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Abstract: Continuous innovation in the design of metallic materials is essential for further progress in
aerospace, automotive, construction, and shipping. Fine grain strengthening is considered to increase
the strength of metals without losing plasticity. However, many fabrication techniques are restricted
to very small sizes. Recently, the introduction of in situ nanoparticles with coherent or semi-coherent
interfaces in the metallic matrix achieves simultaneous enhancement of the strength and ductility of
metallic materials. In this review, the focus is on fabrication techniques and the formation mechanism
of nanoparticles and nanoclusters in metal materials. The effects of nanoparticles on grain refinement,
inhibiting segregation, second phase, and inclusion refinement are discussed, and the mechanism of
simultaneous improvement in the strength and ductility of nanostructured metal materials is briefly
covered. Finally, we provide a summary and outline of the possible direction for further advances in
this research field.
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1. Introduction

Metallic materials have been used in aerospace, automotive, construction, and ship-
ping due to their excellent strength and other requirements for formability, weldability,
fatigue, resistance to fracture, corrosion, or wear resistance [1–6]. To meet the performance
requirements of steel, copper, aluminum, and other metal materials in different application
fields, it has been the pursuit of the researcher to improve comprehensive properties. As
such, an advance in strength and ductility means the lightweight or service life improve-
ment of components under the same application conditions and reducing the consumption
of natural resources. In the future, metals will still be an irreplaceable material in social
development. Therefore, increasing the strength of metals without sacrificing other proper-
ties is the development trend of metallic materials in the future [7,8]. However, improving
strength often results in the decrease in other properties, such as ductility, toughness,
conductivity, and corrosion resistance. Properties of metal material depends on microstruc-
ture of inclusion, second-phase, and grain size. At present, the industrial application of
metal materials has the problems of microstructure inhomogeneity, such as coarse grain,
serious segregation, coarse inclusions, and second phase. Solving the inhomogeneous
microstructure is the key to achieving uniform properties of metal materials.

According to the Hall–Petch relationship [9], the strength is proportional to the re-
ciprocal square root of the grain size. Fine grain strengthening is considered to be an
important approach that increases the strength of metals without losing plasticity. A lot
of effort has been paid to increasing the number of boundaries such as grain boundaries
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and coherent twin boundaries. In general, the methods of grain refinement can be di-
vided into metallurgical treatment refinement, severe plastic deformation (SPD), physical
field method, and rapid solidification technique. Metallurgical treatment refinement is
achieved by adding inoculants or modifiers to the metal melt, and it generally is inter-
metallic compounds or chemical elements. This method is usually easy to operate and
has a remarkable refining effect, but it requires fine and dispersed inoculant to effectively
refine the grains. Otherwise, it will affect the properties of the material. In addition, recent
studies show that in situ particles can act as heterogeneous nucleation sites to realize grain
refinement [10–12]. Ultrafine crystalline materials are produced by SPD, such as equal-
channel angular extrusion (ECAE) [13–15], high-pressure torsion (HPT) [16,17], multi-axial
compressions/forging (MAC/F) [18], accumulative back extrusion (ABE) [19,20], and accu-
mulative roll-bonding (ARB) [21]. Nevertheless, when the grain size is full below ~1 µm,
for ultrafine crystalline materials, strengthening is usually accompanied by a drop in con-
ductivity and toughness [22]. In similar, gradient nanostructure (GNS) papered by surface
severe plastic deformation (SSPD) is considered to be an effective means to optimize me-
chanical properties [23–25]. Surface mechanical attrition treatment (SMAT) [26,27], surface
mechanical grinding treatment (SMGT) [28,29], and surface mechanical rolling treatment
(SMRT) [30,31] were used to prepare GNS metals. In past decades, researchers apply physi-
cal fields or change heat transfer conditions during solidification to improve microstructure.
Centrifugal casting, pulse current casting [32], ultrasonic vibration casting [33], pulsed
magnetic field casting [34], die-casting, and squeeze-casting utilizes the interaction of the
metal melt and the physical field to enhance the uniformity of the as-cast microstructure.
However, the grain size is still large (about 100 µm). The rapid solidification technique
refers to the alloy liquid to solid at an extremely fast solidification rate under a much faster
cooling rate (up to 100 K/s) than conventional solidification. The extremely high cooling
rate in additive manufacturing can result in significant grain refinement [35]. In addition,
the atomization method [36,37], strip casting [38,39], and spray deposition are common
rapid solidification methods, which are used to prepare powder, strip, and small-size
bulk metal respectively, and these techniques are limited to size and shape. Therefore,
there is still a problem in the engineering application and preparation of large nano and
microcrystalline metal materials.

Metal matrix reinforced by secondary particles is another example of strengthen-
ing methodology. In general, for the secondary particles have an incoherent interface
with the metal matrix, when interacting with dislocations, the dislocations cannot go
through but block at these interfaces where a source of crack is produced with the dislo-
cation pilling up, which inevitably leads to the decline of the ductility of the metal mate-
rials. Moreover, when the relationship between the precipitates and the matrix changed
from coherent to semi-coherent or incoherent, the strength of the materials deteriorated
gradually [40]. Hence, the enhancement effect of second phase strengthening not only
relies on the size and distribution of particles but also on the wettability between the
surface of particles and the metal matrix. Nanostructured materials have a better balance
between strength and ductility than materials with nearly similar chemical compositions
and different microstructures [41]. Nanostructured materials are generally composed of mi-
cron/submicron grains and nanoparticles or nanoclusters within grains. Some researchers
reported that nanostructured materials exhibited a good combination of strength and ductil-
ity, which is mainly associated with the refinement of grain size and dispersed nanoparticles
or nanoclusters.

The purpose of this review is to summarize the theoretical technologies on nanoparti-
cles or nanoclusters formation in metal materials and to explore the optimization effects of
in situ and ex situ nanoparticles on the microstructure and properties of metallic materials.
Examples of nanoparticles and nanoclusters applications in steel, copper, and aluminum
alloy are elaborately discussed in the fabrication techniques, microstructure, and mechan-
ical properties. Mechanism of nanoparticles on grain refinement, inhibiting segregation,
second phase, and inclusions refinement are discussed. The mechanism of simultaneously
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improving the strength and ductility of nanostructured metal materials is briefly covered.
Finally, we provide a summary and outline the possible direction for further advances in
this research field.

2. Formation of Nanoparticles and Nanoclusters

Nanoparticles and nanoclusters can be divided into in situ and ex situ according to
the different formation mechanisms and methods. In general, the in situ nanoparticles are
formed or precipitated during the casting, hot rolling [42], and heat treatment [5,43–46].
The ex situ nanoparticles, through powder metallurgy [47], are introduced into molten
metal via the master alloy [4,48,49] and additive manufacturing [11,50,51]. Here, a brief
recap of the nanoparticles and nanoclusters formation mechanisms is given.

2.1. Formation Mechanism of In Situ Nanoparticles during Solidification

During the solidification of the metal melt, the initial atomic group or crystal nu-
cleus that forms nanoparticles are first formed from the melt, and the crystal nucleus is
generally regarded as spherulite. In the past decade, Chen studied the particle growth
in alloy melt induced by far-field uniform flow [52,53], straining flow [54–57], interfacial
kinetics [58], shear flow [59], oscillatory flow [60], and anisotropic surface tension [61–63],
and constructed a mathematical and physical model for the initial stage of crystal growth.
By using the asymptotic method to find the compatible asymptotic solution to the model,
these solutions show the interface velocity U1 of crystal nucleus growth.

U1 ≈
dR0

dt
+ ε

dRT
dt

+ α4
∂Raniso

∂t
+ ε

∂Runi f orm

∂t
+ ε

∂Rstreaming

∂t
+ ε

∂Rshear
∂t

(1)

where R0 is leading order approximations of the crystal-melt interface shape; ε is a di-
mensionless relative undercooling parameter; α4 is the anisotropy parameter; RT is the
crystal-melt interface shape affected by the temperature and concentration change; Raniso
is the contribution of the anisotropic surface tension to the crystal-melt interface shape;
Runi f orm, Rstreaming, and ∂Rshear is the crystal-melt interface shape affected by far-field uni-
form flow, linear straining flow, and shear flow, respectively. In addition, dR0/dt is the
interface velocity of crystal nucleus growth without external files and describer as:

dR0

dt
=

Ms

100Mmr
ρm

ρs
DL(CL − Ce) (2)

where r is the diameter of the crystal nucleus; DL is the solute diffusion coefficient in liquid
metal; ρ is the density; M is the molecular weight; CL is the solute concentration in the front
of the interface; Ce is the equilibrium solute concentration of the crystal nucleus; m is the
alloy element; and s is the crystal nucleus. According to Equation (2), it can be found that
the growth speed of the crystal nucleus had a positive correlation with the solute micro
area concentration in the front of the interface, growth speed can be controlled by adjusting
solute concentration in the front of the interface. Since the size of particle nucleation in the
melt is generally at the nanometer level, the growth speed of the nanoparticle is reduced to
zero, with the decrease of the solute content in the front of the interface. A large number of
nanoparticles are obtained in liquid metal.

In short, the formation of nanoparticles in the metal melt can be achieved by chang-
ing the interface anisotropic, controlling solute content in the front of the interface, and
introducing various flow fields such as shear flow.

For in situ nanoparticle steel, a new method to generate nanoparticles in a liquid
melt before casting is by controlling solute content in the front of the interface [64]. This
method is named multipoint dispersion supply technology in the smelting process, and
a schematic diagram of the method is shown in Figure 1. Firstly, the pure Ti wire added
in the melt is multipoint dispersion, and the free-state oxygen [O] concentration should
be controlled within several ten ppm. Secondly, the convection field is formed in the melt
by electromagnetic stirring or Ar bottom blowing, which promotes the flow of the molten
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metal. With this process, Ti will react with oxygen and a large number of titanium oxide
homogeneous nucleation cores are formed. Finally, the melt was poured into the casting
mold with an air-cooling rate, and nanoparticles are dispersed homogeneously inside the
steel casting ingot. This method is applied in the subsequent development of high-strength
low-alloy (HSLA) and weld metals to improve microstructure and properties [10,64–71],
such as optimizing inclusions and refining grains and enhancing strength without losing
plasticity to resistant stress corrosion cracking.
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Figure 1. Schematic of the processing method for the formation of nanoparticles in melt through a
combination of multipoint dispersion supply method and electromagnetic stirring, reprinted with
permission from ref. [64], 2022, Elsevier.

For in situ nanoparticle copper alloy, we first started the investigation on Cu-3Sn-
8Zn-6Pb alloy [72], which fabricates copper alloys reinforced with in situ nanoparticles
by centrifugal casting in a vacuum chamber. On this foundation, Cu-10Sn-2Zn-1.5Fe
alloy [73], single crystal Cu-Fe alloy [74], Cu-10Sn-2Zn-(1-3) Fe-0.5Co alloy [75–79], Cu-(1-3)
Fe-0.5Co alloy [80–84], and Cu-12Sn-1.5Ni-(0-1.5)Fe alloy [3,85] was fabrication and inves-
tigation. Figure 2 shows a schematic diagram of NPFG structure preparation technology
for tin bronze alloy. In it, Fe or Co raw materials were added to the melt and all atoms
are uniformly distributed with induction heating. Then, iron-rich nanoparticles are in
situ generated, which as potent adsorption/nucleation are the core formation of the Cu
adsorption layer. In the end, grain nucleation occurs stochastically on the nanoparticles
and copper melt solidification as nanoparticle-fine grain (NPFG) structure by centrifugal
casting. According to the previous study [72], when the iron clusters in the copper melt are
greater than 0.37–0.58 nm, the nucleating growth begins, and the growth rate is in large
values (102–103 m s−1). With a large growth rate, it is very difficult to obtain the dispersed
iron nanoparticles in a copper matrix melt during solidification. Under this condition, the
introduction of shear flow into the copper melt by centrifugal casting can significantly
reduce the growth rate of iron nanoparticles and control the size of nanoparticles. The
role of nanoparticles has been confirmed, such as heterogeneous nucleation [77], inhibiting
segregation [78], and enhanced combination of strength and ductility [74,76].
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2.2. Formation of In Situ Nanoparticles during Deformation and Heat Treatment

There are a high number density precipitation of fine nanoparticles in the metallic ma-
trix by thermomechanical processing and controlled heat treatment, which strengthened the
matrix while still maintaining good ductility and formability. In general, the precipitation in
the process of metal thermal deformation and heat treatment is a complex transformation,
but it can be simply understood as two steps: solid solution and aging precipitation.

Taking steel, for example, heat treatment involves: (1) annealing at 800–1000 ◦C to
form a homogeneous full austenite structure, (2) cooling to room temperature at a certain
cooling rate, so that all the austenite is transformed into ferrite (including martensite), and
(3) multiple aging treatment is applied to cause corresponding precipitation. The type of
precipitates is closely related to alloying elements and matrix structure. Microalloying
elements, such as Nb, V, and Ti, were added to transformation-induced-plasticity (TRIP)
steels [86], quenching and tempering (Q&T) steels [42], and ferritic steels for precipitation
strengthening. Copper is used to increase strength in steel processed by aging treatment,
via forming Cu-rich nanoparticles [45,86–88]. In addition, the main elements of maraging
steel and maraging stainless steels are Ni and Cr, respectively, and other alloying elements
could be Al, Ti, Si, Mn, and Mo. Various precipitates tend to form in the early stage of
aging, such as η phase (Ni3Ti, Ni3Mo) [89], B2 phase (Ni (Al, Mn, Ti)) [44,90], Laves phase
(Fe2Mo) [90], and G phase (M6X16Si7) [91,92]. The ferritic steel results in the primary form
of precipitates being carbides, and fine precipitation in ferrite is mainly formed in two
stages: (1) interphase precipitation (IP) formed during the transformation from austenite
to ferrite, which is usually manifested as rows of very fine particles in austenite-ferrite
interface [93,94], and (2) at aging stage of ferrite as homogeneously or heterogeneously
distributed random precipitation (RP) [45,86]. The strength of bainitic steel is mainly related
to its microstructure, such as the thickness of bainitic ferrite (BF), solid solution strength
of BF, dislocation density of BF, and precipitation in BF. Alloy carbides could precipitate
in bainite on isothermal hold, slow cooling, or on holding after the finish of bainite trans-
formation [93,95]. The austenite transforms into martensite, when the cooling rate from
austenitizing temperature is fast enough, and martensite is a metastable supersaturated
solid solution (carbon and other substitutional alloying elements). In the early stage before
martensite tempering, the clusters of interstitial carbon atoms are randomly distributed in
the martensite matrix [96]. Most martensite steels improve toughness by tempering, which
is accompanied by the spinodal decomposition of martensite and precipitation of carbide.
In recent years, the strength and impact toughness of martensite steel have been enhanced
by the precipitation of fine alloy carbides for secondary hardening. The ultra-high strength
maraging steel, upon aging nanosized intermetallic precipitation, occurs leading to high
strength levels [44,88–90] that have attracted continuing attention.

Precipitation-strengthened copper alloy is required to simultaneously possess high
strength, excellent electrical conductivity, and ductility. According to previous studies [97],
nanoparticles are dispersed on the pure copper matrix, and maintain a spacing of more
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than 45 nm, which can avoid the electron scattering effect of the precipitation and enable
the copper alloy to obtain a combination of strength and conductivity. A larger number
of studies have been devoted to regulating the microstructure and precipitation behavior
of precipitation-strengthened copper alloy by mechanical and aging treatment processes.
Deformation-induced defects improved the precipitation and the number density of precip-
itates and composition optimization measures such as type and contents of alloying ele-
ments. In general, Cu-Fe-P alloy, Cu-Ni-Si alloy [5,98–100], and Cu-Cr alloy [101,102] were
mainly precipitated fcc-Fe, Ni2Si, and bcc-Cr, respectively. Furthermore, multi-precipitation
phases of Ni3Si, Ni3Al, Cr3Si, Co2Si [40,102], and Cu4Ti [102,103] were precipitated during
the aging process of multicomponent copper alloy.

The diffusion mechanism is widely accepted as the precipitation nucleation mechanism
of aluminum alloys. The number density and size of spherical nano precipitates, such as
Al3Sc, are affected by the supersaturation of the aluminum matrix and aging temperature.
In the temperature range of 673~713 K, the coarsening behavior of Al3Sc precipitates in the
Al-0.2 wt% Sc alloy can be divided into coherent stage, coherent/semi-coherent coexistence
stage, and semi-coherent stage [104]. The diffusion mechanism cannot explain the difficulty
of nucleation of precipitates which is completely coherent with the matrix, such as the T1
phase in Al-Cu-Li alloy [105]. In addition, the micro-alloying method is widely used to
adjust the precipitation behavior of nano-size strengthening precipitates to further improve
the mechanical properties of age-hardening aluminum alloys. The effect of trace amounts
of alloying elements on the precipitation behavior of age-hardened aluminum alloys can be
divided into four main aspects: promoting precipitation [46,106], segregating to interface
between precipitates and α-Al matrix [107], changing types of precipitated phases, and
creating extra strengthening dispersoids [46,107].

2.3. Technology of Introducing Ex Situ Nanoparticles into Metallic Materials

Additive manufacturing (AM), powder metallurgy by mechanical alloying, and intro-
duction into molten metal via the master alloy are the most common methods for adding
ex situ nanoparticles into metallic materials.

AM is adept at producing complex geometries and can be optimized for lower weight
and enhanced capabilities. In this process, providing a high density of heterogeneous
nucleation nanoparticles ahead of the solidification front promotes a fine equiaxed grain
structure to achieve fine grain strengthening and dispersion strengthening at the same
time [51,108]. This technology can be divided into two parts [11,50,109]. Firstly, the
nanoparticles and metal powder are fabricated by various methods, such as inert gas
atomization and mechanical milling. Secondly, a machine spreads a layer of powder onto a
built plate and then locally melts a specific layer of powder material by a selective laser.
This process is shown in Figure 3 [11]. According to previous study [50], laser-based AM
technologies need to solve at least three problems: (1) in most cases, the added ex situ
particles (diameter ≤ 5 µm) would deteriorate the flowability of the matrix powder; (2) due
to the difference of laser absorptivity, the heat input between ex situ particles and metals is
different, which complicates the melting and solidification process; and (3) the wettability
of the metal matrix and ex situ particles is difficult to control.

Before the method of introducing molten metal via the master alloy is adopted, the
traditional method of directly adding nanoparticles into molten metal has some problems,
such as the large difference between the specific gravities of the particles and molten
metal, non-uniform dispersion of particles [110], and contamination of particle surface. The
researchers solved the above problems by adding master alloy into the metal melt, and
the specific process is as follows: (1) the nanoparticles prepared in a master alloy by self-
propagating high-temperature synthesis (SHS, Figure 4a–c) [48], stir-casting method [49],
and powder compact method [111]; (2) the metal melt was poured into a casting ladle with
the pre-fabricated nanoparticle master alloy (Figure 4d,e) [48], or master alloy was added
into the molten metal and stirring treatment [49]; (3) and the nanoparticles were uniformly
dispersed in the metal matrix during the tumbling of the molten metal(Figure 4f,g). This
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method could solve non-uniform dispersion and segregation problems arising from the
difference in specific gravity between the nanoparticles and the matrix.

Metals 2022, 12, 1420 7 of 22 
 

 

 

 
Figure 3. Process of laser-based additive manufacturing with nanoparticles and metal powders. La-
ser scan left to right, (a) nanoparticles and metal powders, (b) formation of nucleate in the melt, (c) 
promoting heterogeneous nucleating, and (d) leading to an equiaxed final microstructure in the 
printed part, reprinted with permission from ref. [11], 2022, Elsevier. 

Before the method of introducing molten metal via the master alloy is adopted, the 
traditional method of directly adding nanoparticles into molten metal has some problems, 
such as the large difference between the specific gravities of the particles and molten 
metal, non-uniform dispersion of particles [110], and contamination of particle surface. 
The researchers solved the above problems by adding master alloy into the metal melt, 
and the specific process is as follows: (1) the nanoparticles prepared in a master alloy by 
self-propagating high-temperature synthesis (SHS, Figure 4a–c) [48], stir-casting method 
[49], and powder compact method [111]; (2) the metal melt was poured into a casting ladle 
with the pre-fabricated nanoparticle master alloy (Figure 4d,e) [48], or master alloy was 
added into the molten metal and stirring treatment [49]; (3) and the nanoparticles were 
uniformly dispersed in the metal matrix during the tumbling of the molten metal(Figure 
4f,g). This method could solve non-uniform dispersion and segregation problems arising 
from the difference in specific gravity between the nanoparticles and the matrix. 

Figure 3. Process of laser-based additive manufacturing with nanoparticles and metal powders.
Laser scan left to right, (a) nanoparticles and metal powders, (b) formation of nucleate in the melt,
(c) promoting heterogeneous nucleating, and (d) leading to an equiaxed final microstructure in the
printed part, reprinted with permission from ref. [11], 2022, Elsevier.

Metals 2022, 12, 1420 8 of 22 
 

 

 
Figure 4. Schematic of the preparation process of the 40Cr steel manipulated by trace TiC nanopar-
ticles, reprinted with permission from ref. [48]. 2022, Elsevier. 

Oxide dispersion strengthened (ODS) steel is the most representative metal material 
containing ex situ nanoparticles prepared by powder metallurgy [47], the manufacturing 
process involving mechanical alloying, consolidation techniques and thermal/mechanical 
treatments. The mixed powders of pure metal and nanoparticle (nanosized yttrium oxide-
Y2O3) were mechanically alloyed by a ball mill. Then, hot isostatic pressing [47], hot ex-
trusion [112], and spark plasma sintering [113,114] are commonly used to consolidate the 
mechanically alloyed powders. Finally, machining and thermal treatments according to 
the application requirements of the components. Figure 5 shows a series of manufacturing 
processes of fuel cladding that is 8.5 mm in diameter by 0.5 mm in thickness by 2 m in 
length [115]. 

Figure 4. Schematic of the preparation process of the 40Cr steel manipulated by trace TiC nanoparti-
cles, reprinted with permission from ref. [48]. 2022, Elsevier.



Metals 2022, 12, 1420 8 of 21

Oxide dispersion strengthened (ODS) steel is the most representative metal material
containing ex situ nanoparticles prepared by powder metallurgy [47], the manufacturing
process involving mechanical alloying, consolidation techniques and thermal/mechanical
treatments. The mixed powders of pure metal and nanoparticle (nanosized yttrium oxide-
Y2O3) were mechanically alloyed by a ball mill. Then, hot isostatic pressing [47], hot
extrusion [112], and spark plasma sintering [113,114] are commonly used to consolidate
the mechanically alloyed powders. Finally, machining and thermal treatments according
to the application requirements of the components. Figure 5 shows a series of manufac-
turing processes of fuel cladding that is 8.5 mm in diameter by 0.5 mm in thickness by
2 m in length [115].
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3. Optimization of Microstructure
3.1. Grain Refinement

The grain refinement in previous studies is mainly due to the heterogeneous nucleation
effect of nanoparticles. In particular, heterogeneous nucleation induced by in situ nanopar-
ticles can produce a strong grain refinement effect, and in situ nanoparticles have uniform
distribution and excellent wettability with alloy matrix. A series of fabricated metals by
in situ nanoparticles reinforcement technology have achieved grain refinement, such as
hot rolled Q195 [64], tin bronze [77], and Ni-Cr-Mo HSLA [69]. In addition, heterogeneous
nucleation can be achieved by introducing ex situ nanoparticles into the metal melt through
mechanical alloying and master alloy, such as twin-roll casting Al-Cu strips [4], nano-
treated AA7075 [110], and ODS steel [109,114]. Several morphologies of grain refinement
are shown in Figure 6.
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cess and refining the primary grain; (2) the other particles, which did not serve as hetero-
geneous nucleation sites, were absorbed onto the solid-liquid interface, thereby restrain-
ing the growth of dendrites [49]; (3) nanoparticles providing more nucleation sites for re-
crystallization after deformation; (4) in subsequent heat treatment, the ex situ nanoparti-
cles could induce the Zener pinning effect on the grain boundaries and hindering grain 
growth. In addition, in steel, nanoparticles provided heterogeneous nucleation sites for 
proeutectoid ferrite during the phase transition. The morphology of ferrite changed from 
strip growth along the primary grain boundary to a granular shape. 
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Figure 7 shows a schematic diagram of microstructure refining mechanism by
nanoparticles [116]. The refined grains caused by in situ and ex situ nanoparticles could
be owed to the following factors [4,48,77]: (1) some trace nanoparticles were used as
heterogeneous nucleation sites for matrix during solidification, promoting the nucleation
process and refining the primary grain; (2) the other particles, which did not serve as
heterogeneous nucleation sites, were absorbed onto the solid-liquid interface, thereby
restraining the growth of dendrites [49]; (3) nanoparticles providing more nucleation
sites for recrystallization after deformation; (4) in subsequent heat treatment, the ex situ
nanoparticles could induce the Zener pinning effect on the grain boundaries and hindering
grain growth. In addition, in steel, nanoparticles provided heterogeneous nucleation sites
for proeutectoid ferrite during the phase transition. The morphology of ferrite changed
from strip growth along the primary grain boundary to a granular shape.

Metals 2022, 12, 1420 10 of 22 
 

 

 
Figure 6. Grain refinement effect caused by nanoparticles in hot rolled Q195 steel, reprinted with 
permission from ref. [64]. 2022, Elsevie.; tin bronze, reprinted with permission from ref. [77]. 2022, 
Elsevie; 40Cr steel, reprinted with permission from ref. [48]. 2022, Elsevier, and Al-Cu alloy (The 
discontinuous black areas marked with red arrows are macro-segregation), reprinted with permis-
sion from ref. [4]. 2022, Elsevier. 

Figure 7 shows a schematic diagram of microstructure refining mechanism by nano-
particles [116]. The refined grains caused by in situ and ex situ nanoparticles could be 
owed to the following factors [4,48,77]: (1) some trace nanoparticles were used as hetero-
geneous nucleation sites for matrix during solidification, promoting the nucleation pro-
cess and refining the primary grain; (2) the other particles, which did not serve as hetero-
geneous nucleation sites, were absorbed onto the solid-liquid interface, thereby restrain-
ing the growth of dendrites [49]; (3) nanoparticles providing more nucleation sites for re-
crystallization after deformation; (4) in subsequent heat treatment, the ex situ nanoparti-
cles could induce the Zener pinning effect on the grain boundaries and hindering grain 
growth. In addition, in steel, nanoparticles provided heterogeneous nucleation sites for 
proeutectoid ferrite during the phase transition. The morphology of ferrite changed from 
strip growth along the primary grain boundary to a granular shape. 

 

Figure 7. Microstructure refining mechanism by nanoparticles, reprinted with permission from
ref. [116], 2022, Elsevier.



Metals 2022, 12, 1420 10 of 21

3.2. Inhibiting Segregation

Homogenization of alloying element composition is a prerequisite for homogenization
of metal structure. Previous studies show that the addition of nanoparticles can inhibit
segregation, and the result is shown in Figure 8. Compared with the original as-cast
microstructure, the segregation phase of tin bronze alloy with trace Fe and Co elements is
obviously reduced [73]. The main difference between the two alloys is that a large number of
dispersed iron-rich nanoparticles are formed in the tin bronze alloy with Fe and Co elements;
the in situ nanoparticles eliminate segregation [3,81]. Liu et al. [4] fabricate Al-5Cu and Ti/C
Al-5Cu strips by vertical-type twin-roll casting. The center macro-segregation of the Al-Cu
strip was well mitigated by the addition of TiC nanoparticles, and the segregation band was
replaced by a few Cu-rich phases discontinuously distribution in the inter-dendrite/grain
zone with a narrow range.
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Chen et al. [78] describe the mechanism of iron-rich nanoparticles near S/L interface
absorbing Sn atoms and blocking Sn atoms from escaping from S/L interface; a schematic
diagram is shown in Figure 9. During the solidification, in situ nanoparticles consisting of
Fe and Co precipitate in the melt prior to copper solidification, and they build an in situ
nanoparticles wall near S/L interface due to high distribution density. With copper grain
growing, low-melting-point Sn and Zn atoms released from S/L interface and diffuse into
liquid. They conduct irregular Brownian motion with in situ nanoparticles in the melt. Sn
and Zn atoms absorb at the surface of nanoparticles (situation I) or bounce off into S/L
interface (situation III, IV). Finally, tin segregation is inhibited by iron-rich nanoparticles
wall in a tin bronze alloy. Therefore, the introduction of nanoparticles into metal materials
provides a feasible and practical method to eliminate segregation, which is expected to be
applied to bulk metal materials to reduce segregation.



Metals 2022, 12, 1420 11 of 21Metals 2022, 12, 1420 12 of 22 
 

 

 
Figure 9. Schematic diagram of inhibiting Sn segregation by densely distributing iron-rich nanopar-
ticles near solid/liquid interface (situation I: Sn and Zn atoms are absorbed on the surface of nano-
particles; situation Ⅱ: Sn and Zn atoms encountered with the nanoparticles rebounded; situation Ⅲ, 
IV: the rebounded Sn atoms are captured by advancing the S/L interface.), reprinted with permis-
sion from ref. [74], 2022, Elsevier. 

3.3. Refinement of Second Phases and Inclusions 
Large-size inclusions and the second phase in metallic materials are important factors 

affecting their properties. Inclusions and second phase refinement, and conducting coher-
ent/semi-coherent interfaces between particles and matrix, are considered to be effective 
means to optimize the properties of metallic materials [71,74]. The method of tailoring 
precipitation behavior of nano-sized strengthening precipitates by micro-alloying to im-
prove the mechanical properties of age-hardening alloys has been widely used. The addi-
tion of alloying elements, such as Cd, Sn, and Ag, has a strong binding ability with vacan-
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form cluster, which greatly improves the precipitation strengthening. For example, Al-
7Si-4Cu alloy with 0.28 wt.% Cd addition has a finer and denser microstructure of θ′ com-
pared with Cd-free alloy [106], and pre-precipitation of Cd-rich particles has a heteroge-
neous nucleation effect on θ′ precipitates. Similarly, Er [46], Zr [107], and La [117] are 
added into the aluminum alloy to refine grain and precipitates. In addition, nanoparticles 
were obtained by designing the components of Al-Al3X peritectic, and Al3Ta intermetallic 
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Figure 9. Schematic diagram of inhibiting Sn segregation by densely distributing iron-rich nanoparti-
cles near solid/liquid interface (situation I: Sn and Zn atoms are absorbed on the surface of nanopar-
ticles; situation II: Sn and Zn atoms encountered with the nanoparticles rebounded; situation III, IV:
the rebounded Sn atoms are captured by advancing the S/L interface.), reprinted with permission
from ref. [74], 2022, Elsevier.

3.3. Refinement of Second Phases and Inclusions

Large-size inclusions and the second phase in metallic materials are important fac-
tors affecting their properties. Inclusions and second phase refinement, and conducting
coherent/semi-coherent interfaces between particles and matrix, are considered to be
effective means to optimize the properties of metallic materials [71,74]. The method of
tailoring precipitation behavior of nano-sized strengthening precipitates by micro-alloying
to improve the mechanical properties of age-hardening alloys has been widely used. The
addition of alloying elements, such as Cd, Sn, and Ag, has a strong binding ability with
vacancies and the Al element in Al-Cu alloy and an early stage of aging rapidly precipitate
or form cluster, which greatly improves the precipitation strengthening. For example,
Al-7Si-4Cu alloy with 0.28 wt.% Cd addition has a finer and denser microstructure of θ′

compared with Cd-free alloy [106], and pre-precipitation of Cd-rich particles has a hetero-
geneous nucleation effect on θ′ precipitates. Similarly, Er [46], Zr [107], and La [117] are
added into the aluminum alloy to refine grain and precipitates. In addition, nanoparticles
were obtained by designing the components of Al-Al3X peritectic, and Al3Ta intermetal-
lic compounds have substantial grain-refining capacity under AM conditions [11]. The
nanoparticle additions serve to alter the composition and microstructure, such as the change
in the θ′ precipitate size [49]. Figure 10 shows a TEM micrograph of the refinement second
phase in aluminum alloy.

Primary and secondary precipitates were obtained and refined from precipitation-
strengthened copper alloys by multiple deformation and aging/annealing treatments [98,100,101].
The precipitates of two-stage cold rolling and aging treatment of Cu-Ni-Si alloy treated
by pro-aging are refined from 120 nm to 60 nm [98]. Large deformation cold rolling
promotes the precipitation of uniform and fine Ni2Si phase in C70250 copper alloy during
aging, which improves the strength without damaging the conductivity [99]. According
to previous studies, the orientation relationship between the precipitates and Cu matrix
was (001)Cu //(001)Cr //(001)Ni2Si, [011]Cu //[011]Cr //[010]Ni2Si [102,103]. Figure 11
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shows TEM micrograph of refined precipitates and the orientation relationship between
the precipitates and Cu matrix, respectively.
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Figure 11. The micrograph of refined precipitates and the orientation relationship between the
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The shape, size, and distribution of inclusions in steel have an important influence
on the microstructure, micrograph, and mechanism properties. The nano/ micron inclu-
sion in steel can be realized by multipoint dispersion supply technology [12,64,69]. The



Metals 2022, 12, 1420 13 of 21

principle of this technology follows: (1) Al and Ti compound twisted wires into the melt to
obtain a high number of densities of in situ endogenous nanoparticles of Ti3O5 and Al2O3;
(2) during the solidification process, MnS grew with Al2O3 as the core and form spheri-
cal or elliptical MnS-Al2O3 complex inclusion (1~2 µm) (Figure 12a) [10]; (3) during the
tempering process, the Nb(C,N) precipitation grew with the Ti3O5 core and precipitates
with the Ti3O5-Nb(C,N) core-shell structure (Figure 12b) [12]. Figure 12c shows a schematic
diagram of the trace element multipoint dispersion supply method that refines inclusions
and second phases [10].
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4. Enhancement of Mechanical Properties

For metal alloys, the way to strengthen is by blocking the motion of dislocations in the
matrix to obtain a high density of dislocation, while the increase of ductility depends largely
on the long-term slip of the dislocation. Increasing dislocation density while avoiding dislo-
cation pile-up is an important mechanism to realize the synergistic improvement of strength
and plasticity of metal materials. A previous study shows that the hardening and softening
of metallic during deformation are associated with the increase of dislocation density and
the formation of local deformed zones with micro defects, respectively [118]. The improve-
ment of mechanical properties by microstructure optimization is comprehensive, and the
mechanical properties can be improved under static load [116,119], cyclic load [118,120],
and shock load [48,87,119] conditions. For example, the dynamic non-equilibrium process
(DPN) realized by impact-oscillatory loading significantly improves the plastic properties
of two-phase high-strength fine-grained titanium alloys at room temperature [118]. In
addition, as shown in Figure 13, it is reflected in the result of static load tensile tests at room
temperature. He et al. [48] add trace TiC nanoparticles into 40Cr steel by master alloy to
refine grain and homogenize microstructure; their strength and toughness were improved
simultaneously. It can be attributed to fine grain strengthening, thermal mismatch strength-
ening, and second phase strengthening. Doping Cd into Al-7Si-4Cu alloy to optimize
microstructure and properties, strength and ductility were simultaneously dramatically
improved by larger number density and less size of θ′ precipitates [106]. Cai et.al [42] found
that the multi-strengthening contribution of fine martensite laths, higher dislocation density,
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and nano-precipitates in nano-precipitation strengthened ultra-low carbon (NPS—ULC).
Ti–Mo–Nb steel can increase yield stress and without sacrificing tensile ductility. According
to Gao et al. [45], in dual-phase (DP) steels, the combined contribution of the ultrafine
microstructure, martensite volume fraction, grain orientation, and nano-sized Cu-rich
precipitates is the underlying basis for the high strength and good ductility.
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Therefore, the strengthening of metal materials is mainly attributed to fine grain
strengthening, solution strengthening, and precipitation strengthening. However, strength-
ening by precipitate hardening, pining of dislocation by solute clustering and dislocation
hardening raise yield strength without raising fracture toughness [86]. At the same time,
when the relationship between the precipitates and the matrix changed from coherent to
semi-coherent or incoherent, the strength deteriorated gradually [102]. It is well known that
increasing the yield strength and fracture toughness simultaneously through refinement of
grain size is a feasible solution [8]. In addition, according to the latest studies, for nanopar-
ticles with coherent/semi-coherent interface relationship, when the moving dislocation
interacts with the nanoparticles, part of them will pile up and others will continue to keep
slipping along the coherent interface. This will not result in the aggregation and hindrance
of dislocation; a schematic diagram is shown in Figure 14 [74]. Hence, the strength and
toughness can be improved simultaneously by coherent/semi-coherent nanoparticles in-
troduced into the metal matrix [64]. Experimentally, the in situ nanoparticles obtained by
in situ nano-manufacturing technology have a coherent/semi-coherent relationship with
metal matrix (Figure 14b) [71]. With in situ nanoparticles strengthened copper alloy [76]
and Ni-Cr-Mo steel [69] can simultaneously enhance the strength and ductility, as shown in
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Figure 14c,d, respectively. It should be noted that the tensile properties are obtained under
static loading at room temperature.
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α−Fe directions (A, HRTEM image of a typical

NbC and the surrounding α-Fe; B1 (FFT) and B2 inversed FFT (IFFT) of α-Fe in the red square; B3
(FFT) and B4 (IFFT) of NbC in the blue square; C, Schematic summarizing the diffraction patterns for
the orientation relationship (OR) between the NbC and α-Fe; D, NbC/α-Fe interface with high-density
misfit dislocations; E, Enlarged image of the green dotted zone in D), reprinted with permission
from ref. [71], 2022, Elsevier; (c) tensile engineering stress-strain curves of Cu alloy with/without in
situ nanoparticles, reprinted with permission from ref. [76], 2022, Elsevier; (d) tensile engineering
stress-strain curves of in situ nanoparticles strengthened HSLA steel and comparison steel, reprinted
with permission from ref. [69], 2022, Elsevier.

A number of nanoparticles are embedded in the metal matrix grains, and the mecha-
nism of simultaneously improving strength and ductility of nanostructured materials is as
follows: (1) Nanoparticles have the effect of heterogeneous nucleation on the matrix to sig-
nificantly refine the grain, second phase, and inclusion size during metal solidification and
heat treatment [77,108]; (2) A huge number of nanoparticles homogeneously distributed in
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the matrix grain result in overall high density and uniform distribution of dislocation dur-
ing deformation; high dislocation density improves the ductility of crystalline metal [3,106];
(3) Through the formation of nanostructured grains, the formation of the hard brittle segre-
gation phase and microporous defects is reduced, and the stability of mechanical properties
is improved [4]; (4) coherent or semi-coherent interfaces between nanoparticles and matrix
changes the dislocation pile-up style at the interface; it creates favorable condition for the
dislocation slip through the interface, avoids dislocations piling up at the interface between
particles and the matrix, and improves the plastic of metals [73,74].

5. Conclusions and Prospect

This review highlights the current progress in the fabrication technique, microstructure,
and mechanical properties of metal-matrix nanostructured materials, such as steel, copper
alloy, and aluminum alloy. The effect of different manufacturing technologies and processes
on the microstructure and properties of metal materials were briefly covered. There is no
doubt that the introduction of nanoparticles into the metal matrix by various methods
has a significant impact on the microstructure and mechanism properties, especially the
grain size and yield strength. However, in order to simultaneously improve strength and
ductility of metal materials, it is necessary to introduce in situ nanoparticles with coherent
or semi-coherent interfaces into the metallic matrix. The improvement of microstructure
uniformity, such as grain refinement, inhibiting segregation, second phase, and inclusions
refinement, is an important prerequisite for obtaining the property uniformity of metal
materials. It should be mentioned that the strength and ductility of in situ nanoparticle
strengthened materials is far from the limit. The development of computer-computing
capabilities and first-principle calculation application will further optimize the composition
and crystallographic structure of in situ nanoparticles and promote the further development
of nanostructured materials. The improvement of property uniformity will further enhance
the service life of metal materials, which has significance in achieving emission peaks and
carbon neutrality.
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