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The behaviour of traditional electronic devices can be understood
in terms of the classical diffusive motion of electrons. As the size
of a device becomes comparable to the electron coherence length,
however, quantum interference between electron waves becomes
increasingly important, leading to dramatic changes in device
properties1±8. This classical-to-quantum transition in device be-
haviour suggests the possibility for nanometer-sized electronic
elements that make use of quantum coherence1,2,7,8. Molecular
electronic devices are promising candidates for realizing such
device elements because the electronic motion in molecules is
inherently quantum mechanical9,10 and it can be modi®ed by well
de®ned chemistry11±13. Here we describe an example of a coherent
molecular electronic device whose behaviour is explicitly depen-
dent on quantum interference between propagating electron
wavesÐa Fabry±Perot electron resonator based on individual
single-walled carbon nanotubes with near-perfect ohmic contacts
to electrodes. In these devices, the nanotubes act as coherent
electron waveguides14±16, with the resonant cavity formed between
the two nanotube±electrode interfaces. We use a theoretical
model based on the multichannel Landauer±BuÈttiker formal-
ism17±19 to analyse the device characteristics and ®nd that coupling
between the two propagating modes of the nanotubes caused by
electron scattering at the nanotube±electrode interfaces is
important.

Isolated single-walled nanotubes (SWNTs) were synthesized by
chemical vapour deposition13, and electrical devices based on
individual SWNTs were fabricated as reported previously using
electron-beam lithography13. More than 100 nanotube devices have

been made and classi®ed as metallic or semiconducting on the basis
of their resistance versus gate voltage (Vg) behaviour13,20. Most
metallic nanotube devices exhibited room-temperature resistance
below 100 kQ, and more than 20 devices exhibited resistance below
15 kQ. The lowest resistance values observed in some metallic
nanotube devices were around 7 kQ, approaching the theoretical
lower limit of 6.5 kQ for a nanotube device with perfect ohmic
contacts2,14,21. This observation indicates that the contacts between
nanotubes and the Au/Cr electrodes in our nanotube devices are
nearly perfect, unlike those in previous SWNT devices13,16,21±24, and
that electrons can pass through the nanotube±metal junction with
little re¯ection. The following discussion concentrates on metallic
nanotube devices with room-temperature resistances below 15 kQ.

Figure 1 shows a differential conductance �]I=]V�±V g plot near
zero bias (V � 0) obtained from a representative nanotube device at
a temperature T � 4 K. The length of the nanotube segment (L)
between two electrodes was around 200 nm, as determined by
atomic force microscopy. Below T � 10 K, the device exhibits
pronounced ]I/]V oscillations that are quasi-periodic in Vg with
an average conductance of around 3.2 e2/h (the value of e2/h is
38.8 mS or (25.8 kQ)-1). Figure 2 shows two-dimensional ]I/]V plots
as a function of V and Vg obtained from nanotube devices with
L < 530 nm and L < 220 nm, respectively. The dips in ]I/]V appear
as dark lines in Fig. 2. The positions of the ]I/]V dips evolve
smoothly as V and Vg change, forming a mesh of crisscrossing dark
lines. Similar ]I/]V-V-Vg patterns were observed in 10 other
devices with average conductance above 2e2/h, although the V and
Vg spacing between adjacent dark lines changed from device to
device. The conductance behaviour of these devices did not change
substantially as the temperature was reduced from 4 K to 100 mK.

Figures 1 and 2 illustrate several characteristics shared by all 12
nanotube devices that exhibit ]I/]V oscillations. The average values
of ]I/]V were around 2±3 e2/h, and ]I/]V remained above e2=h
irrespective of V, Vg and T, clearly indicating that the electrical
behaviour of these nanotube devices is distinct from those reported
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Figure 1 Zero-bias differential conductance (]I/]V ) of a 200-nm SWNT device plotted

against gate voltage (Vg). Isolated SWNTs were synthesized on a degenerately doped

silicon wafer with a 1-mm oxide layer by chemical vapour deposition. Individual SWNTs

with ,1-nm height were located by atomic force microscopy, and nanotube devices were

fabricated by de®ning two Au/Cr electrodes on top of the SWNTs by electron-beam

lithography. Electrical properties of nanotube devices were characterized as a function of

bias voltage (V ) and Vg. The degenerately doped silicon substrate was used as a gate

electrode to modulate the charge density and the Fermi-level position within the

nanotubes. The dotted curve shows a sinusoidal function with the same average period as

the measured data. Comparison between these two plots shows that the measured data is

quasi-periodic in Vg. Inset, a schematic diagram of the SWNT device, showing a nanotube

with attached leads, the insulating gate oxide and the degenerately doped silicon gate.
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previously that exhibited a Coulomb-blockade behaviour13,16,21±25.
In addition, the ]I/]V dips were typically more pronounced than
]I/]V peaks, as shown by the dominant dark lines in Fig. 2. Most
importantly, the V and Vg spacing between adjacent dark lines
increased as L decreased. This last behaviour is best quanti®ed by the
bias voltage (Vc) at the crossing point between adjacent left- and
right-sloped dark lines: inspection of Fig. 2 shows that Vc for the
530-nm device is around 3.5 mV, whereas Vc for the 220-nm device
is around 6.5 mV. The inset in Fig. 2 shows the plot of Vc against L-1

obtained from seven different devices where Vc can be unambigu-
ously determined, and it clearly shows the linear relationship
between Vc and L-1.

Previous experimental15,21±28 and theoretical14,21 studies have indi-
cated that metallic SWNTs behave as a one-dimensional ballistic
conductor where the current is carried by two spin-degenerate one-
dimensional transport modes with linear dispersion (Fig. 3). The
maximum ]I/]V value near zero bias expected for a SWNT device is
therefore 4e2/h, obtained only when electrons pass through the
nanotube±metal interfaces without re¯ection2,14. The mean con-
ductance values in Figs 1 and 2 are smaller than this theoretical
maximum, indicating electron scattering in the nanotube devices.
The linear relationship between Vc and L-1 in Fig. 2 (inset) provides
experimental evidence that the electron scattering occurs mostly at
the nanotube±metal interface and that electrons pass through the
nanotube ballistically.

This picture of interfacial electron scattering coupled with
ballistic electron transport within the nanotube indicates that
the nanotube-device characteristics may be determined by quan-
tum interference between electron waves multiply re¯ected
between two nanotube±metal interfaces, analogous to the light
transmission in an optical Fabry±Perot cavity29. Figures 1 and 2
show that ]I/]V oscillates as a function of Vg and V, and the
oscillation period exhibits an inverse dependence on the nanotube
length. Because Vg modulates the Fermi-level position in the
nanotube and hence changes the Fermi wave number (2p/wave-
length) k for electrons, the observed ]I/]V oscillations can be
attributed to the change in k, just as in the case of transmitted

intensity oscillations in an optical cavity.
The observed electron-wave interference can be understood

quantitatively on the basis of a theoretical model shown schemati-
cally in Fig. 3. In this model, which is based on the multichannel
Landauer±BuÈttiker formalism2,17±19, the nanotube is considered as a
coherent electron waveguide with two propagating modes, and the
electron scattering is modelled by 4 3 4 scattering (S) matrices at
each interface, SL and SR. Following previous theoretical studies14,21,
the electron scattering between the two modes inside the nanotube
is ignored, and the phase accumulation during electron propagation
is represented by a diagonal 4 3 4 matrix SN. Inter-mode coupling
can still occur through the electron scattering at the interfaces, and
the matrix elements of SL and SR represent not only the electron
transmission and re¯ection within the same modes but also the
coupling between the two propagation modes.

One important difference between the nanotube electron cavity
and a simple single-mode optical cavity arises from the fact that
the two propagating modes in SWNTs are characterized by
different wave vectors, k~1 and k~2 (refs 14, 21). In an isolated
neutral SWNT, k~1 and k~2 are the same and they are both given by k~0
(k0 � 8:44 nm 2 1). In our nanotube devices, however, k~1 and k~2 are
in general different owing to the linear band dispersion in SWNTs,
and the difference between k~1 and k~2 grows linearly as the Fermi
level is shifted by Vg. Consequently, electrons in the two propagat-
ing modes acquire different phase shifts as they traverse the
nanotube, which are represented by the diagonal matrix elements
of SN. The phase change as a function of electron energy is
responsible for the interference patterns as a function of V and
Vg in Figs 1 and 2.

The calculation of the ]I /]V patterns requires knowledge of the
matrix elements of SL and SR, each containing 16 independent
parameters in general. To reduce the number of parameters in the
theoretical ®t to the experimental data, most calculations were
performed in the reduced parameter space. Speci®cally, both SL

and SR were de®ned by exponentiating a hermitian matrix that
contains just four parameters, r1, r2, d1 and d2 (see Methods). The
resulting S matrices exhibit the required unitarity and properties
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Figure 2 Two-dimensional ]I/]V plots as a function of V and Vg measured at T � 4 K.

a, Data from a 530-nm SWNT device; b, data from a 220-nm SWNT device. Both plots

show a quasi-periodic pattern of crisscrossing dark lines that correspond to the ]I/]V dips

as V and Vg are varied. The bias voltage values (Vc) at which adjacent positively and

negatively sloped lines intersect (white arrows) quantify the energy scales for ]I/]V

oscillations. In a, Vc is ,3.5 meV; in b, Vc is ,6.5 meV. Inset, values of Vc from seven

devices plotted against the inverse nanotube length (L-1). The solid curve is a line with a

slope equal to hv F=2 � 1;670 meV nm2 1, where v F � 8:1 3 105 m s 2 1 is the Fermi

velocity in the nanotube.
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demanded by time-reversal symmetry. Here r1 and r2 correspond
to (up to a constant) the magnitude of the electron re¯ection matrix
elements in the ®rst-order Born approximation with and without
the inter-mode hopping, while d1 and d2 signify the phases of these
matrix elements19.

The calculations were further simpli®ed by assuming that SL and
SR are mirror images of each other. This assumption is motivated by
the experimental observation that the V 2 V g slopes of right- and
left-sloping ]I/]V lines are nearly identical and thus the electron
re¯ection probabilities at the two interfaces are approximately the
same in most devices30. SL and SR were also assumed to be energy
independent over the energy range accessed in the experiment. With

these approximations, the theoretical ®t to the experimental data
can be performed using four parameters.

The overall conductance behaviour of a nanotube device can be
calculated once the device S matrix ST is obtained from SL, SR and
SN by matrix combination2,17±19. Speci®cally, in the zero-tempera-
ture limit, ]I/]V as a function of V and Vg in a nanotube device is
related to the matrix elements of ST as (see Methods for derivation)

]I

]V
�V ;V g� �

2e2

h ^
i;j�1;2

til;jr

eV

2~vF

�
p

4

CLV g

e

� ����� ���� 2
"

� ^
i;j�1;2

til;jr

2 eV

2~vF

�
p

4

CLV g

e

� ����� ���� 2
#

In this formula, til,jr represents matrix elements of ST de®ned in Fig. 3,
vF is the Fermi velocity inside the nanotube (vF < 8 3 105 m s 2 1),
and CL is the capacitance per unit length of a nanotube. This
formula speci®es not only the linear-response behaviour of a
nanotube device but also its nonlinear response upon the applica-
tion of the bias voltage. Although the above formula is derived for
the zero-temperature limit, it can still be used to ®t the data in Fig. 2
because the observed conductance behaviour did not change as the
temperature was lowered from 4 K to 100 mK and hence thermal
smearing had little role in determining the transport properties.

The result of the theoretical ®t for the 220-nm nanotube device is
presented in Fig. 4 along with the experimental data. The theoretical
®t clearly accounts for the major features in the data satisfactorily.
Although they are not shown, the calculations reproduced experi-
mental data from other devices as well. One of the most important
successes of the model is that it explains the energy scale of the
observed ]I/]Voscillations (represented by eVc) without any adjust-
able parameters. As shown in Fig. 3, two bands in SWNTs have E±k
slopes with equal magnitude and opposite sign. This band structure
guarantees that whenever the Fermi-level change causes the addi-
tional round-trip phase shift of +2p in one mode, the other mode
acquires a phase shift of -2p. The value of Vc can therefore be
obtained by setting the round trip phase shift 2LeVc=�~vF� equal to
2p. Figure 2 (inset) shows a red line obtained from this expression
along with experimental data. It shows that the theoretical model
explains experimental Vc values very well without any adjustable
parameters.

Figure 4 also shows that the theoretical model can explain the
predominance of ]I/]V dips over the peaks in the data. Inspection of
the ®tting parameters, r1, r2, d1 and d2, shows that the pronounced
]I/]V dips cannot be reproduced without the inter-mode coupling
at the interface (represented by r1 in our ®t), especially when the
average conductance of the device is above 3e2/h as in Fig. 4. This
observation strongly suggests that the inter-mode coupling at the
nanotube±metal interface is important in our device geometry. To
test whether this conclusion is dependent on the number of ®tting
parameters, a more extensive model ®t was performed, with SL and
SR containing more than four parameters. The results con®rm that
the inter-mode coupling is indeed required to explain the domi-
nance of ]I/]V dips.

Despite the good agreement between theory and experiment
shown in Fig. 4, several features in the experimental data remain
unexplained by the theoretical model. Most notably, Fig. 1 shows
that the magnitudes of the observed ]I/]V dips are not uniform and
show variations on the order of 0.1e2/h as Vg is varied. Moreover,
Fig. 2a shows that this variation leads to superstructures in the two-
dimensional plot that are not periodic in Vg. These observations
may indicate the possible effects of disorder on electron propagation
in the nanotube. This disorder is likely to arise from the underlying
substrate or at the interface because intrinsic nanotube defects
change electron transport properties much more markedly13.
Figure 2 also shows that the magnitudes of ]I/]V modulation
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Figure 3 A theoretical model that explains the observed interference patterns.

a, Schematic diagram of a SWNT device illustrating the multiple electron re¯ection that

gives rise to the observed interference pattern. b, Diagram of the band dispersion relation

of a metallic SWNT near a band-crossing point. In SWNTs, electronic states near two

Fermi points located at ~K � ~k 0 and ~K9 � 2 ~k 0 contribute to the electrical conduction.

The diagram shown here depicts only the band dispersion relation near ~K for clarity. At the
~K (~K9) point, two bands derived from the bonding (p) and antibonding (p*) orbitals

between neighbouring carbon atoms cross with equal slopes of opposite sign. The thick

lines represent the electron ®lling in each band. The diagram shows the effect of Vg on the

electron ®lling in SWNTs when V is zero. The shift of the band edge (or the band-crossing

point) with Vg results in a change in the charge density in the nanotube, which, in turn,

changes the Fermi wave numbers k1 and k2. c, A diagram illustrating the basis wave

functions used for de®ning the S-matrices SL, SN, SR and ST. The basis-set ordering was

chosen so that the total scattering matrix ST is a unit diagonal matrix in the absence of

interfacial scattering.
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diminish as |V| is increased. This observation suggests the occur-
rence of heating or dephasing when the electron energy distribution
deviates from equilibrium. The dephasing may arise from the fact
that the nanotube±metal interface is not abrupt and instead spans
many atoms. M

Methods
The explicit forms of SL, SR and SN

The S matrices, SL, SR and SN, and the basis wave functions are de®ned in Fig. 3. Assuming
that the electron scattering between the two modes inside the nanotube is ignored14,21, the
matrix SN is given by

SN �

eif1 0 0 0

0 eif2 0 0

0 0 eif1 0

0 0 0 eif2

26664
37775 �1�

Here f1 and f2 are the phases accumulated by electrons in the two transport modes upon
traversing the nanotube segment between the metal electrodes. In general, SL and SR each
contain 16 independent parameters. To reduce the number of parameters in the theoretical
®t of experimental data, SL and SR were parameterized on the basis of the ®rst-order Born
approximation. Assuming a weak scattering potential D at the interface, the scattering
matrices at the interface can be obtained using the Born approximation19

Smn < dmn � iamn � dmn �
i

~vF

hwmjDjwni �2�

Here dmn is the Kronecker delta, and wm represents mode wave functions de®ned in Fig. 3.
Note that the S matrix in equation (2) is only unitary to ®rst order in D. To make it unitary,
the S matrix was taken to be the matrix exponential of {anm} S � exp�ia�. Speci®cally, the
calculation shown in Fig. 4 was performed using the following ansatz for SR and SL:

SR�L� � exp i

0 0 r2 r1 exp� 6 id1�

0 0 r1 exp� 6 id1� r2 exp� 6 id2�

r2 r1 exp� 7 id1� 0 0

r1 exp� 7 id1� r2 exp� 7 id2� 0 0

26664
37775

0BBB@
1CCCA �3�

Here r1 and r2 are proportional to the magnitude of the electron re¯ection matrix elements
in the ®rst-order Born approximation with and without the inter-mode hopping,
respectively, and d1 and d2 signify the phases of these matrix elements. As described in the
text, the de®nitions of SR and SL in equation (3) ensure the opposite parity between the left
and right electrodes relative to the nanotube. The scattering matrices SR and SL are further
assumed to be independent of energy. Therefore, the conductance variation as a function
of V and Vg depends only on the phase shifts f1,2 that appear in SN.

Derivation of the expression for ]]I/]]V

A non-zero source-drain bias V raises the electrochemical potential of the left electrode by
eV/2 and lowers the electrochemical potential of the right electrode by eV/2. Because the
electron transport through the nanotube is ballistic, the total energy of the electrons
involved in transport is conserved. The total energy E�2 eV =2 , E , eV =2� of electrons at
the Fermi surface can be expressed as a sum of their kinetic energy K(x) and the local self-
consistent potential energy FeV(x), where x is the spatial position along the nanotube:

K�x� � ©eV �x� � E �4�

The wave numbers k1,2 of the electrons in the two transport modes are given by

k1;2�x� � k0 6
K�x�

~vF

� k0 6
E 2 ©eV �x�

~vF

�5�

and the resulting phase shifts are given by

f1;2 � #
L

0

k1;2�x�dx � #
L

0

k0 6
E 2 ©eV �x�

~vF

� �
dx � k0L 6

E 2 h©eV i
~vF

L �6�

Here h©eV i is the value of the self-consistent potential averaged over the nanotube length L.
hFeVi can be related to the excess charge Q on the nanotube using the local density of states
per unit length r�0� � 8=�hvF� at the Fermi level:

Q � 2 #
L

0

e©eV �x�r�0�dx � 2
8Le

hvF

h©eV i �7�

From equations (6) and (7), it follows that

f1;2 � k0L 6
E

~vF

L 6
p

4

Q

e
�8�

As SL and SR are mirror images of each other, the total charge on the nanotube Q is
unaffected by V. Therefore, Q can be related to Vg by Q � LCLV g, where CL is the
capacitance per unit length. The result for f1,2 can thus be obtained as

f1;2 � k0L 6
E

~vF

L �
p

4

LCLV g

e

� �
�9�

The phases, f1,2, given by equation (9) determine SN. The matrix ST can be obtained by
combining SL, SR and SN by matrix combination2,17±19. Once ST is known, the current
through the nanotube can be calculated by

I �
2e

h #
eV =2

2 eV =2

dE ^
i;j�1;2

til;jr

E

~vF

�
p

4

CLV g

e

� ����� ����2 �10�

where the matrix elements til,jr are de®ned in Fig. 3. The differentiation of equation (10)
leads to the expression for ]I/]V given in the text.
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Understanding the complexities of electronic and magnetic
ground states in solids is one of the main goals of solid-state
physics. Transition-metal oxides have proved to be particularly
fruitful in this regard, especially for those materials with the
perovskite structure, where the special characteristics of transi-
tion-metal±oxygen orbital hybridization determine their proper-
ties. Ruthenates have recently emerged as an important family
of perovskites because of the unexpected evolution from high-
temperature ferromagnetism in SrRuO3 to low-temperature
superconductivity in Sr2RuO4 (refs 1, 2). Here we show that a

ruthenate in a different structural family, La4Ru6O19, displays a
number of highly unusual properties, most notably non-Fermi-
liquid behaviour. The properties of La4Ru6O19 have no analogy
among the thousands of previously characterized transition-
metal oxides. Instead, they resemble those of CeCu6-xAuxÐa
widely studied f-electron-based heavy fermion intermetallic com-
pound that is often considered as providing the best example of
non-Fermi-liquid behaviour. In the ruthenate, non-Fermi-liquid
behaviour appears to arise from just the right balance between
the interactions of localized electronic states derived from Ru±Ru
bonding and delocalized states derived from Ru±O hybridiza-
tion.

The unusual properties of La4Ru6O19 are accentuated by
comparison to the highly related compound La3Ru3O11. Both
have cubic crystal structures3,4 that are a derivative of the KSbO3

structure type. The structures (Fig 1a and b) contain pairs of edge-
shared RuO6 octahedra, effectively forming Ru2O10 dimers, which
are connected to other dimers through corner-shared oxygens. The
result is a fully three-dimensional ruthenium±oxygen network that
has the same geometry for both compounds. The formal ruthenium
oxidation state is +4.33 in both compounds, leading to the same
number of available electrons to ®ll the electronic states in the Ru±O
network. Direct metal±metal bonding occurs in La4Ru6O19, where
the Ru±Ru distance within the dimers, 2.49 AÊ , is unusually short3.
No Ru±Ru bonding occurs in La3Ru3O11 (ref. 4). The presence of
distinct metal±metal bonded dimers in La4Ru6O19 should lead to
the existence of localized electronic states in addition to the many
delocalized states usually seen in ruthenates due to the strong Ru±O
orbital hybridization5,6. This leads to a profound difference in the
electronic properties of the two compounds.

Single crystals of La4Ru6O19 and La3Ru3O11 were grown by
placing 0.2 g of dried La2O3 and RuO2 mixed in the stoichiometric
ratios, 1 g of KCl and 0.131 g of KClO3 in a 2-ml Al2O3 crucible. The
crucible was sealed in an evacuated quartz tube, and heated at
900 8C for three to four days. The single crystals (up to 0.3 mm in
dimension) were removed from the ¯ux and cleaned by washing
with distilled water. The large (15 g) polycrystalline powder sample
of La4Ru6O19 that we used in the neutron-diffraction experiments
was synthesized in an analogous manner, but without KCl.

The temperature-dependent resistivity for a representative single
crystal of La4Ru6O19 is presented in Fig. 2, as is the normalized
resistance of a representative La3Ru3O11 crystal. A room-tempera-
ture resistivity of 2.5 mQ cm was observed for La4Ru6O19, slightly
lower than the value previously reported for polycrystalline
material7. This resistivity is signi®cantly larger than the
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La4Ru6O19 La3Ru3O11

Figure 1 Two crystallographic unit cells of La4Ru6O19 nd La3Ru3O11. RuO6 octahedra are

shown as shaded polyhedra (with Ru atoms inside). The virtually identical Ru±O network

is seen for each. La and non-network O atoms are shown by ®lled and open circles,

respectively.
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