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Abstract
A fine-tuned combination of scaffolds, biomolecules, and mesenchymal stem cells (MSCs) is used in tissue engineering to
restore the function of injured bone tissue and overcome the complications associated with its regeneration. For two decades,
biomaterials have attracted much interest in mimicking the native extracellular matrix of bone tissue. To this aim, several
approaches based on biomaterials combined with MSCs have been amply investigated. Recently, hydroxyapatite (HA)
nanoparticles have been incorporated with polycaprolactone (PCL) matrix as a suitable substitute for bone tissue engineering
applications. This review article aims at providing a brief overview on PCL/HA composite scaffold fabrication techniques
such as sol–gel, rapid prototyping, electro-spinning, particulate leaching, thermally induced phase separation, and freeze-
drying, as suitable approaches for tailoring morphological, mechanical, and biodegradability properties of the scaffolds for
bone tissues. Among these methods, the 3D plotting method shows improvements in pore architecture (pore size of ≥600 µm
and porosity of 92%), mechanical properties (higher than 18.38MPa), biodegradability, and good bioactivity in bone tissue
regeneration.

Graphical Abstract

1 Introduction

Bone is a rigid, complex, and hierarchical structure con-
sisting of collagen and hydroxyapatite (HA), which pro-
vides hardness and toughness to the tissue. Bone tissue
consists of two different structures: an outer cortical bone,
with less than 10% porosity, and an inner cancellous bone,
with a porosity of 50–90%. Both structures undergo
dynamic remodeling, maturation, differentiation, and
resorption that are controlled via interactions among
osteocyte, osteoblast, and osteoclast cells [1]. In bone
remodeling, osteoblasts are primarily responsible for a new
bone formation, while osteoclasts are responsible for bone
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resorption which is a dynamic process for maintaining a
healthy bone [2]. Bone-related defects can be caused by
many conditions, including trauma, tumors, and bone dis-
eases, which cannot heal by themselves. Tissue engineering
emerges as a potential approach to overcome the challenges
of conventional in bone graft treatments [3]. Bone tissue
engineering strategies involve a combination of scaffolds,
growth factors, and stem cells to restore the function of
injured tissue and overcome the complications associated
with bone and other tissues repairing [4–8]. The scaffold
should meet specific characteristics, such as physico-
chemical and mechanical properties, to achieve cell
attachment, proliferation, and maturation, thereby enabling
bone tissue formation [9–12]. The interconnected porous
structure and pore size distribution are important factors to
be considered for 3D scaffold fabrication, which contributes
to cell penetration into the scaffold, and allowing an ade-
quate colonization of the scaffold. A pore size with the high
surface to volume ratio, as well as porosities, support cell
attachment, proliferation, and osteodifferentiation by
mimicking the extracellular matrix (ECM) of natural bone
tissue [13–15]. Scaffolds with pores diameter of
100–300 µm enable successful diffusion of essential nutri-
ents and oxygen for cell survival, and efficiently regulate
the differentiation of stem cells [16–19]. Mesenchymal stem
cells (MSCs) can differentiate into numerous categories of
cells, which include adipocytes, osteocytes, fibroblasts, and
chondrocytes. MSCs have been widely studied compared to
other stem cell types for the development of engineered
tissue/cell-based therapies [20, 21]. The adipose tissue is the
richest source of MSCs in adults, easily accessible [22].
Adipose tissue-derived MSCs lack of phenotypic char-
acterization but they are marked by a low immunogenicity
[23]. These cells are designed at the molecular level with
immunophenotype properties [17]. Whereas the choice of a
proper biomaterial for a three-dimensional scaffold fabri-
cation is crucial in stimulating bone regeneration [24, 25].
Scaffolds are designed to avoid immunological rejection
and make them biocompatible, biodegradable, and regulate
cell proliferation and differentiation, by controlling their
physico-chemical properties [26, 27]. Natural and synthetic
polymers have been widely used as biomaterials due to their
unique properties such as porosity, pore size, biokinetics,
physicochemical, and mechanical properties. HA is widely

used as promising osteogenic biomaterial, due to its che-
mical and structural similarity with mineral phase of bone
ECM, along with slow biosorption [28]. Among synthetic
polymers, poly-caprolactone (PCL) is a semi-crystalline
polyester widely used as biomaterials in medical applica-
tions. PCL has a low melting point (55 °C) and suitable
properties (porosity, degradation time, and bioreabsorption)
for bone tissue regeneration. PCL has a poor wetting surface
and establishes weak interactions with biological fluids,
preventing cell adhesion and proliferation. For this reason,
HA has been incorporated in PCL matrix enhancing
mechanical properties and osteogenic features of final PCL/
HA scaffolds [29, 30]. This review article aims at providing
a brief overview on PCL/HA composite scaffold fabrication
techniques such as sol–gel, rapid prototyping, electro-
spinning, particulate leaching, thermally induced phase
separation (TIPS), and freeze-drying, as suitable approaches
for tailoring morphological, mechanical, and biodegrad-
ability properties of the scaffolds for bone tissues, but
cannot be completely controlled through these methods.
Among these methods, the 3D plotting method shows
improvements in pore architecture, mechanical properties,
biodegradability, and good bioactivity in bone tissue
regeneration.

2 Methods involved in the fabrication of 3D
scaffolds

2.1 Solvent casting and particulate leaching

Particulate leaching method, involving a polymer solution
incorporated with salt particles of a known diameter, still
attracts great interest with the aim of developing optimal
porogen with paraffin beads [31], sucrose, and sodium bicar-
bonate as ingredients [32]. Salt, sugar, glucose, gelatin, and
ammonium chloride are used to produce the pores [33–40].
Microporous structure with the pore size of 300–350 μm is
formed, after soaking the scaffolds in water, where the poro-
gen (250 μm) dissolves completely leaving behind the empty
spots corresponding to pores (Fig. 1) [41]. Fabbri et al.,
reported a combination of sodium chloride and sodium
bicarbonate as porogen, to develop a PCL/HA composite
scaffold showing a 70–80% porosity, good interconnectivity,

Fig. 1 Scheme of composite
scaffold by solvent casting and
particulate leaching
fabrication method
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and improved mechanical properties [42]. Zhu et al. prepared
PCL/HA scaffolds with more than 93% porosity and 500 μm
pore diameters. They were able to control the porosity based
on the shape and the amount of the porogens added [43]. With
the availability a wide range of porogens, it is possible to
generate pore sizes of 50–400 μm with a reasonable degree of
control. The scaffolds have interconnected pore structures with
a pore size of 600 μm [44]. The pore size of the PCL/HA
scaffold was similar to the human trabecular bone
(300–1000 μm). Thadavirul et al. reported that PCL/HA
composites treated with NaOH, showed a well-defined inter-
connected pores, increased cell proliferation, high water
absorption capacity, high bone matrix deposition, and
improved hydrophilicity of the scaffold [45]. A systematic
study has been performed, by loading three different HA
concentrations (13, 20, and 26 vol %) in PCL-based compo-
sites, for improving the mechanical properties [46]. The HA
nanoparticles incorporation within PCL composites increases
cell differentiation, but it decreases the porosity and cell pro-
liferation in the scaffolds [44]. In 14 days of cell culture, MTT
assay, Alkaline phosphatase (ALP) activity for cell differ-
entiation and total protein content were measured [47]. Com-
pared to HA (13, 20, and 26 vol %), PCL/HA (90/10 vol%)
showed 85% porosity with the tensile modulus of up to
±28MPa and, increased in compression modulus and stress
upto ±30 and 15.6MPa, respectively [42]. Guarino et al.
described of MSCs seeded onto porous PCL/HA composites
scaffolds and cultured in an osteogenic medium for
1–5 weeks. In 3–4 weeks, MSCs were able to adhere and
grow on composite substrates, but the small effect of signals
on the biological response was evaluated in MSC cell culture.

To overcome this problem, a pre-osteoblastic cell line (MC-
3T3-E1) has been used, showing a better cell adhesion and
enhanced pre-osteoblast response on PCL/HA 3D scaffolds
developed by this method. Porous PCL/HA composites are
potential biomaterials for bone substitution, which exercise a
beneficial influence on structural characteristics [46]. Com-
pared to the other methods, scaffolds with interconnected
networks, defined pore size, and increasing porosity can pro-
duce a greater degree of control so that the mechanical strength
and the biological response can be maximized [48, 49].
Although the leaching method has defined shape, salt particles
led to poor interconnection during the scaffold fabrication, and
this may not provide optimal scaffold permeability in vitro for
cell distribution.

2.2 Sol–gel method

In the sol–gel process, the particle size is directly controlled
by the interaction between calcium and phosphate with non-
alkoxide, calcium nitrate tetrahydrate, ammonia, and phos-
phoric acid as precursor materials under controlled tem-
perature and pH conditions (Fig. 2) [50–52]. Raucci et al.
synthesized composite biomaterial made up of HA/PCL
(25/75 and 40/60 w/w) by sol–gel method using calcium
nitrate tetrahydrate and di-phosphorous pentoxide as pre-
cursors, with ethanol and tetrahydrofuran as the solvent at
room temperature. Further, the addition of salt as a porogen
with a defined size range (210–300 μm) showed a porous
structure of 88%. Later, a composite scaffold (PCL/HA)
was treated in the simulated body fluid (SBF) in a controlled
pH (6.5) environment and observed under SEM [53]. It
forms apatite from the distribution of HA particles in the
scaffold and the coating presence was stained with 0.5%
trypan blue. The composite scaffold improves the hMSC
differentiation towards the osteoblast phenotype observed in
ALP activity [54]. Costa et al. studied HA nanorods syn-
thesized by a sol–gel-hydrothermal process, which used
amorphous calcium phosphate as a precursor material. PCL/
HA composites were produced by a mixture of HA powders
with PCL resulting in a product of nanorod and nanowires
HA/PCL scaffold. The composite scaffold was character-
ized by SEM, XRD, and FTIR and showed uniform dis-
tribution of HA nanorods within the PCL matrix. HA
nanorods incorporated within PCL composites significantly
increase the mechanical properties of Young’s and com-
pressive modulus from 193 to 665MPa and 230 to 487MPa
respectively. The HA nanowires with PCL composite can
be used for bone tissue engineering [55].

2.3 Freeze drying

Freeze-drying is a widely used conventional method for
the fabrication of 3D scaffolds, making the solution to

Fig. 2 Flow chart of PCL/HA scaffold preparation by chemical
synthesis
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freeze at low temperature (−70 to −80 °C), over the
primary drying process in which the pressure is lowered
through a partial vacuum in the chamber, while water
and solvent in the material are removed by sublimation
(Fig. 3) [56–59]. Jain et al. used chitosan, PCL, and HA
to fabricate porous 3D scaffolds to achieve a pore size
ranging between 50 and 200 μm, and 90% of porosity.
These composite scaffolds enhanced the mechanical
properties, cell proliferation, differentiation, biodegrad-
ability, and improved osteoconductivity [60–63]. Choi
et al. produced PCL/HA porous scaffolds using freezing
drying methods with different HA contents (0, 5, 10, and
20 wt %). The HA particles uniformly distributed in the
PCL matrix showed significant improvement in pore
size, porosity, and mechanical properties (Table 1). The
MC3T3 cells were seeded on the porous scaffold with
different HA contents. After day 1, PCL/HA scaffolds
showed that the MC3T3 cells attached themselves on the
surface and differentiated there. Still, the highest cells
proliferation was observed in composite PCL/HA scaf-
folds with 20 wt% HA [64]. Sharon et al. incorporated
the composite PCL/HA scaffold with conductive

polymer polypyrrole (PPY) to increase the pore size from
50 to 250 μm and the average pore size was 130.4 μm
compared to PCL and PCL/HA scaffolds which had an
average pore size 123.7 and 91.6 μm respectively. Also,
composite PCL/HA/PPY scaffolds improved mechanical
strength, biodegradability, and mediated electrical sti-
mulation to enhance bone regeneration [65, 66].
Although scaffold porosity increases, the mechanical
properties decreases. To improve the mechanical
strength Hamlekhan et al., studied composite PCL/HA/
Gelatin prepared by solvent casting combined with the
freeze-drying method, showing that the scaffolds were
mechanically effective due to an increase in the stress,
stiffness, and elastic modulus (Table 2). SBF and the
cytotoxicity studies reported the gradual development of
the apatite layer and biocompatibility. These results
indicated that the fabricated scaffold possesses the pre-
requisites for forming/acting as substitute for bone tissue
[67].

2.4 Thermally Induced phase separation (TIPS)

TIPS process consists of quenching the polymer solution
under the solvent freezing point and enforcing
liquid–liquid separation (Fig. 4) [68, 69]. In this method,
HA nanoparticles were incorporated in the PCL polymer
solution to make composite scaffolds (PCL/HA). HA
nanoparticles were uniformly distributed in the PCL
polymer matrix and observed by SEM. The PCL/HA

Fig. 3 Scheme representation of composite scaffold by freeze-drying
method involves the preparation of an emulsion created by homo-
genization of a mixture of the polymer solution, and a water phase,
where the continuous phase has the polymer-rich solvent and the

dispersed phase is water, quickly cooling the emulsion to catch in the
liquid phase construction, and eliminating the solvent and water by
freeze-drying

Table 1 Pore size, porosity, and compressive modulus of PCL/HA
composite scaffolds produced with various HA contents (0, 5, 10, and
20 wt %) [64]

HA content (wt. %) 0 5 10 20

Pore size (µm) 9.2 ± 0.7 8.5 ± 0.4 6.1 ± 0.7 4.2 ± 0.8

Porosity (vol %) 83.0 ± 0.6 83.9 ± 0.2 84.5 ± 0.2 85.0 ± 0.6

Compressive
modulus (MPa)

0.1 ± 0.02 1.2 ± 0.07 2.1 ± 0.06 2.7 ± 0.08

Table 2 Mechanical properties of the composite Scaffolds GEL/HA
with a different weight percentage of PCL content [67]

PCL content (wt. %) 0 20 30 40 50

Elastic modulus (MPa) 8 16 19 20.5 23.5

Stress (MPa) 1.83 3.13 3.40 3.71 3.73

Stiffness (K/mm) 38 79 93 114 131

Fig. 4 Scheme composite scaffold by thermal induced phase separa-
tion method (TIPS) for scaffolds designing consists of quenching the
polymer solution under the solvent’s freezing point (Tk) and enforcing
liquid–liquid separation to shape two phases: a polymer-rich phase and
a polymer-poor phase. The polymer-rich phase solidifies and the
polymer poor phase crystallizes. Subsequent removal of crystals by
sublimation leaves a porous polymer scaffold
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scaffold shows an increase in the compressive modulus
of 4.20 MPa and a decreases in the porosity of the
structure (70%), after HA nanoparticles incorporation
[70]. Guan et al. reported that increasing the concentra-
tion of the polymer solution decreases the pore size and
porosity of the final 3D composite scaffold [71]. PCL/
HA composite scaffold was kept at −18 °C for improv-
ing pore size distribution, which can be controlled by
solvent phase crystallization. The HA/PCL composite
scaffolds showed good osteoconductive property for
bone tissue engineering applications [70]. To increase
the pore architecture, Salerno et al., dissolved the poly-
mer in an ethyl lactate/water mixture, with salt as poro-
gen, increasing the interconnectivity and achieving a
92% of porosity [72].

2.5 Electro-spinning method

The electro-spinning technique is a simple method for 3D
scaffold fabrication, based on fibrous structure, able to mimic
natural ECM with an interconnected pore structure. The
method helps to control mechanical properties and ensures
increasing porosity (Fig. 5) [73, 74]. Wutticharoenmongkol
et al. fabricated 12% w/v PCL fibrous scaffold with different
HA nanoparticles content (0.5 and 1.0%) by electrospinning.
The fabricated fibrous scaffold showed an increased porosity
of 82 and 90%, while the pore size ranged from 4.3 and

5.6 μm. The tensile strength of the fibrous scaffold increased
to 3.6 and 3.8MPa with respect to HA content (0.5 and 1.0%
w/v). Human osteoblasts (SaOS2) cells were cultured on the
fibrous scaffold, and the result of cell viability (MTT assay)
together with cell differentiation (ALP assay), suggested the
biocompatiblity and stimulate cell differentiation [75]. Polini
et al., found that the incorporation of either HA or TCP into
the PCL nanofibers supports bone mineralization, cell via-
bility, and cell growth. Quantitative analysis of mRNA
expression on Runx-2 resulted in a strong stimulation of
osteogenic differentiation; and bone sialoprotein was asso-
ciated with bone mineralized tissue differentiation, in the
absence of osteogenic supplements. The nanofibrous struc-
ture and the chemical composition of the scaffolds regulate
the hMSCs differentiation [76]. In order to increase the
mechanical properties of scaffolds, Catledge et al., designed a
novel triphasic nanofibrous scaffold from a mixture of PCL/
nHA/Collagen ratio of 50/30/20, respectively. The triphasic
scaffold stained with calcein showed uniform distribution of
bone-like apatite particles on the polymer matrix with
agglomeration. The triphasic scaffold improves the
mechanical properties of Young’s modulus by 2.7 GPa [77].
Silicate-containing hydroxyapatite (SiHA) is widely studied
for the fabrication of scaffolds, which may improve the
bioactivity and osteogenic potential [78, 79]. Shkarina et al.,
designed and fabricated 3D composite scaffolds (SiHA/PCL)
with a predetermined fibers orientation, randomly oriented

Fig. 5 Scheme of electrospining
process for composite scaffold
fabrication through fiber
deposition

Table 3 HA constructs
processed by additive
manufacturing techniques

AM techniques Porosity (%) Compressive
strength (MPa)

Yield strength (MPa) Wt.% of HA Ref.

FDM 26 15 80 30 [97]

DIW – 24 ± 5 110 ± 20 70 [98]

SLS 37 3.2 67 30 [99]

3D printing – 7 40 (0:100–50:50) [100]
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(rPCL-SiHA) and well-aligned (wPCL-SiHA), to mimic
ECM and characterized by synchrotron μCT. A significant
increase in the MSCs proliferation and differentiation on
wPCL-SiHA, rather than rPCL-SiHA, was observed after
10 days of cell culture [80].

2.6 Rapid prototyping

Rapid prototyping technique (RP) is an advanced technique
for the fabrication of well-designed 3D scaffolds with the
interconnected porous structure associated with biomole-
cules and cells [81, 82]. This techniques can fabricate
composite PCL/HA scaffolds for repairing damaged bone,
specifically, in the analysis of the mechanical properties
[83]. Powder-based 3D printing (3DP) is an alternative
method to fabricate scaffolds, but the poor mechanical
properties restrict their application in bone tissue engi-
neering. Kim et al., prepared calcium sulfate hemihydrate
scaffold printed using a 3DP. The fabricated 3DP calcium
sulfate hemihydrate powder was transformed into HA upon
being treated with ammonium phosphate solution. The
scaffolds were coated with PCL polymer solution (5 and
10% w/v) to significantly increase the mechanical strength
to 46.86 ± 1.19 and 87.96 ± 6.05 MPa respectively and
decrease the porosity of material compared with 5% PCL
coated scaffolds. MG-63 cells cultured on 10% w/v of PCL
coated HA loaded scaffold showed an increase in osteo-
genic genes expression, namely Col1A1, Runx2, OSX, and
OC, as revealed by semi-quantitative RT-PCR analysis.
MTT and ALP studies reported improved the cell attach-
ment and proliferation on 10% w/v PCL coated scaffold
[84]. To increase the porosity of the scaffolds. Park et al.,
designed and fabricated composite scaffolds with a shifted
pattern structure (PCL/HA/SP) by 3D plotting system to
improve cell adhesion. The PCL/ HA/SP scaffold shows a
good interconnected network, highly regular pore size
higher than 600 μm, and porosity of 92% with well-defined
geometry. The scaffold with shifted pattern had denser
structure than PCL/HA and PCL. MTT assay and ALP
activity resulted in an increase of cell proliferation and
differentiation in PCL/HA/SP compared to the PCL and
PCL/HA scaffolds. The mechanical modulus of PCL/HA/
SP is not significantly higher than the PCL and PCL/HA
scaffolds [83]. Shigang Wang et al., fabricated PCL/HA
composite scaffold with a porous circular structure by
using 3D printing technology [85]. To further improve the
mechanical properties, Liao et al., fabricated the triblock
polymer mPEG-PCL-mPEG (PCL) scaffold and mPEG-
PCL-mPEG/HA (PCL/HA) by solid free fabrication
method [86]. The HA powder with a size of 100 μm was
incorporated with mPEG-PCL-mPEG (PCL) by 0.5 weight
ratio. PCL/HA biocomposite scaffold showed an increase
in pore size, porosity, and mechanical properties ofTa
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374.32 ± 11.25 μm, 80%, and 18.38 MPa, respectively [87].
In a similar study by Kim et al., HA/PCL produced com-
posite scaffold by NIPS method, with HA particles dis-
persing uniformly in a PCL solution induced by the
exchange of the tetrahydrofuran and ethanol [88–93]. The
process solidifies PCL/HA filaments to create the porous
PCL/HA composite scaffold [94]. These PCL/HA filaments
were constructed by 3D design in a layer-by-layer sepa-
rated by highly porous material. The addition of HA par-
ticles to the PCL polymer has shown significant increase in
mechanical properties, and the ability to form apatite. The
MTT and ALP studies have shown an increase in cell
proliferation and differentiation of PCL/HA scaffolds [95].
Table 3 shows the morphological, mechanical, and com-
positional features of PCL/HA-reinforced scaffolds fabri-
cated by employing different additive manufacturing
techniques: FDM, DIW, SLS, and 3D printing [96].
Advantages and disadvantages of fabrication methods
applied for generation of porous composite scaffolds PCL/
HA are shown in Table 4.

3 Conclusions

Tissue engineering emerges as a promising strategy to over-
come the challenges of conventional bone graft treatments.
PCL-based composite will be a promising biomaterial for bone
tissue engineering. The combination of PCL with HA nano-
particles can result in 3D scaffold as suitable bone graft sub-
stitutes, owing to their properties such as mechanical strength,
pore architecture, osteoconductivity, and osteoinductivity.
PCL/HA composite scaffolds are non-toxic for cells and
enhance the slow degradation, which may be suitable for bone
tissue engineering. The conventional fabrication methods such
as sol–gel, solvent casting, and particulate leaching, electro-
spinning, freeze-drying, and TIPS cannot control the pore
architecture, geometry, or pore distributions of the scaffolds.
On the contrary, rapid prototyping methods have been intro-
duced to overcome the problem of conventional methods,
developing customized scaffolds with high porosity, pore
architecture control, ideal geometrical shape, mechanical
properties, internal morphology, and mass transport properties.
Specifically, the rapid prototype methods are able to fabricate
the scaffolds in a layer by layer, starting from a 3D computer
model of the scaffold designed with specific characteristics.
The 3D plotting method is useful in the fabrication of porous
PCL/HA composite scaffolds with controlled micro/macro-
porous structure, mechanical properties, bioresorption along
with inherent osteogenic features, which are crucial for bone
tissue regeneration.
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