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Abstract: Safety concerns remain a bottleneck for the application of 2,4,6,8,10,12-hexanitro- 2,4,6,8,10,12-
hexaazaisowurtzitane (CL-20)/1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane (HMX) cocrystal. Melamine–
formaldehyde (MF) resin was chosen to fabricate CL-20/HMX cocrystal-based core–shell composites
(CH@MF composites) via a facile in situ polymerization method. The resulted CH@MF composites were
comprehensively characterized, and a compact core–shell structure was confirmed. The effects of the
shell content on the properties of the composites were explored as well. As a result, we found that, except
for CH@MF–2 with a 1% shell content, the increase in shell content led to a rougher surface morphology
and more close-packed structure. The thermal decomposition peak temperature improved by 5.3 ◦C for
the cocrystal enabled in 1.0 wt% MF resin. Regarding the sensitivity, the CH@MF composites exhibited
a significantly reduced impact and friction sensitivity with negligible energy loss compared with the
raw cocrystal and physical mixtures due to the cushioning and insulation effects of the MF coating.
The formation mechanism of the core–shell micro-composites was further clarified. Overall, this work
provides a green, facile and industrially potential strategy for the desensitization of energetic cocrystals.
The CH@MF composites with high thermal stability and low sensitivity are promising to be applied in
propellants and polymer-bonded explosive (PBX) formulations.

Keywords: CL-20/HMX cocrystal; in situ polymerization; core–shell structure; desensitization;
thermal stability

1. Introduction

Over the last decade, advanced and safe energetics witnessed the rapid development
of energetic cocrystallization. Cocrystal is a kind of crystalline substance composed of two
or more neutral molecules, which has been proved to effectively release the contradiction
of safety and power of energetic materials (EMs) [1–5]. 2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-
hexaazaisowurtzitane (CL-20) was reported to cocrystallize with less sensitive EMs such
as 2,4,6-trinitrotoluene (TNT) [6], 1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane (HMX) [7],
benzotrifuroxan (BTF) [8], 2,5-dinitrotoluene (DNT) [9], 1-methyl-3,4,5-trinitropyrazole
(MTNP) [10], and 1-methyl-3,5-dinitro-1,2,4-triazole (MDNT) [11]. Therein, CL-20/HMX
cocrystal stood out for its superior performance. Matzger’s group [7] found that this cocrys-
tal has a comparable detonation velocity to CL-20 and a similar impact sensitivity level
with pure HMX. The chemical structures of CL-20 and HMX and the molecular structure of
CL-20/HMX cocrystal are shown in Figure 1. The spray drying, self-assembly and resonant
acoustic mixing methods have pushed the scaled-up production of CL-20/HMX cocrystal
to kilograms creatively [12–14]. However, the application of CL-20/HMX cocrystal is faced
with two dilemmas: one is that although cocrystallization lowers its sensitivity to some
extent, the safety of CL-20/HMX cocrystal is still far from satisfactory in practical formula;
the other is that certain amounts of additives, such as graphene, paraffin, polymer or
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other insensitive additives, need to be added in consideration of the desensitization, but
the traditional mechanical mixing method suffers from low efficiency. Studies show that
explosion under impact is likely to occur on the surface of explosive particles first; thus, the
surface coating may be efficient to reduce the sensitivity of EMs [15–20].
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the surface of the cocrystal with full-scale coverage. Meanwhile, the edges of the CL-
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ing, the MF shell behaved like an armature to protect the cocrystal from the electron beam 
and almost no cracks could be observed on the surface of the CH@MF composites. 

Figure 1. The molecular structures of (a) CL-20 and HMX; (b) 2:1 CL-20:HMX cocrystals.

The core–shell technology of EMs is mainly derived from coating technology, which can
be traced back to the microencapsulation process in the field of medicine and food [21–23].
Microencapsulation is a type of technical means that the fine particles of substance (i.e., solid,
liquid or gas) are coated in a thin shell of polymer membrane [24–26]. The core particles
are separated from the external environment through the shell, meanwhile changing their
energy release. The EMs with a core–shell structure feature three pronounced advantages:
close contact between components; combined functionalities of core and shell; improved
overall performance [27–30]. Close contact between components is the main characteristic of
core–shell EMs (CSE) that distinguishes them from physical mixed composites.

There are several techniques to prepare CSEs [31–35]. The water suspension method is
the most common practice to prepare CSEs due to the moderate processing conditions and
versatility for most coating systems. However, the coating efficiency is not satisfactory, and
the aggregation of particles has been frequently reported for small grains of explosives. The
emulsion method is sometimes used to fabricate spherical core–shell composites in indus-
trial processes. The key is to find a proper demulsifier during the process. One drawback is
that various chemical additives are added in the emulsion process, thus increasing the risk
of chemical incompatibility among the components. An in situ polymerization method has
been extensively applied to microencapsulation and surface coating. The process involves
monomer adhesion on the core surface and subsequent polymerization, which can facilitate
a higher coverage and adhesion force than a simple physical mixing process. The desirable
stability and mechanical performance could be achieved with the low addition of shell
materials. Thus far, there are almost twenty kinds of candidates accessible as shell materials.
Therein, the use of melamine–formaldehyde (MF) resins has attracted many researchers in
that MF prepolymers possess high reactivity, short reaction times and small amounts of
polymer needed to construct a complete shell [36]. Yang et al. prepared a series of CSEs via
in situ polymerization of MF resin on the surface of explosive crystals [37]. It was found
that the energetic cores were sufficiently covered by the MF resin with a 3% shell content.

On the basis of the above work, core–shell CL-20/HMX cocrystal@MF resin (CH@MF)
microparticles were prepared based on an in situ polymerization strategy in this study.
As far as we know, this is the first report to apply core–shell technology to energetic
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cocrystal handling. The morphology and core–shell structure were first examined, and
then the surface properties, thermal behavior, sensitivity and detonation performance of
the composites were comprehensively investigated. The formation mechanism of CH@MF
composite was explored as well. This work aimed to provide a better understanding of
core–shell formation mechanism and promote the further application of cocrystal energetics
in propellants and PBX formulations.

2. Results
2.1. Morphologies

For explosives, the morphology, size and arrangement states play an important role
in many military applications. The surface morphologies of CL-20/HMX cocrystal and
CH@MF composites were examined through SEM measurements and are presented in
Figure 2. One can see from Figure 2a that the CL-20/HMX cocrystals exhibited neat
and smooth surfaces with a cuboid shape. Several small particles were attached on the
surface, and the crystal size ranged from 5 to 30 µm. A certain amount of MF resin was
designated to coat the CL-20/HMX cocrystal via in situ polymerization. The core-etching
method was applied to identify the content of the CL-20/HMX cocrystal in the composite;
then, the content of the MF resin could be determined (wMF = 100% − wCH). Herein,
the micro-composites were stirred vigorously for 30 min in excessive acetone to dissolve
the CL-20/HMX cocrystal absolutely; then, the suspensions were filtered with a 0.45 µm
polytetrafluoroethylene filter to decide the cocrystal content, and the residual solids were
MF resins. The effect of the shell content on the morphology was studied and the amounts
of MF resin were 0.5%, 1.0%, 1.6%, 2.8% and 3.5% for CH@MF–1, CH@MF–2, CH@MF–3,
CH@MF–4 and CH@MF–5, respectively. After MF modification, the shape of the particles
exhibited no noticeable change. It could be found that the surface of the CH@MF composites
became rough owing to the existence of small MF particles. Nevertheless, the grain MF
resin did not form an entire shell on the core surface of CH@MF–1 (Figure 2b), resulting
in a limited coating effect. For CH@MF–2 (Figure 2c), the polymeric MF resin covered the
surface of the CL-20/HMX cocrystal basically with some granular deposition. When it
comes to CH@MF–3, as shown in Figure 2d, a compact layer of MF resin was obviously
found on the surface of the cocrystal with full-scale coverage. Meanwhile, the edges
of the CL-20/HMX cocrystal became blunt after a sufficient coating. In Figure 2e, the
coating layer of the CH@MF–4 composite displays a rough, thick and intact morphology.
In addition, when the shell content of the MF resin increased to 5.7 wt%, the CH@MF–5
composite (Figure 2f) exhibited a rougher and thicker morphology. Some agglomerations
were observed on the surface, implying that the addition of shell should be controlled
moderately, considering the coating efficiency and energy loss comprehensively. One
should note that CL-20/HMX cocrystal will gradually crack when exposed to an electron
beam. After coating, the MF shell behaved like an armature to protect the cocrystal
from the electron beam and almost no cracks could be observed on the surface of the
CH@MF composites.

In addition, the physical mixture of the CL-20/HMX cocrystal and MF resin as well as
the MF resin after the etching of the cocrystal core of CH@MF–3 were tested. As shown in
Figure 3a, most of the MF resin particles agglomerated rather than deposited on the surface
of the cocrystal, indicating a negligible coating effect. It can be observed from Figure 3b that
after the inner cocrystal cores were dissolved by acetone, the insoluble MF shells retained
the shape of the cocrystal, and the shell thickness was approximately 1~2 µm. In addition,
the internal layer of the MF shell presented a similar smoothness to the surface of the core
explosive, while the outer layer was tough. These works realized that the cocrystals coated
with the MF resin showed the typical features of a well-developed core@shell structure.
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with different shell contents are presented in Figure 4. The surface roughness parameters, 
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Figure 3. SEM images of the physical mixture of CL-20/HMX cocrystal and MF resin (a); MF resin
shell after etching of the cocrystal core of CH@MF–3 (b).

The surface morphology and roughness were further characterized based on AFM
measurements. The AFM images of the CL-20/HMX cocrystal and MF coating composites
with different shell contents are presented in Figure 4. The surface roughness parameters,
including the mean value of roughness (Ra), root mean square roughness (Rq) and the
maximum height value from peak to valley (Rmax) of the samples are shown in Table 1.
The neat CL-20/HMX cocrystal exhibited a relatively flat and smooth surface. After MF
modification, the cocrystal was tightly wrapped with grain MF particles and a rough
surface was generated. With the increasing shell content, the coverage increased due to
the increased frequency of occurrence and the assemblage of MF resin on the surface. The
gradual increase in the frequency of the observation of these MF particles implies that the
polymeric MF resin particles may deposit layer by layer on the crystal surface, contributing
to an even and compact coating shell. For CH@MF–2 with a shell content of 1.0%, the
surface roughness increased strikingly with Ra = 29.8 nm and Rq = 22.7 nm. It is interesting
to note that the surface roughness decreased, and the MF particles arranged more evenly
when the shell content increased to 1.6%, which is consistent with the morphology observed
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from the SEM test. This may be attributed to the fact that a more homogeneous surface
deposition and higher coating efficiency could be obtained in the case that the shell content
came to a specific degree, i.e., 1.6%. The surface roughness continued to increase with
the rising shell content, together with a flat and close-packed surface morphology. It was
deemed that the increase in surface roughness promoted the interfacial interaction between
the composite and polymer matrix.
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Figure 4. The AFM images of the CL-20/HMX cocrystal and MF coating composites: (a) CL-20/HMX
cocrystal; (b) CH@MF–2; (c) CH@MF–3; (d) CH@MF–4; (e) CH@MF–5.

Table 1. Surface roughness parameters of the CL-20/HMX cocrystal and CH@MF composites.

Samples Ra
1/nm Rq

1/nm Rmax
1/nm

CL-20/HMX cocrystal 4.6 ± 0.30 3.3 ± 0.12 73 ± 0.58
CH@MF–2 29.8 ± 0.62 22.7 ± 0.47 331 ± 0.79
CH@MF–3 17.4 ± 0.69 10.1 ± 0.48 213 ± 0.88
CH@MF–4 37.2 ± 0.78 23.9 ± 0.51 474 ± 1.24
CH@MF–5 46.2 ± 0.60 26.4 ± 0.53 591 ± 1.08

1 Ra: mean value of the roughness; Rq: root mean square of the roughness; Rmax: maximum height value from
peak to valley.

2.2. Structural Characterizations

The core–shell structures and component states of the CH@MF composites were
investigated by XRD patterns, IR and Raman spectra. The CH@MF–3 composite with
a shell content of 1.6% was adopted as an example. It can be seen from Figure 5a that
the structure of the MF resin was amorphous, while an obvious crystalline structure was
found for the CL-20/HMX cocrystal with characteristic diffraction peaks (i.e., 10.92◦, 13.29◦,
14.83◦, 18.56◦, 29.78◦ and 30.9◦) coincidental with XRD spectra in the literature [7]. The
peak pattern and position of CH@MF–3 were in accordance with those of the cocrystal,
proving that the surface modification of the MF resin had little impact on the cocrystal’s
structure. One should note that the addition of MF resin influenced the peak intensity of the
composite. For example, the peak intensity of 2θ at 10.92º, 23.53º decrease in comparison
with the pure cocrystal, while 2θ at 21.39º, 31.59º increase. This may be explained by the fact
that the MF resin coating on the cocrystal surface acted on the preferred orientation of the
crystals. This demonstrates that the cocrystals were successfully covered by low contents
of MF resin and the polymorph of the cocrystal did not change during the whole process.
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Figure 5. XRD (a) and IR (b) spectra of the MF resin, CL-20/HMX cocrystal and CH@MF–3 composite.

Figure 5b reveals the IR spectra of the CL-20/HMX cocrystal, MF resin and CH@MF–3
composite. The assignments of main vibrational bands of IR spectra of MF resin and
CL-20/HMX cocrystal are presented in Table S1. It can be seen that the cocrystal showed
a strong absorption band at 3033 cm−1, which could be assigned to the C–H stretching
vibration. The –NO2 symmetric stretching vibrations were observed at 1602 and 1577 cm−1.
The characteristic peaks confirmed the cocrystal structure as referenced in the literature [7].
For the MF resin, the broad band at approximately 3427 cm−1 could be identified as
hydroxyl, imino and amino stretching. C–N multiple stretchings in the triazine ring were
observed at 1561 and 1491 cm−1. Characteristic triazine ring deformation at 810 cm−1

could also be observed. After MF coating, the IR characteristic diffractions of the cocrystal
were retained. The Raman spectra study (Figure S1, Table S2) came to the same conclusion
with the IR analysis. The low content of the MF resin and the overlap of the characteristic
peaks of both of components may be responsible for this phenomenon.

An XPS analysis was conducted to elucidate the surface chemical compositions of the
CH@MF composites to confirm the coating efficiency, and the spectra are given in Figure 6.
The surface element percent of the C 1s, N 1s and O 1s atoms in the MF resin, CL-20/HMX
cocrystal, and CH@MF composites were integrated and are presented in Table 2. The C
1s peaks in the MF resin were attributed to C–N (285.3 eV) and C=N (282.7 eV). The N 1s
peak that occurred at 397.8 eV could be denoted as C–N=C. The peak at 530.8 eV fitted
in the O 1s region was attributed to C–O–C. For the CL-20/HMX cocrystal, two peaks
were fitted in the C 1s region and assigned to C–H (or C–C, C–NO2) and N–C–N. The
N 1s peak was composed of two peaks, which were C–NH–C at 401.7 eV and –NO2 at
407.3 eV. The O 1s peak centered at 533.5 eV was assigned to the –NO2 group. After the
coating of the CL-20/HMX cocrystal with the MF resin, the basic shape of the C 1s profiles
remained unchanged due to the overlap of the C–N peak in the MF resin and the cocrystal.
The peaks centered at approximately 285.0 eV (ascribed to C–H, C–N and C–C) showed
an increased intensity with the addition of MF resin. The basic N 1s region exhibited the
sum characteristics of cocrystal and MF, with three peaks attributed to –NO2, C–NH–C
and C–N=C in sequence. Compared with the CL-20/HMX cocrystal, the increased shell
content contributed to the decreased atomic concentrations of –NO2 and C–NH–C and
increased atomic concentrations of C–N=C, which only belonged to MF in the XPS analysis.
The C/N ratio of the CH@MF composite was between that of the cocrystal and MF, and
it showed a positive correlation with the shell content. With further increase of the shell
content to 2.8% for CH@MF–4, obvious improvements in the atomic concentrations of C–N
and C–N=C as well as the C/N ratio was found. When it came to the O 1s profile, the
featured peak of C–O–C at 531.9 eV emerged for CH@MF–2. With the further increase in
the MF concentration, the O 1s profile exhibited only one broad peak at approximately
532.7 eV, as the close peaks of C–O–C and –NO2 appeared to be superimposed. The XPS
atomic concentration of functional groups in MF, CL-20/HMX cocrystal and CH@MF
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composites are listed in Table S3. One can find from (Tables 2 and S3) that the nitrogen
content decreased and the carbon content increased as the shell content rose, which may be
ascribed to the increased polymerization degree and a relatively high carbon content in the
MF resin. It follows from these results that the cocrystal surface was successfully coated by
the MF resin via in situ polymerization.
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Table 2. Surface element composition of the MF resin, CL-20/HMX cocrystal and CH@MF composites.

Samples C 1s/% N 1s/% O 1s/% C/N

MF resin 72.72 19.24 8.04 3.78
CL-20/HMX cocrystal 28.63 38.28 33.09 0.75

CH@MF–2 51.20 31.90 16.90 1.61
CH@MF–3 58.76 27.95 13.29 2.10
CH@MF–4 64.89 24.60 10.51 2.64

2.3. Surface Analysis

Characterization of surface properties by measuring contact angles is a useful method
to explore the influence of the surface coating on the interaction between the cocrystal and
fluoropolymer (F2314) binder in a PBX matrix. The static contact angles of CL-20/HMX
cocrystal and CH@MF composites with test fluid of water are presented in Figure 7. The
neat CL-20/HMX cocrystal showed a low water contact angle of 53.4◦. The water contact
angle of the CH@MF increased in the presence of hydrophobic MF resin with nonpolarity
characteristics. The water contact angle of the CH@MF composites continued to rise with
the increasing shell content, suggesting a stable storage performance in atmosphere.
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Based on the contact angles of the different droplets on the energetic crystals, the
surface energy (γ) was described by Equation (1). The interfacial adhesion work (Wa) was
further calculated by the surface energy components of the energetic particles and the F2314
solution in Equation (2) [38].

γl(1 + cos θ) = 2(γd
s γd

l )
1/2

+ 2(γp
s γ

p
l )

1/2
(1)

Wa = 4γd
s γd

l /(γd
s + γd

l ) + 4γ
p
s γ

p
l /(γp

s + γ
p
l ) (2)

where γl is the surface energy of liquid; θ is the contact angle; γd
l (or γd

s ) and γ
p
l (or γ

p
s ) are

the dispersion component and polarity component of liquid (or solid), respectively; Wa
is the interfacial adhesion work. The surface energies of the CL-20/HMX cocrystal and
CH@MF composites, together with the interfacial adhesion work between the CH/CH@MF
composites and F2314, are listed in Table 3. The surface energy components γ

p
s and γd

s of
F2314 are known to be 28.52 and 1.15 mN/m [39]. As shown in Table 3, after coating with
the MF resin, the value of the surface energy increased with the increasing shell content. In
addition, the increased γd and decreased γp narrowed the polar gap between the CH@MF
composites and F2314, and it facilitated the uniform dispersion of the composite particles
in the nonpolar F2314 solution. More importantly, the adhesion work (Wa) between the
CH@MF composites and F2314 gradually enhanced with the addition of MF resin, ascribed
to the enriched interfacial interactions such as hydrogen bonding with the –OH groups in
MF as proton donors and –F groups in the F2314 chains as proton acceptors.
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Table 3. Surface energies of the CL-20/HMX cocrystal, CH@MF composites and F2314 together with
Wa between CH/CH@MF and F2314.

Sample Surface Energy (mN/m2)
Adhesion Work

Wa (mN/m2)

γd γp γ

CL-20/HMX cocrystal 31.86 6.18 38.04 64.07
CH@MF–2 37.33 2.93 40.26 67.97
CH@MF–3 38.02 2.67 40.69 68.40
CH@MF–4 38.56 2.48 41.04 68.72
CH@MF–5 39.58 2.10 41.68 69.28

F2314 28.52 1.15 29.67 __

2.4. Thermal Properties

To detect the thermal properties of the coated composites, the initial and modified
samples were studied by DSC as shown in Figure 8. It is clear that the CL-20/HMX cocrystal
exhibited one remarkable exothermic peak at 241.2 ◦C with a heating rate of 10 ◦C/min.
The decomposition peak temperatures of CH@MF–2, CH@MF–3, CH@MF–4 and CH@MF–
5 were found to be 246.5, 248.7, 249.5 and 250.8 ◦C, respectively, indicating that the low
content of MF made significant improvements to the thermal stability of the cocrystal. This
may be explained from two aspects: one is that the MF resin is a heat-resistant material with
only one endothermic peak at 416.1 ◦C according to the literature [37]; the other is that in
situ polymerization endows the coated cocrystal full-scale coverage and strong interfacial
interactions, resulting in enhanced thermal stability. Samples incorporated with the MF
resin had similar decomposition peak patterns. The changes in the peak temperature
demonstrates the possibility and controllability of tuning the thermal stability by adjusting
the coating amount of the MF resin.
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The kinetics of the CH@MF composites were studied by nonisothermal DSC. Figure 8b–d
depict the DSC results of the CH@MF composites with a heating rate of 5, 10, 15 and
20 ◦C/min, respectively. All three peaks moved right as the heating rate increased. Tak-
ing CH@MF–2 as an example, the peak temperatures were 237.3, 246.5, 248.3 and 250.4 ◦C,
corresponding to the increase in the heating rate. The kinetic parameters of the composites
were calculated by Kissinger, Friedman isoconversional and combined kinetic methods, and
the results are listed in Table 4. Generally, a higher activation energy means more energy is
needed to reach the activation energy barrier, resulting in a slower initiation of the disintegra-
tion reaction [40]. The activation energy for CH@MF–2 was calculated to be 233.42 kJ mol−1,
and the activation energy (Ea) increased to 259.49 kJ mol−1 after the shell content improved to
1.6%. Similarly, the Ea value for CH@MF–4 was 278.11 kJ mol−1. Besides, the linear correlation
coefficients were all approximate to 1, supplying good evidence for the calculation accuracy.
The values of A also proved that the increase in the loading amount of the MF resin reinforced
the thermal stability of the coated composites.

Table 4. The kinetic parameters for nonisothermal decomposition of the CH@MF composites.

Samples Kissinger Method Friedman Method Combined Kinetic Method

Ea(1) logA r Ea(2) r m n Ea(3)

CH@MF–2 233.42 17.86 0.9994 245.76 0.9912 0.786 0.968 258.14
CH@MF–3 259.49 20.35 0.9965 297.62 0.9964 0.725 1.100 305.13
CH@MF–4 278.11 22.24 0.9936 313.11 0.9951 0.762 1.230 315.60

Ea: activation energy, in kJ mol−1; logA: logarithm of the pre-exponential factor, in min−1; r: correlation coefficient.

In order to obtain more accurate calculation results, the Fraser–Suzuki equation [41]
was adopted to fit the DSC peaks of the original data in the Friedman method. It can
be found that all the correlation coefficients were greater than 0.98, which meets the
accuracy requirement of the kinetic evaluation. Although the Ea values obtained by the
Friedman method were different from those using the Kissinger method; they still showed a
consistent trend of improved activation energy as the shell content increased. The Ea-extent
of the conversion (α) relationships of the CH@MF composites are displayed in Figure 9.
It is obvious that the Ea of the CH@MF composites declined gently at the initial stage of
the reaction process and then dropped quickly in the scope of α = 0.8~1.0, showing an
autocatalytic effect as a result of the aggregation of active reaction sites. The α and reaction
rate values of the CH@MF composites as a function of T are plotted in Figure S2.
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The activation energies calculated by the combined kinetic method were close to
those using the Friedman isoconversional method. Different from these two methods,
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the Kissinger method only considers the decomposition peak temperature while ignor-
ing the whole decomposition process, and sometimes error exists, especially for those
decomposition processes that do not follow the n-order reaction model. Therefore, the
kinetic parameters based on the Friedman and combined kinetic methods are considered
to be more reliable. The physical models of the decomposition process are described by
the parameters m and n. The obtained models of the CH@MF composites are shown
in Figure S3, and the ideal models were taken as references. One can observe that the
thermal decomposition of CH@MF–2 followed a three-dimensional growth of the nuclei
(A3) model in the range of α = 0~0.56, while that of CH@MF–3 and CH@MF–4 followed a
model between two-dimensional growth of the nuclei (A2) and A3. This suggests that the
composites experienced nucleation and nucleus growth in the initial stage of the thermal
decomposition process. Then, the decomposition models were close to the random chain
scission model (L2), implying that the collapse of the cocrystal molecules was the essen-
tial rate-limiting decomposition step of the CH@MF composites. The decomposition of
nitramine explosives is commonly dominated by the breakage of the N–NO2 bonds. As the
bond breaking rate was less relied on in the shell layer herein, the first-step decomposition
mechanism of the coated composites was very close to that of pristine cocrystal.

2.5. Sensitivity and Detonation Performance

The impact and friction sensitivity of the CL-20/HMX cocrystal, the mixture of MF
resin and cocrystal, and the CH@MF composites are presented in Table 5. It can be found
that the CL-20/HMX cocrystal possessed the same level of sensitivity as HMX with an
impact sensitivity (H50) of 27.1 cm and a friction sensitivity (P) of 72%. It was noted that
core–shell coating endows a significant desensitization effect to the energetic cocrystals,
especially compared to the physical mixed samples. Taking CH@MF–2 composite as
an example, the H50 increased to 40.6 cm and the friction sensitivity decreased to 50%,
while the physical mixture (denoted as CH + MF) with the same molar ratio showed an
unsatisfactory desensitization effect. It may be originated from the core–shell structure
that the corners and edges of the cocrystal were perfectly wrapped by the coating shell
in the core–shell composites, while physical mixing could not fulfill this function. This
resulted in that the CH@MF composites featured an intact coating shell with few cracks or
deformations, preventing the cocrystals from extrusion, shear and friction to reduce the
formation of hot spots. Moreover, the tough MF shell could behave as a cushion layer to
disperse the abrupt impact or friction energy. The CH@MF–5 composite with a 3.5% shell
content exhibited a remarkably reduced sensitivity with an H50 of 75 cm and P of 17%.

Table 5. The impact and friction sensitivity of CL-20/HMX cocrystal (CH), the mixture of CL-20/HMX
cocrystal and MF resin, and CH@MF composites.

Samples MF Content/% Existent Form of MF H50/cm P/%

CL-20/HMX
cocrystal 0 — 27.1 72

CH + MF 1.0 Physical mixture 29.0 69
CH + MF 1.6 Physical mixture 31.2 65

CH@MF–2 1.0 Core–shell 40.6 50
CH@MF–3 1.6 Core–shell 56.4 38
CH@MF–4 2.8 Core–shell 66.2 26
CH@MF–5 3.5 Core–shell 75.0 17

Density and detonation velocity are two important parameters reflecting the energetic
performance of an energetic material. The densities of the CL-20/HMX cocrystal and
CH@MF composites were measured based on the gas expansion displacement method.
According to the Urizar equation, the detonation velocity of the composite explosives can
be calculated by [25]:

ωi = Vi/ΣVi (3)
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D = ΣwiDi (4)

where Vi is the volume of component i; wi is the volume fraction; Di is the characteristic
detonation velocity. The detonation velocity for the CL-20/HMX cocrystal and MF resin
were approximately 9350 and 5400 m/s, respectively. The measured density and detonation
velocity of the cocrystal samples are illustrated in Figure 10. One can find that the difference
in the densities of all the composites was less than 2.5%, and the detonation velocity loss
was lower than 1.5% compared with the raw cocrystal explosive. The impact and friction
sensitivity of the CH@MF-3 composite at a 1.6% shell content was almost cut in half with
less than 1% energy loss, confirming the superiority of the core–shell structure constructed
by in situ polymerization.
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Previous work was conducted by our group on the application of CL-20/HMX cocrys-
tal in composite-modified double-base (CMDB) propellants [42,43]. The CMDB propellant
containing CL-20/HMX cocrystal exhibited enhanced combustion properties, stability and
mechanical properties. However, the stability improvement was limited, as the impact
sensitivity of CL-20/HMX cocrystal was almost the same as that of β-HMX. One can specu-
late that the replacement of the CL-20/HMX cocrystal with CH@MF composites would
improve the stability of the CMDB propellant markedly with little influence on the energy
performance. In addition, the elevated adhesion work between CH@MF particles and F2314
binder highlights their potential applications in PBX formulations.

2.6. Proposed Formation Mechanism

The preparation process and proposed formation mechanism of the CH@MF compos-
ites are illustrated in Figure 11. At first, the amine hydrogens of melamine were partially or
completely reacted with formaldehyde to provide melamine–formaldehyde prepolymer by
an addition reaction. Then, the raw cocrystals were dispersed uniformly in deionized water,
and the MF shell was synthesized via in situ polymerization of melamine–formaldehyde
prepolymers and deposited on the surface of cocrystal, which occurred under an acidic
condition. This process can be illustrated in three steps: Firstly, with the addition of citric
acid, MF prepolymers were activated and the degree of cross-linking increased owing to
the reduction of the hydroxyl concentration. Secondly, as the pH decreased, the solubility
of the MF resin was reduced, and the amino resins gathered around the dispersed cocrystal
to create the primary shell. The hydrogen bonding interactions between the amino and
hydroxyl groups of the MF resin and nitro groups of the cocrystal played a vital role in
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the enrichment of resin molecules within the interface. Finally, the polycondensation rate
at the interface proceeded much faster than in the water dispersion medium and a tough
and firm shell formed eventually. It is worth noting that a small amount of PVA was
added in the step of MF prepolymer preparation and performed an important part of the
coating process. For one thing, PVA helped improve the surface wettability of the cocrystal
explosives and increased the interaction between the energetic cocrystal and the MF resin.
Moreover, the PVA served as a supplement to the MF resin to enhance the shell’s flexibility
and behaved well in desensitization. The medium in the polymerization process was water,
which avoided the trouble of using high solvent and recovery, ensuring the safety of the
experiment to the greatest extent and reducing the possibility of pollution and fire. The
production cost could be controlled in an acceptable range due to the cheap and accessible
raw materials (melamine, formaldehyde solution, etc.) and water reaction medium. Due to
the good operability, controllable cost and profitable processing performance, this green,
simple and convenient in situ polymerization method is desirable for the desensitization of
cocrystal explosives and is promising for scaled-up preparation and industrial application
of core–shell composites.
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3. Materials and Methods
3.1. Materials

The CL-20/HMX cocrystal was prepared by following the previously described self-
assembly method with a purity of 98.8% [13]. The melamine, triethanolamine, polyvinyl
alcohol (PVA; 88% hydrolyzed, 4.5~6.0 mPa·s), citric acid and formaldehyde solution
(37 wt%) were commercially purchased from Aladdin (Shanghai, China), and used without
further purification.

3.2. Sample Preparation

The preparation of MF prepolymers was typically fabricated according to the litera-
ture [37]. The structure characterizations of MF pre-polymer are shown in Figures S4–S7.
Briefly, 1.5 g CL-20/HMX cocrystal was dispersed in 7.5 mL deionized water, and then
certain amounts of the MF prepolymer solution were added according to the demanded
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shell content. The pH value of the mixture was tuned to 4.0~5.0 with 10.0 wt% citric acid
solution. Polymerization of the MF prepolymers and coating were attained with contin-
uous agitation for 2 h at 65 ◦C. Afterwards, the suspension was cooled down to room
temperature. Finally, the resultant CH@MF composites were filtered, washed and dried
at 60 ◦C for 12 h. In addition, the physical mixtures of the CL-20/HMX cocrystal and MF
resin were prepared with an equal number of components as a contrast.

3.3. Characterization

The morphology of the samples was detected under a scanning electron microscope
(SEM; Hitachi S4800) and further characterized by atomic force microscope (AFM; Bruker
Dimension Icon) in a tapping mode. Fourier transform infrared spectra (FT-IR) were
collected through a NEXUS 870 spectrometer with KBr pellets. Raman spectra were
measured under Renishaw inVia instrument with a 785 nm laser. The powder X-ray
diffraction (PXRD) patterns were recorded on a Bruker D8 Advance diffractometer under
Cu-Kα radiation (λ = 0.154056 nm). The surface chemical composition was measured
by performing an X-ray photoelectron spectroscopy (XPS) test on a Thermo Scientific
spectrometer. Surface adhesion properties were characterized on a Dataphysics-OCA20
instrument. Thermal behavior was performed with a differential scanning calorimeter
(DSC; Netzsch STA 449 F3). The impact sensitivity was tested with a WL-1-type impact
sensitivity instrument according to the Chinese GJB-772A-97 standard method 601.2. The
friction sensitivity was tested with a WM-1-type friction sensitivity instrument according to
the Chinese GJB-772A-97 standard method 602.1. Explosion probability (P) was adopted to
assess the friction sensitivity of each sample. The density of the samples was tested under
a fully automatic true density instrument (AccuPyc II 1340).

4. Conclusions

In this paper, MF-resin-coated CL-20/HMX cocrystals were prepared via a facile in situ
polymerization technique. Such a route is green, facile and general for cocrystal explosives,
and it was elucidated by a proposed formation mechanism. An intact and uniform MF
coating shell was verified by in-depth observation of the morphology and structure. As
a result, the cocrystals were successfully coated by low contents of MF resin, and the
polymorph of the cocrystal did not change during the whole process. It is inspiring to
find that the thermal stability can be effectively enhanced with the thermal decomposition
peak temperature increased by 5.3 ◦C at a 1.0% shell content. The impact and friction
sensitivity of the cocrystal explosive could be reduced by more than two times at a 1.6 wt%
MF content with less than 1% energy loss, suggesting excellent desensitization effectiveness
through in situ coating. With the enhanced thermal and safety performance, CH@MF
composites are expected to replace CL-20/HMX cocrystal in CMDB propellant to address
the safety concerns. The reinforced interfacial adhesion between the cocrystal composites
and fluoropolymer promote their further application in PBX formulations.
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Symbols and Abbreviations

CL-20 2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane
HMX 1,3,5,7-Tetranitro-1,3,5,7-tetrazacyclooctane
MF Melamine–formaldehyde
EMs Energetic materials
TNT 2,4,6-Trinitrotoluene
BTF Benzotrifuroxan
DNT 2,5-Dinitrotoluene
MTNP 1-Methyl-3,4,5-trinitropyrazole
MDNT 1-Methyl-3,5-dinitro-1,2,4-triazole
CSEs Core–shell EMs
CH CL-20/HMX cocrystal
CH@MF CL-20/HMX cocrystal@MF resin
F2314 Fluoropolymer
PBX Polymer-bonded explosive
PVA Polyvinyl alcohol
CMDB Composite–modified double base
γ Surface energy
Wa Interfacial adhesion work
Ea Activation energy
α Extent of conversion
r Correlation coefficient
Ra Mean value of roughness
Rq Root mean square roughness
Rmax Maximum height value from peak to valley
H50 Characteristic height
P Explosion probability
SEM Scanning electron microscope
AFM Atomic force microscope
FT-IR Fourier transform infrared spectra
PXRD Powder X-ray diffraction
XPS X-ray photoelectron spectroscopy
DSC Differential scanning calorimeter
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