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Abstract

In this research, graphene nanosheets were functionalized with cationic poly (diallyldimethylammonium chloride)

(PDDA) and citrate-capped gold nanoparticles (AuNPs) for surface-enhanced Raman scattering (SERS) bio-detection

application. AuNPs were synthesized by the traditional citrate thermal reduction method and then adsorbed onto

graphene-PDDA nanohybrid sheets with electrostatic interaction. The nanohybrids were subject to characterization

including X-ray diffraction (XRD), transmission electron microscopy (TEM), zeta potential, and X-ray photoelectron

spectroscopy (XPS). The results showed that the diameter of AuNPs is about 15–20 nm immobilized on the

graphene-PDDA sheets, and the zeta potential of various AuNPs/graphene-PDDA ratio is 7.7–38.4 mV. Furthermore,

the resulting nanohybrids of AuNPs/graphene-PDDA were used for SERS detection of small molecules (adenine)

and microorganisms (Staphylococcus aureus), by varying the ratios between AuNPs and graphene-PDDA. AuNPs/

graphene-PDDA in the ratio of AuNPs/graphene-PDDA = 4:1 exhibited the strongest SERS signal in SERS detection

of adenine and S. aureus. Thus, it is promising in the application of rapid and label-free bio-detection of bacteria or

tumor cells.
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Background

Raman scattering was discovered by CV Raman in 1928,

and further, the use of surface-enhanced Raman scatter-

ing (SERS) technology was developed by Fleischman and

others in 1974. SERS is used widely in various applica-

tions such as label-free sensing of bacteria Escherichia

coli (E. coli) and various molecules. This is possible

because of the enhancement of the Raman signal. Gold

and silver nanoparticles are widely used for SERS

enhancement [1–3] via their localized surface plasma

resonance (LSPR). LSPR can increase the intensity of the

Raman signal by at least 109, thereby easily detecting the

presence of various bacteria or molecules. Once metal

(gold and silver) become nanoparticles with a unique

size and morphology, their optical, electrical, and mag-

netic properties also change. Recent research on SERS

technology emphasize on controlling the size and

morphology of the nanoparticles. When the gap of the

metal nanoparticles is within 10 nm, it will produce “hot

spot” effect, which will further enhance the intensity of

the SERS signal. Therefore, it is important to develop

the SERS bio-detection by controlling the gap and the

particle size of the metals nanoparticles.

Graphene [4] is an allotrope of carbon in the form

of a two-dimensional hexagonal lattice, with its sp2

hybridization and very thin atomic thickness (of

0.345 Nm). It is formed from a single layer of graph-

ite structure. Graphene was successfully isolated in

2004 by physicist Novoselov and Geim from graphite

[5]. What make graphene so unique are its remark-

able strength, electricity, and heat conduction, as well

as many others. Graphene has many very specific

physical properties, such as (1) high mechanical strength,

Young’s modulus can reach 1000 GPa [6]; (2) thermal
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conductivity that can reach 5300 W/mK, which is higher

than metals or diamond [7]; (3) electron mobility that

can exceed 200,000 cm2/Vs with a resistance value

(10–6 Ω·cm) even lower than silver or copper [8],

which is the least resistance value of any currently

known materials. Since graphene has excellent elec-

trical and thermal conductivity and physical proper-

ties, it can be widely applied in different fields and

has become a very popular research topic in recent

years [9–12].

Poly(diallyldimethylammonium chloride) (PDDA) is a

homopolymer and synthesized by George Butler in 1957

[13–14]. PDDA is a water-soluble polymer, and its struc-

ture is shown in Fig. 1. Its quaternary ammonium salt

structure enables it to display a high charge density.

PDDA thereby has cohesive, adsorption, and antibacter-

ial properties, which is considered harmless for the hu-

man body. It is widely used in various applications, such

as wastewater treatment plants and various biological

and medical applications [15]. In 2005, Yang et al. [16]

showed that PDDA can be adsorbed onto carbon nano-

tubes by non-covalent bonding or π-π interaction, in

order to improve water dispersibility of nanotubes. The

surface properties of nanotubes are similar to that of

graphene, thereby PDDA can also adsorb onto graphene

structure via their structural π-orbitals. After adsorption,

the resulting surface charge of graphene is positive and

prevents aggregation of graphene in water.

In this experiment, Au/graphene-PDDA nanocompos-

ite was fabricated by adsorbed gold nanoparticles

(AuNPs) onto the graphene-PDDA nanosheets as shown

in Fig. 1. Graphite was a chemical exfoliated into gra-

phene, PDDA was adsorbed onto graphene by reduction

method, and AuNPs (negative charge) was then bonded

onto the resulting graphene-PDDA nanosheets (positive

charge) by ionic binding. Graphene-PDDA nanosheets

are the supporting substrate to uniformly embed the

AuNPs for creating more homogenous “hot spots” and

controlling the interparticle gap of AuNPs. The positive

charge of AuNPs/graphene-PDDA nanosheets is used to

easily capture the negative charge of Staphylococcus aur-

eus for SERS rapid detection. Various ratios of AuNPs/

graphene-PDDA were evaluated in order to create an

optimum surface-enhanced Raman scattering (SERS)

signal for SERS bio-detection [17–20] of small molecules

(adenine) and microorganisms (S. aureus).

Methods

Materials

The materials used in this study were as follows:

graphite powder, <20 μm, synthetic, Aldrich; sulfuric

acid, H2SO4, 96.5 %, Baker; fuming nitric acid, HNO3,

≧99.5 %, Sigma-Aldrich; potassium permanganate,

KMnO4, Baker; PDDA, 35 % (average Mw < 100,000),

Aldrich; hydrogen peroxide, H2O2(aq), 35 %, Acros;

hydrochloric acid, HCl(aq), 37 %, Scharlau; sodium citrate

dehydrate, Na3Ct·2H2O, ≧99.5, Sigma-Aldrich; hydrogen

tetrachloroaurate(III) trihydrate, HAuCl4·3H2O, 99 %,

Sigma-Aldrich; nitric acid, HNO3(aq), 69 %, Panreac;

silicon Oil, Choneye Pure Chemical; Luria-Bertani

(LB broth), Difco™ (Agar Bacteriological), Oxoid; and

adenine, C5H5N5, ≧99 %, Sigma.

Synthesis of Gold Nanoparticles

Citrate thermal reduction method was used to prepare

gold nanoparticles. It is an oxidation-reduction reaction,

which uses sodium citrate (Na3Ct·2H2O) as a reducing

agent to reduce Au3+ of HAuCl4·3H2O. The experimen-

tal procedure is as follows. (1) Ninety-six milliliters of

0.307 mM tetrachloroauric acid solution was prepared.

Fig. 1 Fabrication of nanohybrids Au/graphene-PDDA
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(2) The solution was heated, and after boiling for

10 min, 4 mL of 1 % sodium citrate solution was added

and the color changed from yellow to dark red.

Synthesis of Graphene Oxide

Graphene oxide (GO) was prepared by using the

modified Hummers method. Potassium permanganate

was added to the graphite, and the surface of the graph-

ite will have many oxidized functional groups. The

experimental procedure is as follows. (1) Thirty-six milli-

liters of concentrated sulfuric acid was added to 1.0 g of

graphite powder and stirred for 1 h. (2) The solution

was stirred continuously in ice bath, 12 mL of fuming

nitric acid was added dropwise, and then, 5 g of po-

tassium permanganate was slowly added. (3) The so-

lution was stirred for 120 h under room temperature.

(4) One hundred twenty milliliters of deionized water

was added slowly and stirred for 2 h under room

temperature. (5) Six milliliters of hydrogen peroxide

solution was added and stirred for 2 h and left at

room temperature for 24 h. (6) The top layer of the

clear solution was removed, and 200 mL of deionized

water, 1 mL of hydrogen peroxide solution, and 1 mL

of hydrochloric acid were added. The solution was

mixed for 2 h and centrifuged. (7) Step 6 was re-

peated three times. (8) The top layer was washed with

deionized water until the solid pH is close to 7. (9)

After the solid was collected, it was placed in a vac-

uum oven and dried at 40 °C for 48 h. The final

product was graphene oxide powder.

Table 1 Various ratios of AuNPs to graphene-PDDA

Graphene-PDDA
(3 mg/mL) μL

HAuCl4
(0.1 mg/mL) mL

DI water μL Au/G (w/w)

333 5 17 1/2 (Au1/G2)

83 5 267 2/1 (Au2/G1)

42 5 308 4/1 (Au4/G1)

21 5 329 8/1 (Au8/G1)

10.5 5 339.5 16/1 (Au16/G1)

0 5 350 Au

Fig. 2 TEM of various ratios of Au/graphene-PDDA: a Au1/G2, b Au2/G1, c Au4/G1, d Au8/G1, and e Au16/G1
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Synthesis of Graphene-PDDA

The experimental procedure is as follows. (1) Sixty milli-

grams of graphene oxide powder was mixed with 20 mL

of deionized water. (2) The solution was sonicated for

10 min. (3) Eight hundred microliters of PDDA was

added and stirred for 10 min. (4) The solution was

heated to 90 °C under reflux for 12 h. (5) The solution

was centrifuged, and the upper layer solution was

removed. The step was repeated for several times. (6)

Deionized water was added to the final product.

Synthesis of Au/Graphene-PDDA

Different proportions of graphene-PDDA and HAuCl4
solutions were prepared as shown in Table 1. Various ra-

tios of HAuCl4 to graphene-PDDA were as follows: 1:2,

2:1, 4:1, 8:1, 16:1, referred as Au1/G2, Au2/G1, Au4/G1,

Au8/G1, and Au16/G1.

SERS Measurements by AuNPs/Graphene-PDDA

Nanohybrids

A Raman microscope (HR800, Horiba, Japan) with

He-Ne laser (632.8 nm) was used to detect the pres-

ence of S. aureus (ATCC 6538P). The experimental

procedure is as follows. (1) Fifty microliters of the

varied AuNPs/graphene-PDDA and 50 μL of S. aureus

solutions (1 × 105 CFU/mL grown for 18 h at 37 °C) or ad-

enine (concentration of adenine is 10−4 M) were placed in

1.5 mL micro-centrifuge tubes and mixed well. (2) Five

microliters of each sample was dropped on the aluminum

sheet. Raman spectra in the range of 400 to 1800 cm−1

were evaluated for the samples. The intensity of the

Raman signal at 733 cm−1 (SERS signal from the cell wall

of S. aureus) was investigated also for the samples.

Characterization Analysis of AuNPs/Graphene-PDDA

Nanohybrids

The interaction between AuNPs and graphene-PDDA

were analyzed by X-ray photoelectron spectroscope

(XPS, VG ESCA Scientific, Theta Probe), and surface

electric properties of AuNPs/graphene-PDDA samples

were analyzed by zeta potential analyzer (Nano S90,

Malvern Instruments) as described below.

Results and Discussion

Characteristics of Au/Graphene-PDDA

Various ratios of AuNPs to graphene-PDDA nanohy-

brids were prepared, including Au1/G2 (AuNPs to

graphene-PDDA ratio = 1:2), Au2/G1, Au4/G1, Au8/G1,

and Au16/G1. The morphology and distribution of the

Au/graphene-PDDA nanohybrids were analyzed by

transmission electron microscopy (TEM), as shown in

Fig. 2. The results showed the diameter of AuNPs were

Fig. 3 X-ray diffraction of Au/graphene-PDDA

Fig. 4 Zeta potential of graphene oxide, graphene-PDDA, and gold nanoparticles
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about 15–20 nm, immobilized on the few layers of the

graphene-PDDA sheets.

X-ray diffraction of Au/graphene-PDDA (Fig. 3) shows

that diffraction plane peaks of Au (111), Au (200), Au

(220), Au (311), and Au (222), and corresponding to 2θ

angle are 38.2°, 44.4°, 64.6°, 77.6°, and 81.7°, respectively,

showing face-centered cubic (FCC) crystal structure.

This is consistent with diffraction peak position of

JCPDS database (Au, JCPDS file: 04-0784). It confirms

that AuNPs are adsorbed onto the surface of graphene-

PDDA nanosheets.

Zeta potential also confirmed successful fabrication of

Au/graphene-PDDA, as shown in Fig. 4. The surface of

graphene oxide is negative charge (−52.90 ± 2.01 mV),

while graphene-PDDA surface is positive charge (65.90 ±

1.73 mV) due to the NH2 functional group in the PDDA,

which enables it to attach to the negative charge of

AuNPs. The higher addition of AuNPs would decrease the

average zeta potential of the nanocomposites. In Fig. 5, it

further confirms the successful preparation to add AuNPs

onto graphene-PDDA nanosheets. With the increase in

the ratios of AuNPs on the graphene-PDDA, zeta poten-

tial would decrease, proving that AuNPs are attached onto

the surface of graphene-PDDA.

XPS analysis (Fig. 6) shows that AuNPs bond onto the

surface of graphene-PDDA nanosheets, which displays 0.3

and 0.5 eV binding energy shifting in 4f7/2 (from 84.8 to

84.5 eV) and 4f5/2 (from 88.6 to 88.1 eV), respectively. The

binding energy of pristine AuNPs in XPS peaks would de-

crease after some molecules were grated due to the increase

of electrons [21]. It proved that AuNPs truly interacted with

graphene-PDDA nanosheets by electrostatic force.

SERS Application of Au/Graphene-PDDA

Bacterium (S. aureus, SA) was used as a model for SERS

detection, and integrated intensity of the Raman signal

at 733 cm−1 (suggested SERS signal from the cell wall of

SA) was examined, as shown in Fig. 7a. Figure 7b and

Table 2 illustrate the SERS integrated intensity of S.

aureus by Au/graphene-PDDA nanohybrids detection.

The different ratios of Au/graphene-PDDA nanohybrids

Fig. 5 Zeta potential of various ratios of Au/graphene-PDDA

Fig. 6 XPS analysis of AuNPs and Au/graphene-PDDA

Fig. 7 a SERS spectra and b integrated intensity (733 cm−1) of different

ratios of Au/graphene-PDDA nanohybrids for bacteria (S. aureus) detection
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were used to detect SA for optimum SERS signal. The

results showed that AuNPs/graphene-PDDA in the ratio

of AuNPs/graphene-PDDA = 4:1 exhibited the strongest

SERS signal in the detection of S. aureus.

In addition, the small molecules (adenine, one

component of DNA) also were tested by SERS detec-

tion. Figure 8a shows different ratios of AuNPs to

graphene-PDDA for adenine SERS detection, and

Fig. 8b and Table 3 display that the SERS integrated

intensity of adenine by Au/graphene-PDDA nanohy-

brids detection. The results exhibited that AuNPs/

graphene-PDDA in the ratio of AuNPs/graphene-

PDDA = 4:1 also illustrated the most optimum SERS

signal in the detection of adenine. The ratio of 4:1

(AuNPs/graphene-PDDA) was optimal for higher SERS

signal intensity due to the optimal interparticle gaps of

AuNPs either in detecting S. aureus or adenine. An in-

crease in the ratio of 4:1 would cause the aggregation of

AuNPs to induce the laser scattering or decrease the sur-

face plasmon effects (hot junctions effects) due to the con-

tact of AuNPs with each other. Therefore, SERS signal

intensity would decrease.

Conclusions

This paper demonstrates in detail the synthesis of

Au/graphene-PDDA nanocomposites and its applica-

tion in SERS detection of S. aureus and adenine.

Graphite was chemically exfoliated, and PDDA was

π-π stacked onto the surface of graphene nano-

sheets, and later, gold nanoparticles were synthesized

and attached onto the surface of graphene-PDDA by

surface charge interaction. The resulting Au/graphene-

PDDA nanocomposites greatly enhanced the Raman sig-

nal of S. aureus and adenine. Various ratios of AuNPs to

graphene-PDDA were tested to make optimum SERS en-

hancement effects. AuNPs/graphene-PDDA in the ratio of

AuNPs/graphene-PDDA = 4:1 exhibited the strongest

SERS signal in the bio-detection of small biomolecules

(adenine) and microorganisms (S. aureus). AuNPs/gra-

phene-PDDA was shown to have enhanced Raman

signal capability and unique ability to adsorb onto the

microorganisms. Thus, it can be further applied in

the rapid and label-free bio-sensing of biomolecules

and microorganisms.
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Table 2 Au/graphene-PDDA and their SERS intensity integral of
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Au/graphene-PDDA SERS intensity*10−3 (integral)

1/2 43.89 ± 4.64

2/1 48.30 ± 6.33

4/1 114.26 ± 14.95

8/1 64.39 ± 4.11

16/1 47.39 ± 1.90

Au 29.75 ± 3.60

Fig. 8 a SERS spectra and b integrated intensity (733 cm−1) of

different ratios of Au/graphene-PDDA nanohybrids for small

molecules (adenine) detection

Table 3 Au/graphene-PDDA and their SERS intensity integral of

adenine (integrated range of SERS intensity, 700~770 cm−1)

Au/graphene-PDDA Intensity*10−3 (integral)

1/2 174.76 ± 5.84

2/1 322.91 ± 6.87

4/1 593.43 ± 10.29

8/1 488.96 ± 13.79

16/1 410.37 ± 38.32

Au 177.00 ± 2.04
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