered
NRK-52E and NRK-49F cells, and FABP4 KO mice were
used. We found that knocking down and inhibition of
FABP4 promoted PPARy expression. These data proved
that downregulation of FABP4 increased PPARy expres-
sion in feedback, as a result of reversing RIF.

Inflammation is a driver of RIF. PPARy can regulat
KB activation, and activated PPARYy can be ind

present study, FABP4 inhibition or k
PPAR-y expression, and decreased
p65 and ICAM-1 to suppress infla

nd inhibitor in cells decreased lipid
reversed the levels of TC, TG, FFAs. By
e expression levels of the proteins associated
atty acid oxidation including SCP2, ACADL,
ACADM, CPT1, ACOX1, and EHHADH were increased,
suggesting that the mechanism of FABP4 in regulating
RIF might result from controlling lipid metabolism dis-
orders. However, FABP4 KO is full KO, not specific for
kidney tissues. Since the main source of FABP4 is adipose
tissue, it is possible that the effects observed in FABP4 KO
mice would be consequence of the reduction of FABP4
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