Fabrication of a Boersch Phase Plate for Phase Contrast
Imaging in a Transmission Electron Microscope
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Introduction Fabrication of a Boersch Phase Plate

» Weak-phase objects like biological specimens show
very low contrast in conventional TEM images.

» Splitting the critical maximum electron dose by taking
defocus-series leads to a low signal-to-noise ratio of
the images.

» Additional phase plate creates phase shift of 90° T :
between scattered and unscattered electrons [1]. Basic substrate

» Commercially available low-stress Si,, N,

> Realization of an electrostatic microlens by a five-layered electrode structure in the center
of the phase plate (Fig. 3 right-hand side).
» Confinement of the electrical field to the central lens opening by a surrounding Au layer.

Phase plates L
P membranes on Si chips

» Zernike phase plate in TEM [2]: Thin carbon film with | (Fig. 2 and layer No. 4 in Fig. 3 right-hand side).
small hole in the center placed in the back focal plane ‘ ‘
(BFP) of objective lens.

» Boersch phase plate [3]: phase shift of unscattered

L

electrons by an electrostatic potential in a microscaled Figure 2 Figure 3
electrostatic lens.

> First experimental realization of Boersch phase plate [4]. :
P P plate [4] Patterning of the electrode Step 1 Shaping of the phase plate Step 2

> Electron-beam evaporation of the lower shielding Au layer on the Siz,,N,, membrane > lon-beam lithography with Zeiss two-beam system (Fig. 8).

(layer No. 5, Fig.3 right-hand side). > Exact positioning by cross-markers (see Fig. 4b).

EXp erimental Techni gues > Patterning of the electrode layer by electron-beam lithography: | | > Milling of the 3 sectors.
Chip is coated with PMMA resist. Shape of the electrode, connecting leads and contact pad are defined with > First tested design: outer diameter d, = 45 pm, bar width b = 3 um,

Fabrication of the Boersch phase plate SEM. Fig. 4 a,b: light microscope image of the structure after development of the PMMA resist. outer diameter of microlens d,. = 7 um (Fig. 6).

» Improved design:
» Electron-beam lithography in a scanning electron ; ) dOE 60 um, b S 2 um,

microscope (SEM) Leo SUPRA 55VP with a Raith VA rat . =3 um (Fig. 7).
Elphy Plus pattern generator s m

> Electron-beam evaporation of Au and Al,O,

» Focused ion-beam (FIB) lithography with a Zeiss FIB f[ﬂlﬂ] e
EsB 1540 with a Raith Elphy Plus pattern generator [1010){ "0

e
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Experimental verification of the function

» Zeiss SESAM Il Cryo 200 keV energy-filtering TEM
(EFTEM)

> Positioning with piezodriven Kleindiek MM3A B e | Figure 5
micromanipulator SR S el ;

» Evaporation of Au layer (Fig. 3, No. 3) on PMMA
pattern and lift-off process (only structure

remains, see Fig. 5).

Proposed Technological L
Figure 4 Figure 6

Realization

Weak lens as a constant phase-shifting device

Matsumoto & Tonomura [5]: uniform phase shift at low Covering layers Step 3 Step 4

voltages. > Evaporation of a 2" insulating layer (Al,O,). FIB milling of the central

» Complete coverage of the structure by an Au layer: lens opening

Special rotating holder that is tilted at 45°(Fig. 9):
— side surfaces of the supporting bars are
completely covered with shielding layer.

» The last step is the milling of the central lens
opening with the FIB (Fig. 10).

shielding layer
insulator

electrode

m

Phase-shift is proportional to the integrated voltage. 8 e % Figure 10
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Modified design with three-fold symmetry (Fig. 3):

Allows recovery of obstructed information by single Figure 8

sideband imaging according to [6]. Zeiss FIB/SEM two-beam system with Raith Elphy Plus
pattern generator (Fig. 8)

Implementation and Test of Phase Plate
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