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Abstract

A new method is proposed to prepare micron-sized anisotropic-shaped particles: tetrahedral

structures bounded by 〈1 1 1〉 faces. It is based on the micromachining of 〈1 1 1〉-oriented

silicon wafers and retraction edge lithography (REL). The size of these Si structures is tunable

but limited: roughly from 20 to 2000 nm. The importance of this method is that the fabricated

structure resembles almost perfectly the mathematical tetrahedron. Furthermore, the technique

offers room to change the anisotropic property of the particle by selective modification of the

faces using self-aligned lithography.

(Some figures may appear in colour only in the online journal)

1. Introduction

Well-defined silicon structures bounded by 〈1 1 1〉 planes

are important in micro system technology. They find

applications in e.g. optical and electronic devices, sensors

and micro-electro-mechanical systems [1–3]. The possibility

of tetrahedral Si particles assembling and forming crystal

structures has been found to be intriguing, notably in

simulation studies. In 2005, it was shown that spherical

particles with patches on the surface at the corners of

a tetrahedron can form a diamond-like structure by self-

assembly [4]. Simulations indicate that tetrahedra pack into

quasicrystals with a high packing fraction [5–7]. Tetrahedral

particles have been synthesized by bottom-up as well as

top-down pathways. Chemically, by using a coordinating

and capping ligand, Si tetrahedra were prepared bottom-

up [8]. By contrast, Berenschot et al reported a top-down

method to machine single crystalline tetrahedral structures

bound by Si 〈1 1 1〉 faces and outlined the prospective

applications principally in self-assembly [9]. They described

the preparation of tetrahedra in the range from 20 to 1000 nm.

Here we report a new self-aligned strategy, which facilitates

a high degree of symmetry in the particle’s shape. It uses

Si〈1 1 1〉 wafers and enables selective modification of the faces

as will be demonstrated.

2. Fabrication

The strong anisotropy of etch rate among the crystallographic

planes is well known in wet etching. For example, the Si

etch rate in the 〈1 1 1〉 direction is much smaller than in the

other directions for widely used etchants like KOH (potassium

hydroxide), EDP (ethylene-diamine pyrocatechol) and TMAH

(tetra-methyl-ammonium hydroxide) [10]. This anisotropy

is often used in the fabrication of structures in Si〈1 0 0〉

wafers [11–14], but in the present work Si〈1 1 1〉 wafers will

be used to fabricate tetrahedra. However, a process using

photolithography to open a triangular shape along the 〈1 1 1〉

faces, followed by Si etching, typically would not form a

tetrahedron. However, in the present study another method will
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(a) (b)

Figure 1. (a) Schematic representation of a tetrahedron bound by
Si〈1 1 1〉 facets machined out of a parallelepiped structure, which is
machined out of a Si〈1 1 1〉 wafer. (b) This zoom-in shows the four
tips of the tetrahedron A, B, C and D. The plane described by the
face ABC is part of the initial wafer surface.

be adopted to preserve sharp corners in which the three out-of-

wafer plane faces of the tetrahedron are formed in a three-step

process one by one. Even though this technique increases the

process complexity, the advantage is that the engineer has more

freedom to design and change the property of individual faces

of the tetrahedron. The latter might encourage the process of

self-assembly.

Wet etching of Si〈1 1 1〉 is generally concerned with the

slow etch property of the 〈1 1 1〉 faces and as such will form

hollow octahedral or parallelepiped features [15–17]. In the

current technique, one corner of such a solid parallelepiped

is machined into a tetrahedron. As shown in figure 1, the

wafer surface itself forms the first face of the tetrahedron

(ABC). The second and third 〈1 1 1〉 faces, ACD and ABD,

are created sequentially by lithography and Si etching. After

each stage, the newly opened Si〈1 1 1〉 surface is protected

with silicon dioxide (SiO2). The fourth and last face, BCD, is

made by a maskless lithographic technique called retraction

edge lithography (REL), which is a perfect tool for fabricating

wafer-scale nanostructures precisely and controllably

[18–21]. In the coming sections, the exact procedure of above

is described.

2.1. Opening of the second face of the tetrahedron

This process involves Si etching using KOH through a grating

mask to reveal two parallel 〈1 1 1〉 surfaces: A wafer (100 mm

diameter p-type Si 〈1 1 1〉, thickness 525 µm ± 25 µm) is dry

oxidized at 950 ◦C to grow 40 nm SiO2. Subsequently, 70 nm of

low-stress Si-rich nitride (SiNx) is deposited by low-pressure

chemical vapor deposition (LPCVD). This double layer is

patterned with photoresist using a grating mask (15 µm line

and 5 µm spacing) with the lines in a direction perpendicular to

the wafer-flat, i.e. the grating lines are aligned with the 〈1 1 0〉-

direction. The nitride is etched by dry etching, the resist is

stripped and the oxide is etched by buffered hydrofluoric acid

(BHF 1:7) for 2 min to create a double mask on Si as depicted in

figure 2(a). Subsequently, the unprotected Si is etched for

180 min (25 wt% KOH at 75 ◦C) reaching a depth of 2.6 µm

to open two parallel Si 〈1 1 1〉 surfaces on both sides of the

grating pattern (figure 2(b)).

2.2. Opening of the third face of the tetrahedron

As shown in the process flow in figure 3, this step is to create

a semiparallelepiped structure bound by Si〈1 1 1〉 faces: first,

the KOH-patterned wafer of section 2.1 is cleaned by RCA2

and dry oxidized at 1100 ◦C to get 190 nm LOCOS protective

oxide (local oxidation of silicon) at the just revealed 〈1 1 1〉

planes (figure 3(a)). A layer of 100 nm LPCVD poly-silicon

is deposited at 590 ◦C (figure 3(b)) followed by wet oxidation

at 800 ◦C to grow 10 nm thin oxide on top of the poly-Si

layer (figure 3(c)). Next, the same grating pattern as before

is applied, but roughly 60◦ rotated with respect to the initial

pattern. The process is not affected by misalignment of a few

degrees or more. This is because the anisotropic etch will

force the shape to stop at the nearest 〈1 1 1〉 plane. When a

mask edge is misaligned, instead of an atomically flat facet it

leads to a train of steps like a staircase, where the surface of

the step is atomically flat 〈1 1 1〉. Etching proceeds such that

atoms are removed from the step edge; that means that the step

moves [22, 23]. There is also a small etch rate of the ledges

of the step, but the edge etches much faster. The features are

etched quite deep, so that the steps due to misalignment had

time to move along the lateral length of the features, so the

small misalignment has no influence on the result. After the

development of the resist, the unprotected oxide on the poly-Si

is etched by 1% HF (figure 3(d)). Note that the residual resist

under the roofs of the undercuts protects this thin oxide as well,

because the poly-Si is opaque for the UV exposure. The resist

is removed using acetone/isopropanol to prevent native oxide

growth (figure 3(e)) and the poly-Si layer is etched by 25 wt%

TMAH at 70 ◦C for 25 s using the oxide pattern (figure 3( f )).

The thin oxide on top of the poly-Si pattern is stripped (figure

3(g)) and the exposed double layer of nitride on top of oxide

is etched by H3PO4 at 180 ◦C and the oxide is etched in BHF

(figures 3(h) and (i)). Next, the wafer is immersed in TMAH

for 180 min to open the third 〈1 1 1〉 face to reach a depth of

3.2 µm (figure 3( j)). TMAH is chosen instead of KOH owing

to its high selectivity to oxide [24, 25]. This step also strips

the poly-Si layer on top of the double layer.

2.3. Opening the fourth face of the tetrahedron: retraction

edge lithography (REL)

A straightforward method to form the fourth face, BCD,

might be to use lithography once again to open a part of the

nitride mask at the top face of the parallelepiped. However,

this method is not preferred for the fabrication of small

accurate structures considering the resolution and precision of

lithography. Therefore, REL has been adopted as described by

Zhao et al [18]. REL can overcome the need of an extra mask

by using the already present double layer, i.e. undercutting

the oxide beneath the nitride layer (figures 4 and 5(a)). In

figure 4, the oxide pull-back underneath the edges is

represented as X and θ is half the angle between two edges,

i.e. 30◦. From the figure, X = L sin θ giving L = 2X. By

varying the pull-back, the size of the tetrahedron formed can

be tuned from ∼20 to 2000 nm. The size can be scaled up,

as long as the nitride overhang is mechanically stable. Note

that the line roughness of the double layer, derived from the

lithographic procedure, is virtually removed by the forming of

the 〈1 1 1〉 planes. These almost perfect 〈1 1 1〉 planes are the

starting point of the retraction etching [26].
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(a) (b)

Figure 2. Schematic representation of opening the second Si〈1 1 1〉 face. (a) 70 nm nitride on top of 40 nm oxide is patterned resulting in a
double mask. (b) Anisotropic KOH etching using the double mask opens up two Si〈1 1 1〉 parallel planes.

(a) (f)

(b) (g)

(c) (h)

(d) (i)

(e) ( j)

Figure 3. Schematic of the fabrication steps to reveal the third 〈1 1 1〉 face of the tetrahedron. (a) Local oxidation of Si (LOCOS).
(b) Conformal coating with LPCVD poly-Si. (c) Oxidation. (d) Resist pattern, roughly 60◦ rotated to the initial pattern, and subsequent
oxide etch. (e) Resist strip. ( f ) Wet TMAH etch of poly-Si. (g) Oxide strip. (h) Nitride etch. (i) The 40 nm oxide is also removed using the
same mask. ( j) TMAH etch forms the third face and it strips poly-Si.

To start this sequence, the double layer is treated with

50% HF to retract the oxide layer below the nitride (figures 4

and 5(a)). The etch time is adjusted to 2 min for an oxide

retraction of X∼2.3 µm. The nitride is etched to slightly more

than half of the thickness with H3PO4 for the shaping of the top

nitride layer (figure 5(b)). The overhang is removed completely

in this step since it is etched at top and bottom. The wafer is

cleaned and Si is wet oxidized at 1100 ◦C to grow 350 nm thick

oxide (figure 5(c)). The native oxide on the nitride is removed

with 1% HF and the nitride is etched with H3PO4 for 28 min.

The 40 nm oxide from the double layer is then stripped with

BHF for 50 s. This leaves the thicker oxide on the three faces
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Figure 4. Top and cross sectional view of figure 5(a): the corner after oxide REL with nitride overhang.

(a)

(b)

(c)

(d)

(e)

( f )

Figure 5. Schematic drawing of how to finish the tetrahedron out of the parallelepiped by REL. (a) Oxide retraction by HF. (b) Removal of
the nitride overhang. (c) A thick oxide layer is grown. (d) The double layer is completely stripped leaving part of the thick oxide. (e) TMAH
etch to get the fourth face of the tetrahedron. ( f ) Oxide strip releases the tetrahedron from the wafer.

of the corner virtually intact (figure 5(d)). Finally, the fourth

and last 〈1 1 1〉 face is formed by etching with TMAH for

170 min to leave a tetrahedron at the tip of the parallelepiped

(figure 5(e)). In order to free the tetrahedron, the oxide is

etched with HF (figure 5( f )).

2.4. Independent patterning the first face of the tetrahedron:

a self-aligned process

A big advantage of creating the faces of the tetrahedron one

by one is that the faces can have different properties. This

is an important feature in the process of self-assembly. In

figure 6 the self-aligned patterning of the first face is

demonstrated. The process description starts after shaping the

final face of the tetrahedron (figures 5(e) and 6(a)). Structures

with tetrahedral features of edge length 1.7 µm are used for

this patterning. The drawing is rotated and the tetrahedron is

cut midways for clarity (figures 6(b) and (c)). To start with,

the fourth face is protected with 20 nm dry oxide. The oxide

on top of the tetrahedron is removed directionally with RIE

(figure 6(d)) [27] and the unprotected Si is subsequently etched

(100 nm in 5.5 min) by TMAH (figure 6(e)). Then, 136 nm

of LPCVD nitride is conformally deposited (figure 6( f )) and

partly etched for 41 min by H3PO4 using corner lithography

[28]. This leaves a nitride ring on top of the Si structure

(figure 6(g)). An additional TMAH etching through SiNx

opening results in a tetrahedron with a silicon ridge and a

nitride ring on one of the faces (figure 6(h)). Both the structures

(figures 6(g) and (h)) are released by etching with 50% HF for

1 min (figures 8(a) and (b)). Etching with 50% HF for a longer

time (15 min) strips off the nitride mask and forms modified

silicon tetrahedral structures with a ridge on the top face

(figures 6(i) and 8(c)).

A similar modification of the side BCD as indicated in

figure 1 should be feasible before release (step f in figure 5)

since the side is open. Therefore, two different sides of the

tetrahedra might be modified independently.

3. Results and discussion

In the SEM image in figures 7(a) and (b), at the corner marked

as O, the tetrahedron is still protected by thick oxide. But in
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6. Self-aligned patterning of the first face of a tetrahedron: (a)–(c) Rotation and zoom-in of figure 5(e) for clarity, (d) RIE of oxide of
top face, (e) TMAH etching, ( f ) LPCVD SiNx and (g) Corner lithography of nitride. Subsequent etching in 50% HF for 1 min results in
release of tetrahedron with a nitride ring is shown below. (h) 2 min TMAH etching through the SiNx opening (40 nm deep). Tetrahedron
releases after this step is shown below. (i) Tetrahedron releases by etching with 50% HF for 15 min.

figures 7(c) and (d), the tetrahedron is released by the HF. In

addition to the intended tetrahedron some other structures are

also produced. This includes a truncated pyramid (at the corner

M), a pyramid at the corner N and a tetrahedron of smaller size

at the corner P.

3.1. Effect of oxidation temperature on the shape of dry

oxidized Si〈1 1 1〉 convex edges

The selection of an oxidation temperature, which hardly alters

the morphology of the convex edge between 〈1 1 1〉 planes,

is important in this process. The following experiment has

been carried out: test structures with convex 〈1 1 1〉 edges are

prepared (figure 9(a)) by etching patterned 〈1 0 0〉Si wafers

as described by Berenschot et al [9]. The samples have

been dry oxidized at different temperatures between 950 and

1150 ◦C to get around 50 nm oxide. A total of 60 nm of

LPCVD poly-Si is deposited to get a better contrast for SEM

observation. As observed in figure 9, the convex shape varies

with temperature. For 60 min at 950 ◦C (figure 9(b)), a slightly

sharpened Si edge after oxidation is formed. Successively less

sharpening is observed for 40 min at 1000 ◦C (figure 9(c)),

for 24 min at 1050 ◦C (figure 9(d)) and for 12 min at 1100 ◦C

(figure 9(e)). For 8.5 min at 1150 ◦C the edge starts to round

5



J. Micromech. Microeng. 22 (2012) 085032 R Kozhummal et al

(a) (b)

(c) (d )

Figure 7. (a) SEM image of the final anisotropic structures. The
tetrahedron is at the corner ‘O’ of this structure. (b) Zoom in image
of the O-corner showing the tetrahedron covered with oxide. (c, d)
Tetrahedra released from the oxide frame after HF. A smaller
tetrahedron formed at the corner P is also observed by the
tetrahedron formed at the O-corner.

(figure 9( f )). It is concluded that 1100 ◦C is the optimum

temperature, which leaves the 〈1 1 0〉 ridge without excessive

sharpening or rounding.

Despite the former ‘optimized’ result, the 350 nm

LOCOS needed to reveal the last face does not lead to the

mathematically correct tetrahedral shape. In the tetrahedron of

figure 7(d) a slight sharpening can be observed at one of the

tips, which is not noticeable at the other tips. We assume that

this imperfect tip is the A-tip as shown in figure 1(b).

3.2. Uniformity

The size of the tetrahedra is controlled by two etch processes:

The retraction length X in figure 4 and the etch rate of silicon

(a) (b)

(c) (d)

(e) ( f )

Figure 9. SEM images of the 〈1 1 1〉 ridges (a) before oxidation. (b)
After dry oxidation at 950 ◦C, (c) 1000 ◦C, (d) 1050 ◦C, (e) 1100 ◦C,
( f ) and 1150 ◦C.

in the 〈1 1 1〉 direction. The etch rate of silicon nitride in 50%

HF is very close to 1.20 µm min−1 and, according to our

microscopic inspection of the wafers, quite homogeneous (the

optical instrument limits the measurement of the retraction

length to about 100 nm; this is also the variation we find in

our measurements). The reproducibility of the Si〈1 1 1〉 etch

rate has not been systematically studied; in our experience the

reproducibility is within experimental errors. The uniformity

of the process over a wafer is indicated in figures 8(a)–(c): the

specimens are from different parts of the wafer. They seem

to be quite similar in size. The uniformity therefore is better

than 5%.

(a) (b)

(c) (d)

Figure 8. SEM images of tetrahedral structures after selective modification of top face. (a) After release using HF but without an additional
TMAH etch, (b) after release while the first face is patterned in TMAH, (c) the released structure of b after stripping the nitride mask, (d)
structure released from the P-corner as marked as in figure 7, after stripping the nitride mask.
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4. Conclusion

In conclusion, we fabricated silicon tetrahedral structures

bound by 〈1 1 1〉 faces out of Si〈1 1 1〉 wafers. The special

aspect of this process is that one of the tetrahedral faces is

oriented parallel to the wafer surface. We have shown that the

side of the tetrahedron parallel to the wafer can be modified by

corner lithography. Due to dependence of the thermal oxidation

of silicon on stress the tetrahedra are not yet perfect: the tips

tend to be slightly sharpened. We find that the process yields

tetrahedra of uniform size: the variation in size is less than 5%.
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