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Abstract- We describe the fabrication of vertically
stacked Silicon Nanowire Field Effect Transistors (SiNW
FETs) in Gate-All Around (GAA) configuration. Stacks
with the number of channels ranging from 1 to 12 have
been successfully produced by means of a micrometer scale
lithography and conventional fabrication techniques. It is
shown that demonstrator Schottky Barrier (SB) devices fab
ricated with Cr/NiCr contacts present good subthreshold

slope (70mV/dec), IoN/loFF ratio 2:10
4

and reproducible
ambipolar behavior.

Index Terms-nanowire, FET, multichannel, ambipolar,
vertical integration

I. INTRODUCTION

C ont inuing efforts in Complementary-Metal-Oxide

Semiconductor (CMOS) research have lead to the

exponential increase of device integration density during

the last 40 years. More recently increasing fabrication costs

and increasing overall variability have become an obstacle

for the scaling trend. In order to overcome such limitations,

considerable research is dedicated for instance to the use

of new materials (such as high-x dielectrics with metal

gates), dual-gate devices, novel isolation techniques that make

use of Silicon-On-Nothing (SON) or Silicon-On-Insulator

(Sal) substrates [1]. In particular, dual-gate technology in

conjunction with the geometry of the device can enhance

the control over the transistor channel. In this sense, further

improvements can be achieved with tri-gate, omega-gate or

Gate All-Around technologies (GAA) [2].

Recent works explored the vertical stacking of SiNWs as

channels for FET devices [3], [4]. The vertically stacked SiNWs

represent channels of the same SiNW FET, whose electrostactic

control can be enhanched by using a GAA configuration [5].

In addition, SiNW FETs can also be used to build new logic

architectures [6], [7] or as ultimate memory architectures for

Ultra-Large-Silicon-Integration (ULSI) [8], [9].

In this work we discuss novel and promising fabrication

method for vertically-stacked SiNW FETs with different num

ber of channels on bulk Si wafers. The reported method has

also been applied to fabricate single channel devices that

demonstrate excellent reproducible performance.

II. RELATED WORK

Recently, a multichannel structure with GAA configuration

has been proposed as a candidate for high-performance devices.

Its implementation has the advantage of enhanced on-current

(ION) along with low leakage as well as a small footprint for

multi-finger (multi-channel) devices [10], [4]. The fabrication

process described in [10], [4] is based on creating epitaxial layers

to alternate Si and SiGe layers one on top of each other. A

vertical trench is etched in the grown structure. A successive
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SiGe selective etching leaves vertically-stacked Si nanowires.

Hydrogen annealing is then used to change the SiNW shapes

from rectangular to circular, thus yielding channels with less

surface roughness and improved controllability.

An alternative approach for the fabrication of vertically

stacked SiNWs [11] is based on producing a scalloped trench

in bulk silicon by means of Deep Reactive Ion Etching (DRIE).

Sacrificial oxidation steps are performed to reduce the dimen

sions of the trench. Thanks to scalloping, the Si trench is

totally consumed in its thinner parts, leaving a vertical stack of

suspended SiNWs. Although the DRIE process defines trenches

of micrometer dimensions, the iteration of oxidation steps is

capable for reducing the structures to suspended nanowires

with of 20 nm in diameter [11]. This approach has also been

demonstrated to be suitable for producing vertically stacked

SiNW with small dimensions and different section shapes [12],

yet it has not been used so far for GAA FET fabrication.

III. DEVICE FABRICATION

In our work we produce vertical SiNW arrays by means of

optical lithography with 1 Mm resolution limit. Sub-micrometer

features are obtained through sacrificial oxidation steps. Al

though the integration density would have been further in

creased by means of advanced lithography, the developed pro

cess already allows us to produce very high channel densities

without making use of non standard fabrication steps.

We start by defining a photoresist line on a p-type (N rv 1015
)

silicon bulk wafer (see Fig. 1.a). Then a DRIE technique

(also called Bosch process) is performed. This technique, that

alternates a plasma etching with a passivation step, has been

optimized to produce a scalloped trench in silicon with high

reproducibility. Etching time, passivation time and plasma

platen power have been optimized in order to enhance the

scalloping effect. The application of the DRIE technique gives

a trench like the one depicted in Fig. 1.b. The flexibility of the

process allows us to change the number of scallops easily. After

a wet oxidation step (see Fig. 1.c) vertically stacked SiNWs

are formed. Then the cavities produced by the Bosch process

are filled with photoresist. After a combination of chemical

mechanical polishing (CMP) and BHF dip, the wet oxide is re

moved around the NWs (see Fig. 1.f). The oxide at the bottom

of the cavity is left to isolate the substrate from the successive

processes. The vertical structure obtained is then oxidized to

produce a high quality dry oxide (20 nm thick, see Fig. 1.g)

as gate dielectric. Then between 200 nm and 500 nm of Low

Pressure Chemical Vapour Deposition (LPCVD) polysilicon is

deposited (Fig. 1.h). The polysilicon gate is patterned by means

of a combination of isotropic and anisotropic recipes (see Fig.

1.i). A final field oxide isolation and Al or Cr/NiCr patterning

make the external electrical connections.



Fig. 2 . a) Vertically stacked SiNWs in array configuration afte r oxide
removal. The nanowires are free and sligt hly bent due to residual
st ress. In this sample the number of vertically stacked nanowires
amounts to 12 . b) Another ar ray with 3 vertically stacked SiNW
channels.

be applied in order to refine t he dimensions in a cont rolled

manner. For instance, it has been demonstrated that the use

of self-limiting oxidation is capable of producing channe ls with

nanometer dimensions and good cont rolla bility [4], [15]. Surface

irregular ities of the suspe nded NWs can be improved either by

means of a self-limiti ng oxid ation or by hydrogen annealing step

[101 . It was found th at t he proposed fabricat ion method cons is

tentl y produces repeatable and very contro llable d imensions of

clearly separate d NW stacks, by op timizing the etc h/ oxidat ion

condit ions. A un iform and thin gate oxid e is form ed around the

suspended NWs by dry oxidation in a horizontal furnace under

10 81m 02 flux . By combining isot rop ic and anisot ropic etc h

techniques, polysilicon gat e lengths down to 200 nm (see Fig.

3.a) were pr oduced using 111m lithography. It ca n be seen that

the polysili con ga te complete ly surrounds the suspended NW

segment without any gaps, and t hat the silicon NW is covered

by a 20nm thick gate oxide (Fig. 3.b) . The proposed GAA

device fabrication technique has also been succesfu lly applied

for NW stacks with 3 susp ended cha nnels (Fig. 4) . Fig. 4.a

shows a structure with two parallel polysilicon gates, and Fig.

4.b shows the cross-sec t ion of the st ruct ure where individual

wires and the sur round ing polysilicon ga te ar e clearly visible.

Note t hat the cross-section of each susp ended NW (with t he

exception of t he top wire) has a well-defined rhombic sh ape

t hat is dict ated by the successive etching/oxid ation steps used

to produce t he wire stacks. The top wire has a t riangula r

profil e that is a lso defined by the process. Schottky-barrier (SB)

SiNW FETs demonstrator devices in GAA configurati on have

also been fabricated successfully on SOl, and shown in F ig. 5.

In this particul ar example, the suspended NW segm ent has a

t rapezoidal cross-section.

i)

f)

c)

SiO
2

Polysilicon
••

b)

g)

a)

A SOl wafer has been used to fabricate demonstrator de vices

with single cha nne l layer . In this case we patterned Cr/ NiC r

throu gh a lift-off t echnique to form source and drain. An

advantage for using Ni is that it can eas ily form silicides

with mid -gap work functions at low temperature, thus allowing

the fabrication of FETs in few process steps and with a low

t hermal budget [13]. However , t he main di fference with FETs

defined by im plantation is t he form ation of Schottky Barrier

(SB) source/ drain thus leading to a dev ice with ambipolar

characte ristic . The ambipolarity refers to the I d s - Vgs elec

trical characte ristic of a tran sistor having both p- and n-typ e

behaviour [131 . A double step annealing (at 200°C and 400°C,

respectively) has been choosen to form silicided regions. This

annealing process has been seen as good choice in t erms of

IoN / I OFF ratio improvement [14]. Aft er the annealing steps, the

unreacted Cr / NiCr parts were removed in wet et chant . F inally

a 1 J.Lm t hick layer of Al has been patterned after via opening

on t he field oxide.

D Silicon

• Photoresist

Fig. 1. Pro cess flow of vertically stacked Si-NW FET . a) A
photoresist line is defined on t he Si wafer. b) A Bosch process is
performed to produce a scalloped tre nch. c) Wet oxidation . d) A

5 J.Lm thick photoresist is spin-coated in order to fill the cavities
formed around the t rench. e) The oxide removal step free the SiNWs
withouth removing the oxide at the bottom of the cave. f) SiNWs are
vertically stacked and electrica lly isolated from the substrate. g) A
high quality dry oxide is formed. h) LPCVD polysilicon deposit ion.
i) Gate patterning

IV. DISC USSIO N ON T HE FAB R IC ATED STRUCTURES

T hree dimensional SiNW FET arrays have been fabricated in

vertical stacks with the number of channe ls var ying between

1 and 12 (see Fig. 2). Initially, the formed SiNWs have diam

et ers ranging from 70 nm to 200 nm , several t echniques can

Fig. 3. a) Single nanowire surrounded by 500 nm thick polysilicon
gate ; Lg ~ 200 nm. b) Gate stack cross-section showing the Si core
surrounded by 20 nm gate oxide and polysilicon.
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Fig. 6 . Devi ce A: Ids - Vgs cur ve for Vd s = 1 V . T he ob served
a mbipola rity is typical for the metallic source and d rain MOSFETs.
Note t he very high subthres ho ld slopes in bo th modes.

Fig. 7. Device A: Id s - Vd s cur ves showing nega t ive differ ential
resist an ce when the channel is a t the inve rsion: a) for Vgs ~ O V

channe l in inversion mode for positive Vd s and in accumulation mode
for negative Vd s . b) For Vgs :::;0V the channel is in inversion mode
for negative Vd s and in accumulation mode wh en Vd s is po sitive.
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Fig. 4. a ) Long nanowi re channels with two parallel gate const ruc
t ion . b) Gate st ack crossection showing t hree SiNW channe ls.

Fig. 5. a) Single GAA-NW device with polysilicon gate. b) Gate
stack cross-section a nd highlight on diffe rent stack materials .

V. ELECTRICAL M EAS UREM ENTS

The measured elect r ica l performance of two SB SiNW FET

devices with single SiNW channel in the stack are reported in

the following . Each NW channel have 5 urn. gate lengt h an d

an effective width of 930 nm. Since the NW cross-section is

t rapezoidal, t he effect ive chann el wid th is the perimeter of the

NW . The devices (see Fig . 6) show an ambipolar behaviour

with good performance of both p- and n- branches. Tab le I

reports the device (device A) parameters demonstrating device
4

ambipolarity, fO N I f O F F rat io :0:: 10 and a subthreshold slope

(SS) lower than 70 mV Idee for the p-type portion of the curves

(Vgs > V t~+ for h+) , and around 250mV I dee for the n-type part

(Vgs < vtf for e-) . The f d s - Vd s curves have been measured for

positive Vgs (Fig. 7.a) and negative Vgs (Fig. 7.b) . The device

behavior in the "triode" region indicates very distinct gate

control over the drain current . The plots also show a Negative

Differential Resistance (NDR) region wh en the channel is in

inversion mode.
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R E F E R E NC E S

VI. CONCLUSIO NS

High channel density SiNW GAA FETs have been fab ricated

by means of a DRIE technique for the first time. T he same

low cost to p-down approach has been succesfully deployed

to fabricat e vertical SiNW stacks with different nu mber of

SiNW channels; i.e. t he number of channels composing the

vertical stack could be eas ily tuned from 1 to 12. Moreover ,

t he process can be eas ily adopte d for d ifferent substrates (bulk

or SOl wafers) without any add it ional complexity. F inally, SB

SiNW devices fabricat ed with good repeatab ility show exce llen t

perfo rmance (t he measured SS < 70 mV Idec is close to t he op

ti mal value for SiNW devices for room tem perature op erat ion)

making the approach suitable for further invest igat ions .

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

86

v/
v

v
v

v
v

v

v

v

v Vds= 1.5 [V]

Vds= 3 [V]

o Vds= 5.25 [V]

A Vds= 6 [V]

• Vds= 6.75 [V]

8 10

543

4 6
V [V]

gs

l-ir-holeS ~ - electrons I

2

2

10 - 14 L '-- '-- ' - - - - - - - . ! ==~~ = ' = ' ~

o

3

10

2

~
10

8
-:::-

~
1

10

~
0

0......
10

- 1

10

0

D EVICE B : AMBIPOLAR BEHAVIOUR PARAMETERS FOR POSITIVE

GATE VOLTAGES AFTER TWO STEP SILIClDATION ANNEALING .

TABLE II

F ig. 8. Device B: Ids - Vgs curves for a partially gated device showing
a mb ipola r behaviour a nd de pendence to t he applied Vd s .

A par t ially gated device (source and drai n have been de

signed 111m far away from t he gated channel) shows ambipolar

behaviour (see Fig . 8) . T he ext racted parameters for t his device

(device B) are reported in Tab le II. T he high Vgs requ ired

for the onset of conduc tion is believed to be du e to t he non

controlled portion of the channel. This behaviour is con firmed

in [161. Moreover, in [16] the poss ibility of making the device

unipolar by using a du al gates was discussed as well. A de

pend ency of t he IO F F on t he applied Vds is found (see F ig. 9).

Vd s
h+ IO F F

..!m:L h ION e SSh+ sseIO F F ' OFF ' OFF
[V] [ ~J [ ~J [ ; e ~] [ ; e ~]

1.5 1 8 300 7500 400 250

3 6 10 333 6000 700 350

5.25 0.7 0.7 10000 85700 200 300

6 2 2 10000 30000 200 200

6.75 200 200 150 300 N/ A N/ A

F ig. 9. Device B: IO F F for holes (p-type port ion of t he I d s 

Vgs curve) and electrons (n-type po rtion of t he Ids - Vgs cur ve)
conduc ti on at d iffer en t Vds .


