
Citation: Perumal, D.; Albert, E.L.;

Saad, N.; Hin, T.Y.Y.; Zawawi, R.M.;

Teh, H.F.; Che Abdullah, C.A.

Fabrication and Characterization of

Clinacanthus nutans Mediated

Reduced Graphene Oxide Using a

Green Approach. Crystals 2022, 12,

1539. https://doi.org/10.3390/

cryst12111539

Academic Editor: Vladislav V.

Kharton

Received: 15 September 2022

Accepted: 18 October 2022

Published: 28 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

crystals

Article

Fabrication and Characterization of Clinacanthus nutans
Mediated Reduced Graphene Oxide Using a Green Approach
Dharshini Perumal 1 , Emmellie Laura Albert 2, Norazalina Saad 3, Taufiq Yap Yun Hin 4,
Ruzniza Mohd Zawawi 5 , Huey Fang Teh 6 and Che Azurahanim Che Abdullah 1,2,3,*

1 Biophysics Laboratory, Department of Physics, Faculty of Science, Universiti Putra Malaysia,
Serdang 43400, Malaysia

2 Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, Serdang 43400, Malaysia
3 UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia,

Serdang 43400, Malaysia
4 Catalysis Science and Technology Research Centre (PutraCAT), Faculty of Science, Universiti Putra Malaysia,

Serdang 43400, Malaysia
5 Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Malaysia
6 Sime Darby Technology Centre, Lebuh Silikon, Universiti Putra Malaysia, Serdang 43400, Malaysia
* Correspondence: azurahanim@upm.edu.my

Abstract: The reduction of graphene oxide (rGO) utilizing green methods such as plants has attracted
much attention due to its productivity, eco—friendly features, and cost effectiveness. In the present
study, the reflux method was employed to synthesize Clinacanthus nutans (C. nutans) leaf extract
mediated rGO using a simple approach. The synthesized rGO was characterized using various
spectroscopic and microscopic techniques. The UV-Vis spectrum demonstrated the absorption peak
of rGO (270 nm) at distinct locations, while the FTIR analysis demonstrated that the amount of
oxygen group in rGO was reduced. The Raman analysis confirms the reduction of GO by a slight
increase in the D—band to G—band intensity ratio. The XRD spectra demonstrated that rGO was
successfully produced based on the illustrated 2
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Abstract: The reduction of graphene oxide (rGO) utilizing green methods such as plants has at-
tracted much attention due to its productivity, eco—friendly features, and cost effectiveness. In the 
present study, the reflux method was employed to synthesize Clinacanthus nutans (C. nutans) leaf 
extract mediated rGO using a simple approach. The synthesized rGO was characterized using var-
ious spectroscopic and microscopic techniques. The UV-Vis spectrum demonstrated the absorption 
peak of rGO (270 nm) at distinct locations, while the FTIR analysis demonstrated that the amount 
of oxygen group in rGO was reduced. The Raman analysis confirms the reduction of GO by a slight 
increase in the D—band to G—band intensity ratio. The XRD spectra demonstrated that rGO was 
successfully produced based on the illustrated 2Ɵ angles at a peak of 22.12° with d-spacing of 0.40 
nm. FESEM clearly reveals the morphology of rGO that shows crumpled thin sheets, a rougher 
surface, and a wave—shaped corrugated structure. The reduction of GO was analyzed in the re-
moval of the hydroxyl group and amorphotization of sp2 carbon structures. The C/O ratio in rGO 
was higher than GO which indicates the small amount of oxygen-containing functional groups were 
still presented in the reduced graphene oxide. Furthermore, the cyclic voltammetry behavior of a 
modified screen—printed carbon electrode (SPCE) was measured. The redox reactivity of rGO-
SPCE has been affirmed and compared with GO—SPCE and bare—SPCE. The toxicity using A. 
salina cysts demonstrated that rGO is less toxic compared to GO. The analysis adequately supports 
the synthesis of rGO and the effective removal of oxygen-containing functional groups from GO. 
The findings herein illustrate that C. nutans mediates the synthesis of rGO and is a promising eco-
friendly substitute to conventional carbon-based fabrication. 
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1. Introduction 
Since its discovery in 2004, graphene, a monolayer sp2 hybridized carbon atom ar-

rayed in a hexagonal lattice, has sparked widespread interest among scientists in a wide 
variety of fields [1]. Graphene has a high specific surface area, excellent electrical, optical, 
and thermal conductivity and is extremely strong [2]. These exceptional properties enable 
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angles at a peak of 22.12◦ with d-spacing of 0.40 nm.
FESEM clearly reveals the morphology of rGO that shows crumpled thin sheets, a rougher surface,
and a wave—shaped corrugated structure. The reduction of GO was analyzed in the removal of
the hydroxyl group and amorphotization of sp2 carbon structures. The C/O ratio in rGO was
higher than GO which indicates the small amount of oxygen-containing functional groups were still
presented in the reduced graphene oxide. Furthermore, the cyclic voltammetry behavior of a modified
screen—printed carbon electrode (SPCE) was measured. The redox reactivity of rGO—SPCE has
been affirmed and compared with GO—SPCE and bare—SPCE. The toxicity using A. salina cysts
demonstrated that rGO is less toxic compared to GO. The analysis adequately supports the synthesis
of rGO and the effective removal of oxygen-containing functional groups from GO. The findings
herein illustrate that C. nutans mediates the synthesis of rGO and is a promising eco-friendly substitute
to conventional carbon-based fabrication.

Keywords: green synthesis; reduced graphene oxide; Clinacanthus nutans; graphene oxide; screen—printed
carbon electrode

1. Introduction

Since its discovery in 2004, graphene, a monolayer sp2 hybridized carbon atom arrayed
in a hexagonal lattice, has sparked widespread interest among scientists in a wide variety of
fields [1]. Graphene has a high specific surface area, excellent electrical, optical, and thermal
conductivity and is extremely strong [2]. These exceptional properties enable graphene to
be used in a wide variety of applications, including solar cells, super capacitors, biosensors,
catalysts, drug delivery, water purification, and absorption of non-aqueous fluids, oils,
olefins, aromatic compounds, dyes and organic solvents [3,4].
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Chemical vapor deposition, micromechanical exfoliation of graphite, epitaxial growth
of electrically insulating surfaces such as silicon carbide, and chemical reduction of exfoli-
ated GO are just a few of the methods that can be used to synthesize graphene [5]. Among
the graphene synthesis routes, the chemical reduction method is widely used because
it is the cheapest, most versatile, and simplest method for producing graphene in bulk.
After chemically oxidizing graphite to form GO, reducing agents are used to convert GO
into graphene.

Numerous chemical reducing agents, such as hydrazine hydrate, sodium borohydride,
hydroquinone, and dimethyl hydrazine have been reported for the reduction of GO [6].
However, the major disadvantage of the chemical reduction of GO to rGO is the toxicity
of the reducing agents, which are costly, explosive, and harmful to human health and the
ecological system [7,8].

Thus, in order to overcome the aforementioned difficulties, extensive research has
been conducted on the production of rGO using green reductants. Organic acids, microor-
ganisms, sugars, amino acids, proteins and plant extracts are the six major categories of
green reducing agents [7]. Recent studies have demonstrated the efficacy of plant extracts
in reducing GO, owing to the extracts feasibility, economics, and environmental safety [9].
There have been reports on Urtica dioica leaf [10], Euphorbia milli leaf [11], Eucalyptus leaf [12],
Annona squamosa leaf [13], palm leaves [14] and Ocimum sanctum leaf [15], among others.
Although numerous green reductants have been reported, no study has been undertaken
using C. nutans as a green reductant to synthesize rGO.

Over the decades, interest in plant-based natural products as an alternative to contem-
porary synthetic medicine has developed quickly because they are safer and more potent.
The powerful antioxidant effects of medicinal plants are well-known to aid in the recovery
from disease and to improve general health. C. nutans (Acanthaceae family), as depicted in
Figure 1, is locally referred to as the Sabah Snake grass or “Belalai gajah” in Malay and “you
dun coa” in Mandarin [16]. It is a small annual shrub that grows wild in Southeast Asian
countries such as Malaysia, China, Thailand, and Indonesia. The priceless medicinal plant
is frequently used in folk medicine to treat viral infections, allergic reactions, insect and
snake bites, diabetes mellitus, and gout [17]. C. nutans was added to Thailand’s National
List of Essential Medicine in 2001 due to its elevated medicinal values [18].
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C. nutans plants are widely propagated vegetatively via stem cuttings due to the
low cost, simplicity, and high rate of multiplication [19]. Numerous bioactive chemical
compounds were discovered in the leaves of C. nutans [20] with a variety of pharmacological
properties, including anti—inflammatory, antiviral, antioxidant, antibacterial, antidiabetic,
antihyperlipidemic, and anticancer properties [21,22]. Due to the benefits of C. nutans,
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it has been economically exploited to produce a variety of products, including extracts,
juice, herbal beverages, and tea [23,24].

In this brief piece of study, we investigated the reducing ability of C. nutans leaf
extracts for the reduction of GO utilizing a simple, economical, and environmentally
friendly method that did not involve complicated laboratory setup or the use of hazardous
chemicals. This study also focuses on the spectroscopic and microscopic characterization
including ultraviolet-visible (UV—Vis) spectroscopy, X-ray diffraction (XRD) spectroscopy,
Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, energy dispersive
X-ray (EDX) spectroscopy, and a field emission scanning electron microscope (FESEM) to
demonstrate the reduction of GO to rGO. The prepared rGO were investigated for cyclic
voltammetry to show their suitability for various electrochemical applications. In addition,
the ecotoxicity study using hatching assay was also conducted. Furthermore, the goal of
this study is to provide a framework for future researchers interested in green synthesis of
rGO for various applications.

2. Materials and Methods

Graphite powder, <20 µm was purchased from Sigma Aldrich. Sulfuric acid (H2SO4,
98%), phosphoric acid (H3PO4, 85%), hydrogen peroxide (H2O2, 30%), hydrochloric acid
(HCl, 37%), ethyl alcohol, and potassium permanganate (KMnO4) powder were obtained
from R&M chemicals. Potassium chloride (KCl) was bought from ChemiZ (M) Sdn. Bhd.
Potassium Hexacyanoferrate (III) was bought from Friedemann Schmidt. Screen—printed
carbon electrodes (SPCEs) with a diameter of 4 mm were obtained from Metrohm Malaysia
Sdn. Bhd. Deionized water (DI) was used throughout the experiment.

2.1. Graphene Oxide Preparation

GO was synthesized using Improved Hummers’ method based on Marcano et al. [25,26]
with slight modification. In a nutshell, 3 g of graphite powder was added to a beaker.
The graphite powder was then treated with a 9:1 solution of concentrated H2SO4/H3PO4
(360 mL: 40 mL). Following that, 18 g of KMnO4 was gradually added to the mixture in
the beaker, resulting in a mild exothermic reaction reaching a temperature of 35–40 ◦C.
The mixture was then brought to a temperature of 50 ◦C and stirred for 13 h. The mixture
was allowed to cool to room temperature before being poured onto 400 mL of ice. Finally,
3 mL of 30% H2O2 was gradually added to the mixture until no bubbles were visible,
forming a bright yellow suspension. Centrifuge the suspension at 3500 rpm for 30 min
and discard the supernatants. The remaining pellet was then washed twice with 200 mL of
DI water, 200 mL of 37% HCl and 200 mL of ethyl alcohol; the mixture was centrifuged
(3500 rpm for 30 min) after each wash and the supernatant was decanted away. The pellet
was dried in a freeze dryer to obtain a brown solid, yielding approximately 6.56 g of GO.

2.2. Preparation of Plant Material

C. nutans leaves were purchased from a local farmer in Kuala Lumpur, Malaysia.
Fresh leaves were separated from stalks and cleaned on the surface with running tap
water. Furthermore, C. nutans mature leaves were washed thoroughly with distilled water,
and oven—dried at 50 ◦C. The dried leaves were then homogeneously ground to a fine
powder using a household blender. Powdered leaves were kept in an airtight container
within a desiccator.

2.3. Preparation of C. Nutans Leaf Extract

The procedure for preparing the C. nutans leaf extract was slightly modified from that
reported in the literature for other leaf extracts. 15 g of finely powdered leaves were added
to 150 mL of DI water in a 500 mL round bottom flask for this experiment. The compounds
from the leaves were then extracted into the DI water by refluxing the mixture for 30 min
at 90 ◦C on an oil bath. After bringing the solution to room temperature, it was centrifuged
for 10 min at 3500 rpm to remove bulk waste. Finally, the obtained supernatant was filtered
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through Whatman filter paper (Grade 1; 11 µm) to remove any remaining trace solids.
The filtrate, which contained the C. nutans leaf extract, was stored in a refrigerator (4 ◦C)
for future use.

2.4. Reduced Graphene Oxide Synthesis Using Leaf Extracts

rGO was synthesized from the GO precursor using C. nutans leaf extract. To begin,
50 mL of DI water was added to 50 mg of GO powder, which was then sonicated for
1 h, resulting in a brown—colored dispersion. The homogenous GO dispersion was then
treated with 50 mL of C. nutans leaf extract. The mixture was heated in an oil bath while
being constantly stirred. For temperature optimization, reactions were carried out at
different temperatures, namely 60, 80 and 100 ◦C, as shown in Table 1, while keeping the
leaf extract concentration and time constant. When the reaction was stopped, the mixture
was allowed to cool to room temperature. The mixture was centrifuged at 3500 rpm for
30 min. The pellet was then washed with DI water several times to remove any remaining
contaminants. The results of the UV—Vis scan were used as the foundation for the next
optimization study. Similarly, the concentration of leaf extract and time intervals were
optimized while the other two parameters remained constant. Finally, the black precipitate
known as rGO was freeze—dried in a vacuum chamber for 48 h. The color change from
brownish yellow to black indicates deoxygenation of GO.

Table 1. The optimized rGO synthesis parameter variables.

Parameter Variable

Temperature 60, 80 and 100 ◦C
Leaf extract concentration 10, 25, 50% (v/v)

Time 1, 2, 4 and 6 h

3. Characterization
3.1. Ultraviolet—Visible Spectroscopy

The optical measurements were performed using a spectrophotometer with an ac-
curacy of ± 2 nm (Jenway 7315, Staffordshire, UK). Quartz cuvettes were used for the
analysis, and DI water was used as the reference solvent. Stock solutions of GO and rGO
were prepared by dispersing 3 mg of the sample in 3 mL of DI water and bath sonicated for
30 min. To prepare the UV samples of GO and rGO, 1 mL of stock solution was diluted
with 9 mL of DI water. Spectra of absorption were acquired between 200 and 700 nm.

3.2. X-ray Diffraction Spectroscopy

The as-produced materials were analyzed with powder X-ray diffraction (SmartLab,
Rigaku, Tokyo, Japan) using Cu Kα radiation (λ = 1.54 Å) by drying a dispersion of
fine powder and packing them on a glass sample plate. The diffraction intensities were
determined for all 2
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angles ranging from 8◦ to 90◦ with a scanning rate of 5◦/min operating
at 30 mA and 40 kV as well as a step size of 0.01◦.

3.3. Fourier Transform Infrared Spectroscopy

The data for the infrared spectroscopy were collected using attenuated total
reflectance—Fourier transform infrared spectroscopy (FTIR—spectrum 400, Perkin Elmer,
Waltham, MA, USA) with a wavelength range 400 – 4000 cm−1 with spectrum resolution of
0.5 cm−1 and wavelength accuracy of 0.1 cm−1 at 3000 cm−1.

3.4. Raman Spectroscopy

Raman spectroscopy of the synthesized GO and rGO was performed using a Raman
spectrophotometer (uRaman-532 TEC-Ci, Technospex Pte Ltd., Singapore) in ambient con-
ditions. The spectrum was recorded using an incident laser with an excitation wavelength
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of 532 nm, excitation power of 20 mW for 20 s exposure time in the spectrum range between
400 to 4000 cm−1 with wavenumber accuracy of ± 1 cm−1.

3.5. Field Emission Scanning Electron Microscopy and Energy Dispersive X-ray Spectroscopy

A field emission scanning electron microscope was used to characterize the morphol-
ogy and microstructure of the prepared samples (Nova NanoSEM 230, FEI, Hillsboro,
Oregon, OR, USA) while elemental composition was determined using energy dispersive
X-ray spectroscopy incorporated with FESEM. Powdered GO and rGO were affixed to
an aluminum stub using colloidal silver paint and allowed to dry before loading into the
FESEM chamber.

3.6. CHNS-O Elemental Analysis

The ultimate analysis of component carbon (C), hydrogen (H), nitrogen (N), sulfur (S),
and oxygen (O) was performed using a CHNS/O elemental analyzer (FlashSmart CHNS/O,
Thermo Scientific, Waltham, MA, USA).

3.7. Electrochemical Measurements

The electrochemical experiments were carried out utilizing Metrohm Multi Autolab
M101 with Nova 2.1.4 software (Barendrecht, The Netherlands) provided along with the
apparatus. The GO and rGO solution were prepared by dispersing in ethanol solvent.
150 µL of the as—synthesized solution and 50 µL of chitosan were mixed for 3 min. The re-
sulting mixture was dropped onto the surface of screen—printed carbon electrode (SPCE).
The modified GO and rGO electrode were immediately utilized for analysis after being
dried under a nitrogen stream. Cyclic voltammetry (CV) was performed for the modified
electrode using a K3Fe (CN)6 as the redox probe. The redox process occurred because of
oxidation of ferrocyanide ion and reduction of ferricyanide ion, in the presence of KCl as
the supporting electrolyte. The potential range was between −0.3 V and 0.7 V with a scan
rate of 100 mV/s. Prior to the analysis, the electrolyte was purged with nitrogen gas for
5–10 min to avoid the interferences caused by the oxygen.

3.8. Hatching Assay

Brine shrimp Artemia salina (A. salina) cysts were collected, processed, and tested
to determine the percentage of hatching. 96—well plates were used for the experiment.
Each well contained 10 cysts with varying concentrations of GO and rGO solution (0, 0.001,
0.01, 0.1, and 1.0 mg/mL). Five duplicates of each test concentration and the control were
performed. To create a favorable environment for the cyst to hatch out, the experimental
setup was exposed to light. After 24, 48, and 72 h of incubation, the number of hatched
cysts was determined. The number of nauplii was subtracted from the total number of
cysts stocked to calculate the percentage of hatched cysts. The results were tabulated
and graphed.

4. Results and Discussion

This work described a straightforward method for reducing GO using phytoextracts.
During the reduction, C. nutans leaf extract acts as a reducing and stabilizing agent. The GO
dispersion in DI water has a brownish yellow color (Figure 2a), whereas the C. nutans leaf
extract is brown (Figure 2b). When the GO dispersion was combined with the leaf extract,
the mixture took on a dark brown hue (Figure 2c), which darkened to black upon reduction
(Figure 2d). The formation of a dark black suspension indicates that GO has been reduced
to form rGO. The fabricated powders depicted in Figure 3 are GO and rGO.
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4.1. Ultraviolet—Visible Analysis

To investigate the bioreduction of GO, we examined the effect of temperature, leaf
extract concentration, and reaction time on the formation of rGO. Initially, the degree of
oxidation was determined using UV—Vis spectroscopy. The presence of various degrees
of conjugation in GO and rGO was determined using the UV—Vis spectral maximum
absorption peak (λmax) value. The absorption peak of rGO was determined at 60, 80 and
100 ◦C, as shown in Figure 4a. As the bioreduction process progressed, the absorption peak
gradually increased in proportion to the increase in temperature [27]. This demonstrates
that the rGO absorption peak is more efficient at higher temperatures. Following that,
the effect of leaf extract concentration on GO reduction was investigated. At 100 ◦C,
Figure 4b illustrates the changes in the optical absorbance of the GO mixture when different
concentrations of C. nutans leaf extract (10, 25 and 50% v/v) are added to 1 mg/mL of
GO. Because the absorption peaks position was redshifted to 271 nm as the leaf extract
concentration increased, it was maintained at this ratio for further study [15]. At 100 ◦C and
50 % v/v of C. nutans leaf extract concentration, the effect of various times (reflux time) on
the bioreduction of GO on the formation of rGO was investigated. The absorption spectra
for four different periods are shown in Figure 4c (1, 2, 4 and 6 h). At 6 h, the maximum
absorption peak was observed, indicating a wavelength of 270 nm [12]. However, additional
qualitative data collection is required for a more detailed analysis. As a result, the optimal
conditions for C. nutans leaf extract to reduce GO were as follows: 50 mL of leaf extract was
added to 50 mL of GO (1 mg/mL) and incubated at 100 ◦C for 6 h.
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Figure 4. UV—Vis optical absorption spectrum of GO reduction at various (a) temperatures,
(b) concentration of C. nutans leaf extract, (c) time, and (d) GO and rGO.

The GO and rGO spectra are compared in Figure 4d. The optical absorption value of
GO was 225 nm, which was attributed to the π-π * transitions of aromatic C=C bonds [28].
At 315 nm, a weak hump peak was observed due to the n-π * transition of the aromatic
C=O functional group [29]. The plasmon peak of rGO assigned to the π-π * transitions
of aromatic C=C bonds was redshifted to 270 nm, indicating that oxygen—bearing func-
tional groups were successfully removed as a result of reduction by C. nutans leaf extract,
and thus electrons require very little excitation energy [30]. This is consistent with the
work of Lin et al., which shows the shift of the absorption peak to a higher wavelength of
270 nm using Euphorbia milli leaves extract [11]. Additionally, the color change of the GO
precipitates from brownish yellow to black after reduction with C. nutans leaf extract sug-
gests deoxygenation. This is most likely the outcome of an increase in the hydrophobicity
of the material caused by a decrease in the polar functionality of the sheets surface [31].
As a result, the color changes to black can be a clear visual indicator that the C. nutans leaf
extract is a bio—reductant.
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4.2. X-ray Diffraction Analysis

The XRD configuration used to confirm the deoxygenation of GO was illustrated in
Figure 5 for various (a) temperatures, (b) concentration of C. nutans leaf extract, (c) time,
and (d) GO and rGO. The interlayer spacing shown in Table 2 corroborates the UV—Vis
absorption spectra. The biosynthesis of rGO at a temperature of 100 ◦C, a concentration of
50% v/v C. nutans leaf extract, and a reflux time of 6 h results in the lowest d—spacing value.
The spectra of GO and rGO were observed to be crystalline and amorphous in nature.
A prominent and distinct diffraction peak for pure graphite can be seen at 2
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= 26.49◦ with
a 0.34 nm layer separation. After chemical exfoliation and oxidation of graphite, the XRD
pattern of GO exhibits a peak shift toward a lower angle at approximately 2
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= 10.09◦ and
an increase in the d—spacing value from 0.34 nm to 0.88 nm in comparison to graphite,
revealing the insertion of water molecules and oxygen—containing groups from the oxidiz-
ing agent KMnO4 via the intercalating agent H2SO4 between the graphite layers. When
graphite is chemically oxidized, a large amount of oxygen—containing functional groups
is formed at its basal plane (hydroxyl and epoxy) and at its edges (carboxyl and carbonyl).
This increases the interlayer space between the graphite layers. Thus, by introducing
reducing agents, the oxygen-containing functional groups weaken the interlayer van der
Waals interaction between the layers, allowing them to disintegrate into graphene or rGO
fragments [32]. The produced rGO exhibits a broad diffraction peak at 2
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= 22.12◦ with
a layer distance of 0.40 nm as previously reported in the literature [13]. The position of
the diffraction peak is similar to that of graphite powder, indicating that graphitic work
is efficiently restored during reduction through the elimination of oxygen moieties [33].
This value was slightly greater than that of well-ordered natural graphite, which may be
due to the presence of trace amounts of residual oxygen—containing functional groups or
other structural defects [34]. It is a characteristic of rGO with few layers that results in a
more diffuse and less intense peak in the XRD spectrum [35]. The peak at 2
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= 10.09◦ was
interesting to eliminate because it demonstrated that oxygen—containing groups in GO
were efficiently removed following reduction [31]. As a result, the XRD results confirm that
GO was successfully reduced using C. nutans leaf extract.
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Figure 5. X-ray diffraction patterns of GO reduction at various (a) temperatures, (b) concentration 
of C. nutans leaf extract, (c) time, and (d) GO and rGO (insert figure is result of graphite). 

4.3. Fourier Transform Infrared Analysis 
The presence of functional groups in the samples was determined by FTIR analysis 

of the obtained vibrational spectra. After oxidation, GO is expected to contain a greater 
number of oxygen—containing functional groups. The presence of hydroxyl groups was 
confirmed by the presence of intense and broad peaks in GO at a wavelength of 3272 cm−1 
(O—H), stretching vibrations of carbonyl or carboxyl groups (C=O) at 1723 cm −1, and C—
O stretching vibration is indicated by the peak at 1044 cm−1 [30]. Additionally, the stretch-
ing vibration of C=C at 1622 cm−1 originates from unoxidized graphitic domains and an-
other peak at approximately 1366 cm−1 revealed the presence of O—H bending of the car-
boxyl functional group [36]. A peak at 1166 cm−1 corresponded to the C—O—C group [37]. 
With the presence of all of these carboxylic, hydroxyl, epoxide, and carbonyl groups, ox-
ygen molecules were found to be highly occupied at the edges and basal plane of GO, 

Figure 5. Cont.
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Figure 5. X-ray diffraction patterns of GO reduction at various (a) temperatures, (b) concentration 
of C. nutans leaf extract, (c) time, and (d) GO and rGO (insert figure is result of graphite). 
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Figure 5. X-ray diffraction patterns of GO reduction at various (a) temperatures, (b) concentration of
C. nutans leaf extract, (c) time, and (d) GO and rGO (insert figure is result of graphite).

Table 2. The distance between carbon plane and XRD peak was determined using Bragg’s Law equation.

Sample 2
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rGO—6 h 22.12 0.40 

 

 

 

 

 

 

(◦) D—Spacing (nm)

Graphite 26.49 0.34
GO 10.09 0.88

rGO—60 ◦C 18.65 0.48
rGO—80 ◦C 20.15 0.44

rGO—100 ◦C 22.02 0.40
rGO—10% 21.09 0.42
rGO—25% 21.28 0.42
rGO—50% 21.82 0.41
rGO—1 h 21.54 0.41
rGO—2 h 21.64 0.41
rGO—4 h 21.41 0.41
rGO—6 h 22.12 0.40

4.3. Fourier Transform Infrared Analysis

The presence of functional groups in the samples was determined by FTIR analysis
of the obtained vibrational spectra. After oxidation, GO is expected to contain a greater
number of oxygen—containing functional groups. The presence of hydroxyl groups was
confirmed by the presence of intense and broad peaks in GO at a wavelength of 3272 cm−1

(O—H), stretching vibrations of carbonyl or carboxyl groups (C=O) at 1723 cm −1, and C—O
stretching vibration is indicated by the peak at 1044 cm−1 [30]. Additionally, the stretching
vibration of C=C at 1622 cm−1 originates from unoxidized graphitic domains and another
peak at approximately 1366 cm−1 revealed the presence of O—H bending of the carboxyl
functional group [36]. A peak at 1166 cm−1 corresponded to the C—O—C group [37].
With the presence of all of these carboxylic, hydroxyl, epoxide, and carbonyl groups,
oxygen molecules were found to be highly occupied at the edges and basal plane of GO,
indicating that GO was successfully synthesized [38]. However, after reduction, rGO is
expected to contain a negligible number of functional groups containing oxygen. As shown
in Figure 6, all bands associated with oxygen—carrying functional groups have been nearly
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or fully eliminated from the FTIR spectrum following reduction processes by the reducing
agent, which supports GO reduction to rGO. The elimination of the hydroxyl group results
in a flattening of the broad peak at approximately 3200 cm−1 in the formed rGO [30].
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4.4. Raman Characterization

Raman spectroscopy is a well-established technique for determining the electronic and
structural properties of graphene while taking defect and disorder patterns into account.
Two fundamental vibrations for GO and rGO can be examined at 1350 cm−1 (D—band)
and 1577 cm−1 (G—band). The D vibration band is formed by the breathing in—plane
zone—edge mode of the k-point photons of A1g symmetry assigned to structural imper-
fections caused by oxygenated group attachment to the carbon basal plane, while the
G vibration band is generated by the first order scattering of the doubly degenerate E2g

phonons in plane by sp2 carbon [39,40]. As illustrated in Figure 7, the characterized peaks
of GO at 1349.76 cm−1 (D—band) and 1576.55 cm−1 (G—band) have been shifted to rGO at
1342.19 cm−1 and 1565.57 cm−1, respectively, based on Raman spectrum [41]. All kinds of
sp2 carbon exhibit the same intensity ratio between the disorder-induced D band and the G
band, demonstrating the disordered nature of the graphene structure. As listed in Table 3,
the D—band to G—band intensity ratio (ID/IG) was slightly increased from 1.01 in GO
to 1.08 in rGO [42]. The defects caused by the removal of oxygen—containing functional
groups from GO are demonstrated by the higher intensity ratio of rGO and the reduction
of the in-plane size of sp2 domains following reduction [36].

Table 3. D band, G band and D/G ratio from the Raman spectra of Graphite, GO and rGO.

Sample D—Band G—Band ID/IG Ratio

Graphite 1359.55 1582.63 0.40
GO 1349.76 1576.55 1.01
rGO 1342.19 1565.57 1.08
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4.5. Field Emission Scanning Electron Microscopic Analysis and Energy Dispersive X-ray
Spectroscopy Analysis

At a magnification of 100,000x, FESEM was used to examine the surface morphology
of GO and synthesized rGO, as shown in Figure 8. A micrograph of the GO obtained from
the Improved Hummers’ approach reveals wrinkly edges, a smooth, sheet—like structure,
and layers of flaking material on the surface [39]. Flakes illustrate that the graphene
surface has a large number of oxygen—containing functional groups, which results in
the formation of GO. In comparison to GO, an improvement in the surface morphology
of rGO was observed. The micrograph of rGO reveals crumpled thin sheets, a rougher
surface, and a wave-shaped corrugated structure [43]. The wrinkled appearance of the
thin sheets was a common feature of rGO [44]. Although the biomolecules from C. nutans
leaf extract dispersed well in aqueous solution, the rGO surface exhibited minute creases,
which could be attributed to the biomolecules adhering to the rGO surface during the
reduction process [12]. The FESEM images demonstrate that the reduction of GO to rGO
was successfully attained using C. nutans leaf extract.
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Table 4 contains the energy dispersive spectra of GO and rGO. It demonstrates both
the presence of carbon (C) and oxygen (O) atoms. Given that the elemental composition
is determined by EDS, the values of the atomic ratio (C/O) can be used to quantify the
reduction of GO to rGO. The low O content of rGO ensures that it is effectively reduced via
green synthesis. The C and O atomic percentages in GO were determined to be 66.8% and
30.3%, respectively. The spectrum of rGO revealed a C content of 72.7% and O of 12.4%,
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respectively. This information is consistent with the prior literatures [14,45]. However,
the traces of O, S, Ca, N, Mg, and Si that were obtained were attributed to the presence of
bioactive molecules of C. nutans leaf extract on the surface of rGO [46,47].

Table 4. Elemental composition of GO and rGO.

Atom
Elemental Compound Weight Percentage (%)

C/O
C O S Cl Ca N Mg Si

GO 66.8 30.3 2.0 0.9 0.0 0.0 0.0 0.0 2.2

rGO 72.7 12.4 0.8 0.0 7.7 3.6 1.6 1.1 5.9

4.6. CHNS/O Elemental Analysis

The ultimate analysis of component carbon (C), hydrogen (H), nitrogen (N), sulfur (S)
and oxygen (O) was performed using a CHNSO analyzer (Thermo Scientific, FlashSmart
CHNS/O) and the results are shown in Table 5. As it can be seen from Table 5, GO consists
of 39.10% of carbon and 38.92% of oxygen, whereas rGO consists of 46.32% of C and 26.90%
of O. After the reduction, the C/O ratio for rGO is higher indicating less oxygen content.

Table 5. GO and rGO composition measured by elemental analysis.

Sample
Elemental Compound Percentage (%)

C/O
N C H S O

GO 0.00 39.10 0.00 2.26 38.92 1.00

rGO 3.72 46.32 4.35 0.30 26.90 1.72

4.7. Electrochemical Analysis

The redox reactivity performance of modified GO—SPCE and rGO—SPCE can be
seen through cyclic voltammetry analytical studies. The electrochemical properties of
modified SPCE were investigated by electron transfer by 0.1 M KCl and 5 mM K3[Fe
(CN)6] as an electrolyte. Figure 9 illustrates redox reactivity of bare—SPCE, modified
GO—SPCE and rGO—SPCE. The peak current for the rGO—SPCE electrode showed the
highest peak compared to GO—SPCE and bare—SPCE. This implies that rGO gave higher
electrical conductivity than bare—SPCE and GO—SPCE. The findings are in accordance
with a previous study conducted for green reduction of GO using Bougainvillea glabra
flower extract [48].
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4.8. Hatching Assay Analysis

International Organization for Standardization (ISO) guidelines have been introduced
to assess the aquatic acute toxicity of nanoparticles by a standardized testing procedure
using Artemia species nauplii [49]. The assay has been used for the detection of heavy
metals, the toxicity of plant extracts, the toxicity of fungi, various carbon—based materials,
and the toxicity of nanoparticles. It is regarded as a valuable tool for the preliminary assess-
ment of toxicity [49,50]. A. salina is a non-selective filter—feeding invertebrate zooplankton
organism that can be found in highly saline water all over the world [51]. In comparison to
other crustaceans, A. salina has an incredibly basic feeding mechanism; it is a phagotrophic
filter-feeder that feeds continuously and non—selectively. Regardless of the type of sus-
pended particle, A. salina consumes it continually. An earlier study discovered that A. salina
consumes nanoparticles following exposure, which is demonstrated by the absence of
aggregated nanoparticles under a microscope [52]. The hatchability of A. salina cysts was
shown to be affected by the GO synthesis using the Improved Hummers’ method as shown
in Figure 10a. GO showed dose—dependent decreases in hatching rates for A. salina cysts
at 24 h, 48 h, and 72 h when compared to the control. In 24 h of treatment with a concen-
tration of 0.001–0.1 mg/mL, the hatching percentage slightly reduced compared to the
control. After that, the unhatched cyst in 24 h of treatment hatched after 48 h. Some cysts
hatched at 72 h, however the vast majority of hatched nauplii died of starvation because
the nanoparticles are too large for the A. salina to consume. At 1 mg/mL, no A. salina
cysts hatched within 72 h when it was treated with GO. The thick covering of GO blocked
light from reaching the A. salina, thus preventing hatching. The data are in agreement
with previous research [53]. Figure 10b depicts the hatching rate of A. salina cysts when
exposed to rGO. The hatching percentage exposed to rGO at varying concentrations from
0.001 mg/mL to 0.1 mg/mL, appeared to be slightly lower than the control in 24 h of treat-
ment. When the concentration is increased to 1 mg/mL, the hatching rate is dramatically
reduced. After 48 h, the hatching rate increased marginally, suggesting that more cysts
had hatched. Even after 72 h, the remaining unhatched cysts hatch, while most hatched
cysts died from starvation, probably from a lack of nutrients. Comparatively, the hatching
rate of cysts treated with GO and rGO at a concentration of 0.001 to 0.1 mg/mL is almost
similar and it is between 60% and 70% after 24 h. At 1 mg/mL, rGO is more biocompatible
to A. salina cyst than GO since no cyst can develop at this concentration. Both GO and rGO
exhibit a greater percentage of hatching cysts after 48 h, indicating their biocompatibility.
The biocompatibility of rGO might be due to the green reducing agent which is C. nutans.
This finding corroborates the data found in a previous study which indicate the rGO is not
toxic to A. salina at low concentrations [54].
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5. Conclusions

Finally, rGO was successfully developed and characterized using C. nutans leaf ex-
tract. Our environmentally friendly reduction process is non—toxic, effective, simple,
and cost—effective. A variety of spectroscopic and microscopic techniques were used
to characterize the synthesized rGO. Data analysis from UV—Vis, XRD, FTIR, Raman,
CHNS/O, FESEM, and EDS tests demonstrated that the synthesis process was effective.
Using cyclic voltammetry, rGO—SPCE revealed the highest peak in terms of electrochem-
ical activity. Ecotoxicity testing on brine shrimp cysts revealed lower toxicity after rGO
exposure. The findings suggested that the current technique, rather than chemical reduc-
tion, is feasible. The method promotes the avoidance of hazardous chemicals while meeting
the demand for graphene derivatives. Furthermore, this will open new opportunities for a
wide range of graphene derivative applications.
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