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Hollow fiber artificial lungs are increasingly being used for long8term applications. 

However, clot formation limits their use to 182 weeks. This study investigated the effect 

of nitric oxide generating (NOgen) hollow fibers on artificial lung thrombogenicity. 

Silicone hollow fibers were fabricated to incorporate 50 nm copper particles as a 

catalyst for NO generation from the blood. Fibers with and without (control) these 

particles were incorporated into artificial lungs with a 0.1 m2 surface area and inserted in 

circuits coated tip8to8tip with the NOgen material. Circuits (N=5/each) were attached to 

rabbits in a pumpless, arterio8venous configuration and run for 4 hrs at an activated 

clotting time of 3508400s. Three control circuits clotted completely, while none of the 

NOgen circuits failed. Accordingly, blood flows (ml/min) were significantly higher in the 

NOgen group (95.9 ± 11.7, p < 0.01) compared to the controls (35.2 ± 19.7), and 

resistance, (mmHg/mL/min), was significantly higher in the control group after 4 hours 

(15.38 ± 9.65, p<0.001) than in NOgen (0.09 ± 0.03). On the other hand, platelet counts 

and plasma fibrinogen concentration expressed as percent of baseline in control group 

(63.7 ± 5.7%, 77.2 ± 5.6% [p<0.05]) were greater than those in the NOgen group (60.4 

± 5.1%, 63.2 ± 3.7%). Plasma copper levels in the NOgen group were 2.8 times 

baseline at 4 hours (132.8 ± 4.5 Gg/dl) and unchanged in the controls. This work 

demonstrates that NO generating gas exchange fibers could be a potentially effective 

way to control coagulation inside artificial lungs.    
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 Hollow fiber artificial lungs are increasingly being used for long8term applications. 

These applications include extracorporeal membrane oxygenation, pumpless 

arteriovenous carbon dioxide removal, and thoracic artificial lungs.  However, clot 

formation limits their use to 182 weeks. Blood contact leads to clot formation, increased 

resistance, and decreased gas exchange efficiency [184]. Furthermore, shed 

thromboemboli from these devices can cause organ dysfunction. Antithrombotic 

coatings for blood8contacting surfaces including Membrane lungs are available [5810], 

but these coatings have not worked well enough to markedly reduce clot formation or 

eliminate the need for systemic anticoagulation.  

 One possible solution to this problem is the use of NO flux from the surfaces of the 

artificial lung. Nitric oxide (NO) is a short8acting, potent platelet inhibitor that is normally 

produced by endothelial cells [11]. The half8life of NO is only 285 sec in blood [12]. As a 

result, NO delivery from polymer surfaces has been examined as a means to focus 

anticoagulation solely at the biomaterial surface without systemic effects or cell damage 

[13]. Accordingly, previous studies have shown that platelet adhesion is reduced on 

polymers that either release stored NO or generate it from NO donors in blood if the NO 

flux exceeds that of the endothelium [14,15].  

 The goal of this study was to examine the effect of NO generating (NOgen) 

surfaces in artificial lungs for the first time. Silicone (polydimethylsiloxane) gas 

exchange fibers were thus manufactured to incorporate Cu particles. The Cu particles 

catalyze NO formation in blood via decomposition of circulating s8nitrosothiols via the 

mechanism in Figure 1 [16818]. NO generation and clotting have both been shown to be 
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linearly related to surface expression of Cu [19]. These fibers were incorporated in 

miniature artificial lungs, which were inserted into a circuit that was similarly coated tip8

to8tip with the NOgen material. The circuit was then evaluated for thrombogenicity 

during for a period of 4 hour in a pumpless arterio8venous circulation model in rabbits. 

�

%������������%������ 

���	
�������������

 Radial flow artificial lungs were constructed with NOgen or pure silicone hollow 

fibers (Figure 2A). Both fiber types were constructed at Medarray, Inc (Ann Arbor, MI) 

using a proprietary two8part silicone formulation (MedArray Inc, Ann Arbor MI). NOgen 

fibers were doped with 10 weight percent (wt%) of 50 nm Cu particles (Sigma Aldrich, 

St Louis MO). The hollow fibers had an average inner and outer diameter of 100 and 

160 µm. Each fiber bundle had a path length, axial length, and void fraction of 1.1 ± 0.2 

cm, 2.7 ± 0.5 cm, and 0.37 respectively. The prime volume and surface area were 20 ml 

and 0.09 m2.  

The test circuit was a pumpless arteriovenous (AV) shunt (Figure 3). The inlet to 

outlet circuit components were each a 16 (inlet) or 14 (outlet) gauge angiocath, 1/4” luer 

lock PVC connector, 3” long 1/4” inner diameter (ID) tygon tubing, a 1/4” 8 1/4” luer lock 

straight polycarbonate connector, and another 3” long 1/4” ID tygon tubing section. The 

NOgen shunts were coated tip8to8tip with either the two8part silicone or tygon (Fisher 

Scientific, Pittsburg PA) with10 wt% of 50 nm Cu(II) oxide particles (Sigma Aldrich, St 

Louis MO, Product number 544868) in tygon polymer. NO8gen silicone was used to coat 

the angiocaths and connectors in either silicone using the synthesis procedure 
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described previously [19]. To coat tubing, tygon pellets chopped up from tygon tubing 

were dissolved in tetrahydrofuran (THF) (Sigma Aldrich, St Louis MO) at, 1g pellets per 

3mL THF by vortexing the mixture for 30 minutes. Cu particles were then suspended in 

the solution and sonicated for 30 minutes. The resulting mixture was then coated onto 

the circuit tubing and cured at room temperature for 48 hours.�

�

����
���������������
��������������

NO generation was measured from 1 cm long tubing samples (NOgen and non8

NOgen surfaces, N=5 ea), and from 1 cm long fibers (NOgen and non8NOgen, N=5 ea) 

using a Seivers nitric oxide analyzer (NOA), model 280 (Boulder, CO) according to 

previously described methods [19]. In brief, S8nitrosoglutathione (GSNO, 1 GM), 30 mM 

glutathione and 5 mM Ethylenediaminetetraacetic acid, all purchased from Sigma 

Aldrich, were added to an amber reaction vessel containing phosphate8buffered saline 

(PBS, pH= 7.34) at 37◦C. The solution was purged with nitrogen gas and the output gas 

was swept to a nitric oxide analyzer (GE Analytical Instruments, Boulder CO) at 200 

ml/min. Baseline measurements were taken for 5 minutes before samples were 

introduced into the GSNO8rich solution. The NO generated from the reaction was 

continuously measured, and a peak NO flux was calculated by dividing the peak NO 

generation rate by the sample surface area. 

�

������������������	���������������������������	�����������	
������� ���!����	
����

 The animal handling and surgical procedures were approved by the University 

Committee on the Use and Care of Animals in accordance with University of Michigan 
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and federal regulations. A total of 10 ECC circuits (N=5/group) were tested for 

thrombogenecity using 10 adult New Zealand male rabbits (Myrtle’s Rabbitry, 

Thompson’s Station, TN). All rabbits (2.583.5 kg) were initially anesthetized with 

intramuscular injections of 5 mg/kg xylazine injectable (AnaSed Lloyd Laboratories 

Shenandoah, Iowa) and 30 mg/kg ketamine hydrochloride (Hospira, Inc. Lake Forest, 

IL). Procedures for maintenance rabbits under anesthesia, maintaining normal blood 

pressure, surgical procedure for placement of the AV circuit, measuring blood gases 

(arterial blood pH, pCO2, pO2, total hemoglobin and methemoglobin), and measuring 

coagulation have all been previously published [14,15,20]. 

 The circuit was primed with saline solution and 6U/ml of heparin sulfate and 

placed into position by cannulating the left carotid artery for circuit inflow and the right 

external jugular vein for circuit outflow. The rabbits were given a heparin bolus 

(300U/kg, IV).  Activated clotting time (ACT) was measured with a hemochron blood 

coagulation system model 801 (International Technidyne Corp. Edison, NJ) using 0.4 ml 

of blood. Once ACT was within 3508400s, the circuit was unclamped and a 10U/kg/hr 

heparin infusion was initiated. In addition, 0.12 Gmol/kg/min infusion of the NO donor, S8

Nitroso8N8 acetylpenicillamine (SNAP), was started immediately after the ECC blood 

flow was initiated to replace any lost NO donors in blood. Blood flow was monitored with 

an ultrasonic flow probe and flow meter (1/4” ME6PXN and HT207, respectively; 

Transonic, Ithaca, NY). Circuit inlet and outlet pressures were measured using fluid 

coupled pressure transducers (Hospira Inc. Lake Forest, IL) and a data acquisition 

system (Biopac Systems In, ��������	
�����������). Pressures and flow were 

recorded at the onset of blood flow and every 30 minutes thereafter. In addition, blood 
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samples were collected every hour for measurement of blood gases, platelet and total 

white blood cell (WBC) counts, plasma fibrinogen concentration, activated clotting time 

(ACT), and platelet aggregation as performed at baseline. After four hours, the rabbits 

were euthanized with Fatal Plus (130 mg/kg sodium pentobarbital; Vortech 

Pharmaceuticals Dearborn, MI). The circuits were then fixed in 2% gluteraldehyde and 

autopsied for clot inspection on their gas exchange fibers using scanning electron 

microscopy (Philips XL30). �

�

"��������#�������	���$��������

Resistance was calculated in the standard fashion as the average pressure drop 

across the circuit divided by the average flow rate. Mixed model analysis with repeated 

measures was used to determine the effect of circuit type (NOgen or control) and time 

on platelet count, plasma fibrinogen, and resistance using SPSS (Chicago, IL). A p8

value < 0.05 is regarded as significant.  Kaplan Meier analysis was used to estimate the 

survival of circuit type, and statistical differences in all baseline data between circuit 

types were analyzed using a student t8test.�

�

���
��� 

���%����������
��������������

 The NO flux from fibers and tubing containing 10 wt% Cu particle (50 nm) were 12 

± 4 x 10−10 mol cm−2 min−1 and 14.7 ± 2.5 x 10−10 mol cm−2 min−1 respectively. Addition 

of the control fibers and circuits to the  resulted in no additional NO release over 

baseline readings. 
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Table 1 presents general rabbit physiology in each group. Baseline data on PaO2, pH, 

and mean arterial pressure (MAP) were significantly different between circuit types at p 

= (0.01, 0.008, 0.04) respectively. As shown in Table 1, baseline MAP in both NOgen 

and control groups were lower than normal rabbit MAP. In addition, baseline data on 

blood flow, PaCO2, and heart rate were not different between circuit group at p = (0.28, 

0.58, and 0.42) respectively. Over the course of the study, heart rate and MAP were 

significantly higher in the control group (223.0 ± 25.6 bpm, 64.5 ± 25.0 mmHg) than in 

the NOgen group (194.7 ± 6.1 bpm, 42.7 ± 7.7 mmHg) (p<0.05) due the vasodilatory 

effect of NO on blood vessels.  Partial pressures of CO2, O2 and pH were relatively 

normal and stable in the control (30.1 ± 2.9 mmHg, 125.8 ± 3.1 mmHg, 7.39 ± 0.05) and 

NOgen (35.0 ± 8.10 mmHg, 289.8 ± 15.2 mmHg, 7.33 ± 0.08) groups. There was minor 

acidosis in the NOgen group, which may be due to greater AV shunt flow and resultant 

reduced peripheral perfusion (see below). 

�

����(��������)�����$�����	����*
�����������	��

The Kaplan8Meier survival for flow in control and NOgen circuits is shown in Figure 4. 

All NOgen circuits remained patent for the entire test duration. In contrast, two control 

circuits had no blood flow after 30 minutes and one more had none after 60 minutes.  

For the remaining controls, one maintained at least baseline flows while the other had 

flows significantly less than baseline levels (p < 0.01). On the other hand, blood flow 

increased from baseline levels almost approaching significance (p = 0.07; Figure 5) in 

the NOgen group. This is due to a combination of no significant change in resistance 
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(see below) and the increase in mean arterial pressure that occurs over the course of 

the experiment. 

 The decrease in flow in the control group was due to an increase in resistance 

due to thrombus formation. The resistance in the NOgen circuits (black bars) and 

control circuits (white bars) is shown in Figure 6. Resistance did not change significantly 

with time in the NOgen group (p < 0.01). In the control group, all resistances from 308

240 minutes were significantly higher than baseline resistance (p < 0.01). Resistance in 

the control group rose from 0.08 ± 0.06 mmHg min/mL at baseline to 21 ± 9 mmHg 

min/mL at 30 minutes.  Thereafter, devices with infinite resistance (zero blood flow) 

were removed from the data as they failed, but resistance values remained over 5.5 ± 

2.5 mmHg min/mL for the two devices that retained some blood flow.  Autopsy results 

from control and NOgen lungs, shown in Figure 7 (gross, fiber level view) and Figure 8 

(fine, surface topography), revealed significantly less clot formation on the NOgen’s 

lungs' gas exchange fibers compared to controls. It can be seen quite starkly that clot 

formation on the control lungs led to their increased resistance to blood flow, decreased 

flow, and failure.  Moreover, as expected, it can be seen that clot formation is more 

severe in control devices that failed than in those that did not fail. 

 

+����������

Activated clotting times were generally higher in NOgen than in control group. At 

baseline ACT in NOgen (362.0 ± 97.2) was not significantly higher than control (385.8 ± 

82.3, p=0.68). It also did not increase or decrease significantly after 4h of blood flow in 

NOgen (376.5 ± 86.9, p=0.76) and control (307.5 ± 86.9, p=0.3) groups respectively. 
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Methemoglobin levels remained below 0.9 ± 0.3% in all circuits. In both control and 

NOgen groups, platelet counts dropped significantly (p < 0.05) from baseline to 58.3 ± 

5.6% and 53.5 ± 4.3% respectively after an hour of extracorporeal circulation (ECC). 

See Figure 9. In addition, the duration of blood flow had an effect on platelet count 

(p<0.01) but not plasma fibrinogen (p=0.21). Between hour 1 and 4, platelet counts and 

plasma fibrinogen did not change in control group now of size N=2, whereas only 

platelet count was significantly lower at hour 4 in NOgen group (p<0.05) compared to 

hour 1. See Figure 9.  

�

'��������������	����������

Serum copper level at the onset of blood flow in control group (132.8 ± 4.5 Gg/dl) 

was not significantly different from the NOgen group (134.7 ± 22.5 Gg/dl, p < 0.01). As 

expected, baseline copper level was maintained for 4 hours in the control group (p < 

0.01). However, plasma copper levels in the NOgen group significantly increased to 2.8 

times baseline levels (p < 0.001). 

�

����
����� 

 The aim of this study was to develop a copper8mediated, NO generating, hollow 

fiber membrane lung and evaluate its thrombogenicity. These fibers were created 

successfully and capable of 12 ± 4 x 10−10 mol cm−2 min−1 of NO flux. Previous 10 wt% 

surfaces with either 3 µm [19] and 50 nm [21] copper particles produced 9 x 10−10 and 

15 x 10−10 mol cm−2 min−1, respectively, under identical �������� conditions. Thus, the 

fiber surfaces performed as expected. Due to the NO flux, the NOgen ECC lungs were 
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less thrombogenic than their non NOgen controls. The NO generating ECC lungs 

showed markedly less surface clot formation and were thus all patent for the duration of 

the study. In contrast, 60% of the control lungs clotted off enough to completely 

eliminate blood flow after an hour of circulation.  

 It should be noted that the artificial lung fiber bundle design presents an 

exceedingly challenging test for evaluating biocompatibility. The fiber bundles were 

packed very densely to maximize artificial surface and hasten coagulation. The void 

fraction was only 33%, compared to a typical value of 50% in a commercial oxygenator. 

The linear fiber density was thus 50 fibers/cm, resulting in only a 200 µm space per 

fiber. Given the fiber diameter of 160 µm, there is only an average of 40 µm between 

adjacent fibers and, moreover, adjacent fiber layers are directly touching with no space 

between them. Thus, even a small amount of thrombus can markedly occlude the blood 

flow path. In the NO lungs, platelet binding appears to be largely eliminated, keeping 

these narrow channels open.       

 Despite these positive results, systemic platelet counts did not differ between the 

NOgen and control groups. For this to be true, all experiments must have resulted in the 

same loss of platelets. Yet, SEMs indicate very little platelet binding to the NOgen lungs 

and significant binding on the control lungs. Several issues might explain this paradox.  

First, only two control devices remained patent at one hour.  Thus, after baseline, 

platelet data in the control group reflects the least procoagulant of those devices.  

These devices had a lesser amount of clot formation and platelet binding. It may also be 

that NO reduced platelet binding to the lungs but did not fully eliminate platelet 

activation in flowing blood due to surface8generated, pro8coagulant molecules such as 
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thrombin. In this scenario, platelets would continue to pass through the lung but would 

then be removed in the rabbit by the mononuclear phagocyte system. This is possible 

because NO does not reduce protein adsorption to the fiber surface. Thus, contact 

system proteins such as FXII and kallikrein can still be adsorbed, initiate the coagulation 

cascade, and generate thrombin.  

 To that point, fibrinogen adsorption was larger in the NO8generating group than in 

controls. Greater fibrinogen adsorption has been observed in previous blood studies 

where copper particles were coated onto circuit tubing [15]. This effect could be due to a 

rougher NOgen surface or due to charge interaction between the polymer surface, 

where an oxidation8reduction reaction is constantly taking place, and the polar terminals 

of plasma fibrinogen. The mechanisms of interaction among the NOgen surface, NO 

generation and fibrinogen activation is, however, still not clear [14,22,23]. Future 

studies, therefore, should examine protein adsorption and activation at the surface in 

more detail and seek to reduce it. To reduce it, surface coatings could be employed that 

create a smoother and less adsorptive surface. This top8coat must be thin, however, 

such that it does not significantly inhibit hydration, corrosion, and ionization of copper at 

the blood/polymer interface.  

The main disadvantage of NOgen is leaching of copper into blood. Although 

copper is an essential trace element present in normal diet, excess of it in serum can be 

toxic. Potential adverse effects of copper toxicity include irritation of the eyes, mouth, 

and nose; nausea; liver and kidney failure; and even loss of life after a high intake.  

According to the food and drug administration (FDA), about 2mg of copper per day is 

required by the average adult with an acceptable daily intake of 0.5mg per kg body 
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weight. Thus, the acceptable daily total Cu intake could be 37mg for a 75kg man with 5L 

total blood volume. If absorbed all at once, this would lead to a blood copper 

concentration of 750 Gg/dl. The amount of copper in the blood was 333 ± 3.9 Gg/dl after 

4 hours but does not include any copper diffusing into tissues. It is unclear if this level 

would lead to toxic effects. Ultimately, long8term studies are required to examine this.  If 

this is proven to be a problem, alternate or mixed catalysts such as organoselenium 

could be explored [24].  

�

�����
���� 

This study evaluated the first Cu8mediated NO8generating hollow silicone fiber 

lung in an ECC setup. The results indicate that NO8generating hollow fiber lungs 

significantly reduce blood coagulation compared to their non NO8 generating controls. 

The resistance of the NO generating artificial lungs did not change significantly over the 

course of 4 hours, while the 60% of the control lungs occluded completely.  Accordingly, 

the control group had significant lower blood flow and significantly higher resistance due 

to occlusive clot formation. 

�
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Figure 1 Model of Cu8mediated NO generation from circulating S8nitrosothiols by hollow 

fiber membrane lungs for platelet inhibition 

Figure 2 Design of radial flow ECMO oxygenator (Borrowed with permision from 

Medarray Inc) A, Prototype of nitric oxide generating hollow silicone fiber oxygenator B, 

and NOgen silicone fiber surface showing copper catalysts C. 

Figure 3: Extracorporeal circulation circuits: Control (clear) and NO8generating (bottom) 

Figure 4: Survival of control and experimental ECC circuits after flow initiation 

Figure 5: Time course blood flow in control and NOgen ECC circuits 

Figure 6: Time course blood flow resistance in control and NOgen ECC circuits  

Figure 7: Scanning electron micrographs of the artificial lung fibers showing clot 

formation on the outer layers of fibers from A) a failed control lung, B) a control lung that 

survived 4 hours, and C) a NOgen lung. 

Figure 8: Scanning electron micrographs of the artificial lung fiber surfaces of A) control 

and B) NOgen fibers taken from fiber layers in the middle of the device. Control 

surfaces contain far more platelet deposition than NOgen surfaces. 

Figure 9: Levels of platelet consumption and plasma fibrinogen concentration during 

extracorporeal circulation 
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Table I 

Effects of NO generating surface on hemodynamic parameters of the extracorporeal circulation 
(ECC) circuits and rabbits 
 

Treatment Parameter Baseline# Time on ECC (hours) 
   1 2 3 4 

Control ECC MAP 39.0 ± 6.0 41.80 ± 18.80 59.50 ± 23.30 89.0 ± 45.30* 93.50 ± 43.10*  
 HR 201.80 ± 30.30 208.80 ± 22.5 253.50 ± 14.80* 248.50 ± 13.40 204.0 ± 14.10 
 ECC BF 63.20 ± 2.10 22.80 ± 14.0* 26.20 ± 19.40* 30.0 ± 24.40* 33.80 ± 32.80* 
 ACT 331.0 ± 36.70 337.0 ± 58.0 314.5 ± 19.3 276.50 ± 18.0 307.50± 38.90 
 PaCO2 30.33 ± 5.80 29.60 ± 4.0 31.0 ± 0.90 30.8 0± 1.10 28.70 ± 2.54 
 pH 7.48 ± 0.01 7.44 ± 0.10 7.3.0 ± 0.10 7.33 ± 0.11 7.32 ± 0.01 
       
NOgen ECC MAP 48.60 ± 6.20 34.40 ± 2.60* 46.80 ± 28.60 54.0 ± 16.20 52.20 ± 22.70 
 HR 185.80 ± 30.40 193.60 ± 12.80 195.20 ± 17.60 194.40 ± 10.90 202.60 ± 5.10 
 ECC BF 70.50 ± 6.90 83.20 ± 6.50 105.20 ± 20.40* 112.60 ± 14.40* 105.0 ± 8.70* 
 ACT 362.0 ± 43.40 401.80 ± 45.60 393.20 ± 26.90 371.20 ± 20.90 376.80 ± 19.40 
 PaCO2 35.92 ± 5.70 35.10 ± 9.89 33.70 ± 10.07 34.76 ± 7.98 35.66 ± 6.84 
 pH 7.43 ± 0.02 7.32 ± 0.11 7.31 ± 0.11 7.28 ± 0.09 7.31 ± 0.05 

Values are means ± SEM 
*p < 0.05 vs baseline; ANOVA with Tukey’s post-hoc analysis 
# Values are just after establishing flow in ECCs. MAP = mean arterial pressure (mm Hg), HR = 
heart rate (beats/min), BF = blood flow (ml/min), ACT = activated clotting time (sec), PaCO2 = 
arterial partial pressure of CO2. 
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