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ABSTRACT Loom malfunctions are the main cause of faulty fabric production. A fabric inspection system

is a specialized computer vision system used to detect fabric defects for quality assurance. In this paper,

a deep-learning algorithm was developed for an on-loom fabric defect inspection system by combining

the techniques of image pre-processing, fabric motif determination, candidate defect map generation, and

convolutional neural networks (CNNs). A novel pairwise-potential activation layer was introduced to a CNN,

leading to high accuracy of defect segmentation on fabrics with intricate features and imbalanced dataset.

The average precision and recall of detecting defects in the existing images reached, respectively, over 90%

and 80% at the pixel level and the accuracy on counting the number of defects from a publicly available

dataset exceeded 98%.

INDEX TERMS Convolutional neural network, activation function, fabric defects, imbalanced dataset.

I. INTRODUCTION

A faulty mechanical motion or a yarn breakage on a loom can

cause the weave structure to differ from the design, yielding

a warp, weft, or point defect, such as harness misdraw, end-

out, mispick, and slub. Defects can reduce fabric price by

45% to 65% [1]. In the modern weaving factories, weavers

are required to check the fabric in weaving for intricate

defects by cruising a number of looms periodically because

some of the fabric defects are preventable or correctable if

detected on time. Hence, the textile industry has been moving

toward automating fabric inspection for consistent evaluation

of fabric quality. Compared to the 60-75% defect detection

accuracy of human visual judgment [2], a typical state-of-art

automatic fabric inspection system can achieve a detection

rate up to 90% [3]–[5].

Most auto-fabric inspection systems are based on computer

vision techniques including image acquisition and defect

segmentation algorithms. The fabric defect detection algo-

rithms can be categorized into statistical, spectral, model-

based, learning, structural, and hybrid approaches. The first

five approaches for defect segmentation were reported to be

sensitive to noise [6], [7], computationally intensive [7]–[9],

limited to certain types of defects [7], [10]–[13], and
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inconsistent to changes in fabric structures and back-

ground [4]. For the past decade, the hybrid approach has

been adopted for higher robustness in handling variations

in weave structures and defect types. Concepts from other

fields, i.e., Bollinger Bands (BB) – a statistical chart of a

financial instrument, and Elo rating (ER) – an evaluation

method of player performance, have also been introduced to

the fabric defect detection. Although BB and ER achieved a

detection rate above 96% on patterned fabrics, they failed to

detect defects smaller than the repetitive unit of a patterned

fabric [14], [15].

Recently, convolutional neural networks (CNN) have

been demonstrated for effective image semantic segmen-

tation [16]. The CNNs, e.g. FCN [16], U-Net [17],

SegNet [18], and their successors, all share the basic

components—convolution, pooling, and activation functions,

in which the pooling layer plays a role of avoiding overfit-

ting and reducing the spatial dimensions. A deep network

could reach over a hundred convolutional layers. For exam-

ple, the VGGNet [19] has 16 layers, while the ResNet [20]

possesses 152 layers. However, deep networks provide fea-

tures with a global semantic meaning and abstract details

that are not suitable for fine structure segmentation in an

image, mainly because (1) the traditional convolutional filters

have large receptive fields, and (2) fine structures are further

reduced by pooling layers [21]. From the perspective of
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computer vision, most fabric defects are considered as fine

structures since they are indicated only by a small number of

pixels in an image. To improve the fine structure segmenta-

tion, further processing is needed to be embedded in a CNN

to fine tune the coarse outputs of the CNN.

Another common problem in the neural network learning

process is that samples from a real-life application may not

always evenly distribute among classes. Applications, such

as medical diagnosis, credit fraud detection, computer vision,

etc., are brimming with imbalanced datasets. The methods of

handling an imbalanced dataset can be categorized into data-

level, algorithmic-level and hybrid approaches [22]. As of

the data-level approach, over-sampling and under-sampling

are the common strategies to adjust the class distribution

of a dataset. A synthetic minority oversampling technique

(SMOTE) allows samples to be randomly created based on

the density distribution [23]. The algorithmic-level approach

assigns different cost values to minority and majority sam-

ples [24]. It is difficult, however, for such a cost-sensitive

approach to unify a general framework since it is often

specific to a paradigm. AdaBoost algorithms [25] bridged

the sampling and cost-sensitive approaches together by iter-

atively updating cost weights. Yuan et al. introduced a reg-

ularization term in the SAMME algorithm [26] to penalize

the weight of a classifier that misclassifies the second-round-

misclassified examples [27].

A defect appearance on a fabric image, such as double pick,

mispick, coarse pick, etc., usually represents a fine/detail sur-

face structure and often occupies less than 35% of the pixels

of the image, yielding an imbalanced fabric defect dataset.

Therefore, in the construction of a CNN for fabric defect

detection, two factors need to be considered: preservation of

fine structures and treatment of imbalanced dataset. A desired

CNN should not involve too many convolutional layers to

prevent details on a fabric image from missing, and should

avoid using pooling layers to retain the image resolution in

the feature maps.

In this paper, we adopt a hybrid approach that utilizes

statistical defect information and a CNN for fabric defect

detection. The motif of a fabric is firstly calculated using the

autocorrelation of a fabric image to represent the repeated

texture in the fabric. A motif-center-point map, namely

node map, is then generated by normalized cross-correlation

(NCC) taking the motif as the template. The distributions of

node points can indicate the regularity of fabric textures in the

image, from which a statistical rule can be derived to relate

the node point count in a motif region to the defect judgment.

The statistical rule can be utilized as an activation reference,

called pairwise potential activation layer, in a newly designed

CNN to improve the fabric defect detection performance.

II. RELATED WORK

A. ACTIVATION LAYER IN CNN

To identify an object, a human brain tries to pick up use-

ful information, such as shape, color, smell, feeling, and

prior knowledge. Among these features, prior knowledge can

significantly influence the success rate and the response

speed of object recognition [28]. In a similar way, a con-

volutional neural network selects only suitable ones from

a tremendous amount of generated features for object

identification.

Previous research utilized general activation functions to

regulate the contributions of different features. The binary

activation function is the primitive way to filter features, but

that the zero gradient function does not improve the network

evolution. The linear activation function has a similar prob-

lem because the constant value of its derivative function can-

not reduce the error during the backpropagation. Non-linear

activation functions, i.e. Sigmoid and Tanh, achieve break-

throughs from linear functions. However, learning updates

can be trapped in the>+3 or<−3 regions when the gradients

curves of Sigmoid and Tanh functions approach to zero. The

ReLU activation function makes the network sparse and effi-

cient because the coefficient of a negative neuron is always

zero, yielding dead neurons which are never activated. If too

many dead neurons are generated by the ReLU activation,

the surviving neurons in the network may not be powerful

enough to recognize objects correctly. An alternative way

is to use the Leak ReLU or PReLU to avoid dead neurons.

Since our research is only associated with binary detec-

tion (defect or non-defect), the multi-group classification

activation functions, i.e. Softmax, are not discussed in this

work.

The training process of a neural network can be easily

entered in a gradient vanishing situation if Sigmoid or Tanh

activation function is used in a CNN, because the expression

of the gradient is,

1W1 = ∂Loss

∂w1
= δ′ (z1) δ′ (z2) . . . δ′(zn)

∂Loss

∂wn
(1)

where 1W is the weight offset, and δ′ is the derivative of the
activation function. Since the Sigmoid derivative reaches a

maximum at δ′(0) = 0.25, according to the derivative chain

rule, with each subsequent layer the magnitude of gradient

vanishes exponentially. Tanh activation scales the maximum

δ′ up to one, but the vanishing gradient problem still exists

because a δ′ is highly possible below one. It is also possi-

ble that an imbalanced dataset causes δ′ to cluster in either

right or left side of the gradient curve where δ′ is always

less than 1. A large weight may help to avoid the gradient

vanishing problem.

When ReLU or its improved version is chosen, the fluctu-

ating loss phenomena can cause the learning process to con-

verge more difficultly on an imbalanced dataset. Therefore,

a specially designed activation function is needed in

the CNN.

B. FINE STRUCTURE SEGMENTATION ON CNNS

Different approaches were proposed to improve the segmen-

tation of fine structures. Firstly, the method of retrieving the

features from earlier layers was presented in [29] and [30]

to better estimate fine structures, such as boundary, hollow
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area, etc. An alternative way was to conduct a super-pixel

representation of an original image to enhance the localized

details [31]. Themain drawback of this strategy is that it leads

to a poor prediction if wrong features are retrieved in the very

beginning.

Secondly, a nonlinear model was applied to produce

accurate semantic segmentation based on a label map. The

nonlinearmodel can be a support vectormachine (SVM) [32],

a random forest [33], or a Conditional Random Field

(CRF) [34]. The DeepLab is the pioneer that utilized the CRF

as a post-processing procedure after a CNN. The DeepLab

treated the prediction of a CNN as the unary potential and

took the generated energy map as the pairwise potential to

form a CRF presentation. Because the potentials of a CRF

integrate the prior probability, the pairwise potential, and

the Gaussian smooth term that encourages similar pixels

having similar posterior [35], [36], a CRF is able to assist

recovering the details of the CNN output. Although the CRF

post-processing significantly improves the fine structure seg-

mentation in an image, it does not fully take advantage of the

strength of a CRF since it is isolated from the CNN learning

process. It needs to be noted that a simple combination of

a CNN and a CRF may not be an optimal solution since

it wastes many features generated by the CNN because of

limited latent features in CRF. Zheng et al. formulated dense

CRF as a Recurrent Neural Network (RNN) so that the CRF

energy could be calculated during the CNN training [21], but

its performance relied on the recurrently computed forward

pass, which was time-consuming [37].

III. METHODS

A. DEFECT PROBABILITY MAP GENERATION

The autocorrelation measurement of an image I (i, j), i ∈
(0,N ) , j ∈ (0,M ), is to shift the image in the vertical and

horizontal direction with different scales, which the function

is described as,

ρ (x, y) =
∑N−1

i=0

∑M−1
j=0 I (i, j)I (i+ x, j+ y)

∑N−1
i=0

∑M−1
j=0 I (i, j)2

(2)

where x and y represent the image shifting scales in the

horizontal and vertical directions. The efficiency of this cal-

culation can be improved by the Fast Fourier Transform

(FFT) in (3),

ρ (x, y) = ABS(IFFT2(FFT2 (I ) . ∗ Conj(FFT2 (I ))))
∑N−1

i=0

∑M−1
j=0 I (i, j)2

(3)

Fig.1a is a fabric image containing defects, Fig. 1c illus-

trates its autocorrelation map, and Figs. 1d and 1e are the

side views of the autocorrelation map in the warp and the

filling directions. The average period intervals are about

7 pixels in the warp direction, and about 16 pixels in the

filling direction, which define the size of the weave repeating

unit (fabric motif). The fabric motif can be generated by

averaging pixels in every 7 × 16 non-defective area. In this

FIGURE 1. (a) A fabric image containing defects. (b) The generated fabric
motif. (c) 3D view of the autocorrelation coefficient map. (d) Side view of
the autocorrelation map in the warp direction. (e) Side view of the
autocorrelation map in the filling direction.

research, if either the horizontal peak interval or the vertical

interval is 3 pixels above the corresponding averaged interval,

this area will be excluded from the fabric motif calculation.

The calculated fabric motif of Fig. 1a is shown in Fig.1b.

The red –box in Fig. 1e indicates a defect region in Fig.1a.

However, the approximate 16-pixel peak-to-peak interval of

the defect region is not distinguishable with other regular

fabric texture. Therefore, further processing is needed.

Using the calculated motif image (Fig.1b) as a template,

a fabric motif map of the image (Fig.1a) can be generated

by calculating its localized correlations with the template.

Compared to the sum of absolute difference (SAD), the sum

of squared differences (SSD), and the hamming distance

(SHD), the normalized cross-correlation (NCC) proves to be

more robust for calculating motif center points. To elimi-

nate the intensity differences between the template and the

image, the mean values should be subtracted. Therefore,

the zero-mean NCC (ZNCC) is used for the fabric motif

map generation. The calculation of the ZNCC on an image
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FIGURE 2. (a) The node point map of Fig.1a. (b) The generated defect
probability map.

can be presented as the following equation,

f (u, v) = n(u, v)

d(u, v)

=
∑

i,j {
[

I (i, j) − Ī
] [

t (i− u, j− v) − t̄
]

}
√

∑

i,j

[

I (i, j) − Ī
]2 ∑

i,j [t (i− u, j− v) − t̄]
2

(4)

where t (i, j) is a pixel in the template, I (i, j) is a pixel in the

image. The nominator in (4) can be rearranged according to

Lewis [38],

n (u, v) =
∑

i,j
I (i, j)t ′ (i− u, j− v) (5)

Equation (5) is a convolutional expression in the time

domain. In the frequency domain, it can be expressed bymore

efficient dot multiplication:

n (u, v)=ABS(IFFT2(FFT2 (I ) . ∗ Conj(FFT2
(

t ′
)

))) (6)

The denominator can be rewritten as
√

[
∑

i,j
I (i, j)2 − 1

N
(
∑

i,j
I (i, j))

2
] � σ �

√
N (7)

where N is the total pixel count in an image and σ is the

standard deviation of the calculated template. By combining

(6) and (7), the correlation coefficient can be rearranged as

follows,

f (u, v) = n(u, v)

d(u, v)

=
ABS(IFFT2(FFT2 (I ) . ∗ Conj(FFT2

(

t ′
)

)))
√

[
∑

i,j I (i, j)
2 − 1

N
(
∑

i,j I (i, j))
2] � σ �

√
N

(8)

Fig. 2a demonstrates the motif-center-point detection

result of Fig. 1a, namely fabric nodemap. Themap eliminates

the original fabric weave pattern but inherits the fabric defect

information, indicated by a wider horizontal gap as shown

in the red box in Fig. 2a. According to the fact that the

count of node points in a motif area should be constant in

a regular fabric, a statistical rule to determine the probability

of defect areas can be derived. On a node map, each node

TABLE 1. Defect probability regarding with different numbers of nodes in
nodes-searching region.

represents the center of a region whose dimension is the

same as the template. Taking the ground truth images as

references, we were able to find the probability of a defect

area that is related to the number of nodes found in each node-

searching region. After investigating the 1160 node maps

generated from our fabric image dataset, we created a table

showing defect probability Table 1 regarding the number of

nodes found in each region. It is found that the probability

of being a defect region is high if the number of nodes in

the region is fewer than four. Fig. 2b shows the generated

defect probability map according to Table 1. In the image,

dark regions represent higher chances of defect areas. Despite

the edge areas in Fig. 2b, the defect areas in the original image

do show higher probabilities. But there are exceptions that

some areas with high defect probability in Fig. 1a are actually

defect-free areas, meaning that a further step is needed to

correct the defect probability map. The map will be used as

a pairwise potential activation layer in a convolutional neural

network.

B. PAIRWISE POTENTIAL ACTIVATION LAYER

Unlike the prediction on a standalone sample by traditional

discrete classifiers, a Conditional Random Field (CRF) con-

siders sample’s neighbors to be a random variable distribution

in an undirected graphical model. Of an image, a single pixel

is meaningful only if its neighbors is taken into account.

Therefore, the application of a CRF can be extended to the

image segmentation, in which random fields describe the

correlations among different pixels sharing similar proper-

ties. Let’s denote an image as I , which has a pixel vector

X = {x1, x2, . . . , xn} and a corresponding label set L =
{l1, l2, . . . , ln}. According to the Hammersley-Clifford theo-

rem, CRF obeys the Gibbs distribution [38], that is,

P (X = x |L) = 1

Z (L)
exp(−E (x |L)) (9)

where the Z (L) is the partition function and E (x |L) repre-

sents the pixel’s energy with the following expression,

E (x) = 9u (xi) + 9p

(

xi, xj
)

(10)

where xi and xj are two pixels, 9u is the unary potential out-

come of a feature extracting network (i.e. CNN), and9p is the

pairwise potential representing the relationship among pixels

in cliques that have similar characteristic, such as gradient,
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FIGURE 3. The architecture of the new convolutional neural network.

texture, or color, preferably, with the same label. The unary

potential, called the rough term in the CRF, describes the

CNN’s output that is an abstract segmentation result. The

pairwise, in contrary, provides the smoothing term that takes

the effect by adjusting the pixel labels according to the dis-

covered similar properties among pixels. The CRF has been

demonstrated to be effective for improving detail recognition

after the CNN segmentation [34].

Pairwise potential 9p can be further expanded to [10],

9p

(

xi, xj
)

= µ
(

xi, xj
)

∑K

m=1
ω(m)k(m)(fi, fj) (11)

where f is an image feature derived from pixels information

(color, intensity, or gradient), k(m) is a feature filter that

may be a Gaussian, high-pass, or low-pass filter, µ (., .) is

a label function describing the compatibility between pixel

labels, and ω(m) is the regularization term. In the statistical

mechanical ensemble, Eq. (11) can be explained as a par-

tition function which attempts to maintain constant temper-

ature and pressure. Here, the pairwise potential also aims

to keep cluster cliques with similar properties. By bringing

the logarithm to Eq. (11), ln(9p

(

xi, xj
)

) is the characteristic

state function called the Gibbs free energy. To get a similar

logarithm expression on the unary term of Eq. (10), 9u (xi)

can be changed to ln(e9u(xi)). A new energy function can be

written as,

Ê (x) = ln(e9u(xi)) + ln(9p

(

xi, xj
)

)

= ln(e9u(xi) × 9p

(

xi, xj
)

) (12)

where e9u(xi) × 9p

(

xi, xj
)

is a function similar to the acti-

vation process in a CNN in which 9u (xi) and 9p

(

xi, xj
)

represent the feature map and the activation function, respec-

tively. Unlike a traditional CRF, which is normally attached

to the end of a CNN, the pairwise activation function can

be inserted in any position in an end-to-end network whose

kernels can be updated during the learning process. In this

application, the defect probability map can be used as an

activation map in the CNN because,

(1) in the defect probability map, pixels with similar prop-

erties (fabric motif) have lower defect probabilities.

(2) the defect probability map illustrates the defect distri-

bution of an image, which can be used to replace the

k(m) filer.

(3) the defect probabilities are calculated according to the

motif node distributions in a larger region, represent-

ing a cumulative relationship among different pixels

in a clique. This is the same concept as the pairwise

potential, 9p

(

xi, xj
)

.

C. NETWORK ARCHITECTURE

Figure presents a CNN for the fabric defect detection.

To achieve state-of-art detection result, the fabric defect prob-

ability map is introduced to the network as a dynamic activa-

tion layer, namely pairwise potential activation layer (PPAL).

The probability map, which contains the prior knowledge

or defect statistical rules, is critical to the judgment of the

probable defect areas. The new 7-layer CNN includes,

(1) the original image input layer.

(2) the first hidden layer – the first convolutional layer with

32 × 5 × 5 kernels.

(3) the second hidden layer – another convolutional layer

with 16 × 5 × 5 kernels.
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(4) the pairwise potential activation layer. Instead of using

activation function, each feature in the output of the

previous convolutional layer is multiplied by this spe-

cific activationmapwith one 3×3 convolutional kernel,

which takes more pixels’ properties into consideration.

(5) the fourth hidden layer with 8×5×5 kernels to convo-

lute the 16 prior knowledge (statistical rules) imposed

feature maps.

(6) the last hidden layer – single 5 × 5 kernel is used to

generate the output image.

(7) backpropagation with loss calculation is performed by

taking ground truth images as references.

(8) the middle position insertion of the PPAL is to ease

off the influence of the probability map. If the PPAL is

inserted at the output layer, the output will be similar to

the probability map, which weakens the convolutional

features.

FIGURE 4. Sample fabric defect images. (a) Horizontal defects. (b) Vertical
and horizontal defects. (c) Isolated defects.

IV. EXPERIMENTS

A. DATASETS

To evaluate the effectiveness of the proposed PPAL

convolutional neural network (PPAL-CNN), we created a

fabric defect dataset using our designed on-loom fabric imag-

ing system. The dataset contains 1160 fabric images of

500 × 500 pixels, which include vertical defects, horizontal

defects, isolated defects, and defect-free fabrics, as shown

in Fig. 4. In order to provide the ground truth information

for the CNN training, each image was manually inspected

to mark defects areas. We also used the TILDA—a Textile

Texture Database developed by the texture analysis group

of the DFG (Deutsche Forschungsgemeinschaft) as a verifi-

cation set. Each TILDA image has a text description about

defect areas in the image.

B. EVALUATION ON DIFFERENT ACTIVATION

FUNCTIONS IN NEURAL NETWORKS

A visual comparison on loss curves was performed among

four CNNs that have the same structure with different activa-

tion functions, i.e. Sigmoid, Tanh, ReLU, and PPAL. In order

to avoid small gradient issues in the flat regions of Sigmoid

and Tanh activation functions, the cross-entropy loss function

was chosen. Two different learning rates, 10−10 (slow) and

10−4 (fast), were used to check if the learning rate influenced

the network learning process. Fig. 5 lists the loss curves

FIGURE 5. Loss curves of Sigmoid, Tanh, ReLU and PPAL activation
functions under learning rates of 10−4 (a) and 10−10 (b).

FIGURE 6. Fabric defect detection result on Fig.4a under four activation
functions. (a) Sigmoid. (b) Tanh. (c) ReLU. (d) PPAL. (e) Ground Truth.

calculated from the output layer during the 106 learning

iterations of the networks with the four different activation

functions under the two learning rates. Regardless of learning

rate, the three activation functions, Sigmoid, Tanh and ReLU,

show fluctuation, and the network with Sigmoid or Tanh

activation function is not convergent. ReLU loss curve at

the 10−4 learning rate has a sudden decrease after the first-

thousand iterations. This may be because the fast learning rate

causes the learning to be trapped in the local minimum. The

loss curve of PPAL-CNN at the 10−4 learning rate depicts
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FIGURE 7. Precision, recall, and F1-score evaluating curves during the training epochs (5000 − 106 iterations) using training and testing dataset.
(a) Precision. (b) Recall. (c) F1 score.

a normal learning process that start converging after 2 × 105

iterations (Fig. 5a). However, the same network seems dif-

ficult to be convergent at the 10−10 learning rate (Fig. 5b).

Thus, the 10−4 learning rate was chosen for the PPAL-CNN

in the fabric defect detection.

Fig. 6 displays the prediction results of Fig. 4a using the

CNNs that have the same structures with the four aforemen-

tioned activation functions of the 106th training-iteration-

model at the 10−4 learning rate. In comparison with the

ground truth (Fig. 6e), the predicted result of each activation

function is consistent with the loss curves depicted in Fig. 5.

Among the four activation functions, Sigmoid appears to be

the worst because of the highest loss value, and PPAL-CNN

demonstrates the best defect detection result.

C. EVALUATION ON FABRIC DEFECT

DATASET AT PIXEL LEVEL

A 4-folder cross-validation was performed on the 1160 fabric

images. Since the accuracy is measured by true positive and

true negative samples, it will not be suitable for our imbal-

anced fabric defect dataset. Therefore, the 3-metrics, preci-

sion, recall and F1-score, that are derived from the confusion

matrix are applied to evaluate the detection accuracy at the

pixel level. The precision represents the rate of the correctly

detected defect pixels over all the predicted defect pixels. The

recall is the ratio between correctly detected defect pixels

and defect pixels marked in the ground truth image, which

represents the integrity of the correctly detected defect region.

The F1-score is the harmonic average of precision and recall.

Fig. 7 illustrates the curves of the three metrics of the training

set (blue) and the testing set (red) from 5000 to 106 iterations.

Overall, the three metrics monotonically increase with the

training iterations, indicating an ascending defect detection

accuracy. In the recall chart (Fig. 7b), the training curve is

slightly above the testing curve before the 9 × 105th itera-

tion. At the 9 × 105th iteration, the testing curve tends to

fall, suggesting a convergent point of the training process.

Although the precision of the detected defects keeps improv-

ing as the training epoch increases, the small drop of the recall

(integrity) at the 9 × 105th iteration indicates the reductions

in both false positive and true positive defect pixels, which is

a sign of overfitting. Therefore, we chose the 9 × 105th

iteration model in the following evaluations.

We trained two sophisticated image segmentation deep

neural networks, U-net and SegNet, with the 1160-fabric-

image dataset. Without a pre-trained edge energy map of an

image, U-net is not suitable for the fabric defect detection.

TABLE 2. Quantitative comparison between the proposed PPAL and
SegNet.

TABLE 3. Defect detection results of Fig. 4.

Table 2 presents a quantitative comparison between

PPAL-CNN and SegNet at the 9×105th iteration.We adopted

the basic SegNet network that has 4 encoder and 4 decoder

blocks, but the cross-entropy was used to replace the Softmax

loss function for the fabric defect detection. The detection

results of SegNet suggest that fine defects whose width are
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TABLE 4. Quantitative comparison among different proportions of defect pixels.

below 20 pixels fail to be detected in both the training and the

testing datasets, and defects with sizes above 20 pixels can be

partially detected, which result in low recall scores in Table 2.

The lower precision scores of SegNet are caused by the false

detection of defects in non-defect areas.

Table 3 illustrates the defect detection results of Fig. 4 by

SegNet and PPAL-CNN. PPAL-CNN is able to detect the

horizontal defects and the isolated defects correctly, but it

partially detects vertical defects in image 2. By reexamining

the original image 2, the vertical defect area on the ground

truth seems to be over-estimated. Visually, the detected defect

areas of PPAL-CNN are closer to visual judgments. SegNet

is not able to detect the thin or tinny size defects. The vertical

defects can be found partially in SegNet, but the white noise

appearing in SegNet detection results suggests that SegNet is

not a proper neural network for the fabric defect detection.

D. EVALUATION ON THE IMBALANCED DATASET WITH

DIFFERENT PROPORTIONS OF DEFECT PIXELS

According to the proportions of the defect pixels in the fabric

ground truth images, we clustered the 1160 fabric images

into 21 groups. Group #1 indicates defect-free images, and

groups #2 - #20 represent the proportion of defect pixels with

5% increment. Among the 1160 images, there are 432 defect-

free images and 635 images with defect pixel proportions

being less than 35%. In other words, 92% of the fabric images

in the dataset have small proportion or none of defect pixels.

Those defect regions above 35% could be the fabric selvage

regions. The highest proportion (95-100%) of defects does

not exist in the dataset.

Table 4 presents the 3-metrics (precision, recall, and

F1-score) comparisons among the 21 groups. The preci-

sion scores appear stable (all above 0.97) for the defect

proportions above 20% but have a slight decrease (0.9) within

the 0-20% range. This reveals that the correctly detected

pixels of fine defects are lower than those bulk defects, i.e.

the selvage area of the cloth. The recalls of the 0-30% defect

proportions are lower than 0.8 which indicate the less defect

detection integrity on fine defects. The 3-metrics scores with

0.96 in the defect-free group demonstrate the less false alarm

on defect-free fabrics of PPAL-CNN.

E. EVALUATION ON DETECTION ACCURACY

ACCORDING TO DEFECT COUNT

In the 1160-fabric-image dataset, totally 1191 fabric defects

were found in 728 fabric images. We inspected each pre-

dicted defect image according to its corresponding ground

truth image. If the predicted defect pixels occupied over 50%

in the bounding box of the defect area in the ground truth

image, the prediction was considered to be correct. There-

fore, according to the defect counts in the dataset, 1177 of

1191 defects were correctly detected, yielding a 98.82%

detection accuracy.

It is found that there were 51 over counted defects that

should be defect-free areas in the 38 ground truth images.

In the 38 false predicted fabric images, 13 of them should be

defect-free images. Therefore, at the image level, the detec-

tion rates of defect-free images, defect images, and total

1160 fabric images are (432 − 13)/432 = 96.99%,

(728 − 25)/728 = 96.57%, (1160 − 38)/1160 = 96.72%,

correspondingly.

F. EVALUATION ON TILDA DATASET

The TILDA dataset provides 43 sample images, and each

of them represents a type of fabric texture. Table 5 presents

the defect detection results of the 11 images from TILDA.
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TABLE 5. Defect results on sample images from TILDA dataset. The 11 sample fabric images have variations in textures,

lighting conditions, and defect morphologies. Visually, most

detection results show the same defect locations as in the

ground truth images, even if the detection integrities of

the defects are smaller than the ground truth. Due to the

possible fabric texture incompletion near the image edges,

5-pixel regions around image edges were omitted during

the defect segmentation process, which explains the failure

defect detection around the bottom area in images 5 and 6 of

PPAL-CNN.

TABLE 6. 3-metrics evaluation on TILDA.

The results of the 3-metrics evaluation on TILDA are listed

in Table 6. The higher precision and the lower recall are in

agreements with the visual judgment. Moreover, the recall

and precision of the TILDA images are consistent with the

previously used 1160 images, which demonstrates the reli-

ability of the proposed algorithm. PPAL-CNN seems able

to detect various types of fabric defects on diverse textures

under different imaging conditions. Figure 8 illustrates an

F1-score comparison among the proposed method and other

four state-of-the-art fabric defect detection methods (BVM,

TDVSM, PGLSR and LSF-GSA), which demonstrates the

superiority of the proposed method. At the image level, the

defect detection rate on TILDA was 95.34%.

FIGURE 8. F1-score comparison among the proposed method, BVM,
TDVSM, PGLSR, and LSF-GSA.

V. DISCUSSION

A. SOURCES OF ERRORS

Since the ground truth images of the two datasets (the

1160-image dataset and the TILDA dataset) were manually

generated, possible errors existed when we were tracing the

defect areas,

(1) some tiny defects, such as knots, burl, and short floating

thread, may fail to be identified.

(2) the defect areas may be over-traced or underesti-

mated on some fine vertical or horizontal defects.
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Those inconsistent ground truth tracings may slightly

influence the accuracy evaluation.

(3) to treat fabric selvages as defect areas in this evalua-

tion may decrease the F1-score since it has the chance

that some parts of the selvage maintain regular fabric

texture.

(4) some regular texture areas may be falsely recognized

as defect areas because of the image blurring.

B. ANALYSIS OF RESULTS

Analysis on the loss curves with different activation functions

is helpful to decide a proper activation function and a better

learning rate for the fabric defect detection. The fluctuation

on a loss curve or a sudden drop explains the poor defect

detection results when only Sigmoid, Tanh, or ReLU activa-

tion function was used in a CNN, as shown in Fig. 6. The

proper learning rate (10−4) was decided according to the loss

curve that presents a normal learning process (green curve

in Fig. 5a).

With the increase of training iterations in PPAL-CNN,

the precision, recall, and F1-score keep increasing until the

9 × 105th iteration. However, further training iterations after

the 9×105th iterationmight not benefit the detection integrity

since the possible overfittingwould happen. Both quantitative

evaluation (Table 2) and visual judgment (Table 3) demon-

strate that the performance of PPAL-CNN surpasses those of

other CNNs for sophisticated semantic image segmentation.

According to the two dataset evaluation results,

PPAL-CNN could detect most of the fabric defects. However,

both of the visual and quantitative evaluation results sug-

gest that the defect areas were slightly under predicted

when compared with the ground truth images, especially

for images with defect proportions under 20%. The over-

tracing of the defect areas on the ground truth images, such

as images 2 and 3 in Table 3 and images 1, 3, 6, 9, and 10 in

Table 5, could be the major reason causing the lower recall

values. Nonetheless, the proposed PPAL-CNN was able to

locate a defect area on a single yarn or in the fabric motif

due to the introduction of the fabric defect probability map as

a new activation layer of the CNN. The consistency of the

3-metrics (precision, recall, and F1-score) evaluations on

both the 1160-images and the TILDA dataset demonstrates

that the proposed PPAL-CNN is reliable and robust with var-

ious fabric textures and images under different illumination

conditions.

VI. CONCLUSION

In this paper, we first applied the autocorrelation to fabric

image to determine the fabric motif, and used the motif

as a template to generate a fabric motif-center map based

on the zero-mean-normalized-cross-correlation. A normal

(defect-free) fabric usually has a consistent, uniform motif

center arrangement, while a defective fabric has a more

random motif-center distribution. According to this obser-

vation, a statistical rule to select defect candidates were

made by analyzing the motif-center distribution in a fixed

node-searching region, and a defect probability map was

generated to be used as prior knowledge of defects in the CNN

defect segmentation.

To precisely locate fine structures and handle the imbal-

anced dataset during the CNN training, we introduced the

defect probability map as a dynamic activation layer into the

CNN with the pairwise potential function in the CRF.

The proper learning rate (10−4) of the CCN was decided

according to the loss learning curves. We evaluated the pro-

posed defect detection algorithm on two fabric datasets—the

1160 images captured in our research lab and the TILDA.

The 3-metrics (precision, recall, and F1-score) evaluation

results on the two datasets are consistent. The precision values

are all above 0.85 with images that have different defect

proportions. The recalls, i.e., defect integrity indicator, are

slightly lower (about 0.8) when the proportions of the defect

pixels are under 30%. An overestimated ground truth might

be the major reasons causing the lower recalls. However,

if only the presence of defects in an image needs to be judged,

the predicted accuracy is above 95%. Regarding the defect

counts in the dataset, the proposed PPAL-CNN is able to

identify over 98% of the fabric defects correctly.
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