
FabScalar:
Composing Synthesizable RTL Designs of Arbitrary Cores

within a Canonical Superscalar Template
Niket K. Choudhary, Salil V. Wadhavkar, Tanmay A. Shah*, Hiran Mayukh*, Jayneel Gandhi*,

Brandon H. Dwiel, Sandeep Navada, Hashem H. Najaf-abadi*, Eric Rotenberg
Department of Electrical and Computer Engineering

North Carolina State University
Raleigh, NC, USA

(*See endnote for current affiliations.)

nkchoudh@ncsu.edu, http://people.engr.ncsu.edu/ericro/research/fabscalar.htm

ABSTRACT
A growing body of work has compiled a strong case for the
single-ISA heterogeneous multi-core paradigm. A single-ISA
heterogeneous multi-core provides multiple, differently-designed
superscalar core types that can streamline the execution of diverse
programs and program phases. No prior research has addressed
the “Achilles’ heel” of this paradigm: design and verification
effort is multiplied by the number of different core types.

This work frames superscalar processors in a canonical form, so
that it becomes feasible to quickly design many cores that differ in
the three major superscalar dimensions: superscalar width,
pipeline depth, and sizes of structures for extracting instruction-
level parallelism (ILP). From this idea, we develop a toolset,
called FabScalar, for automatically composing the synthesizable
register-transfer-level (RTL) designs of arbitrary cores within a
canonical superscalar template. The template defines canonical
pipeline stages and interfaces among them. A Canonical Pipeline
Stage Library (CPSL) provides many implementations of each
canonical pipeline stage, that differ in their superscalar width and
depth of sub-pipelining. An RTL generation tool uses the template
and CPSL to automatically generate an overall core of desired
configuration. Validation experiments are performed along three
fronts to evaluate the quality of RTL designs generated by
FabScalar: functional and performance (instructions-per-cycle
(IPC)) validation, timing validation (cycle time), and confirmation
of suitability for standard ASIC flows. With FabScalar, a chip
with many different superscalar core types is conceivable.

Categories and Subject Descriptors
B.5.2 [Register-Transfer-Level Implementation]: Design Aids
– automatic synthesis. C.1.3 [Processor Architectures]: Other
Architecture Styles – pipeline processors, heterogeneous systems.

General Terms
Performance, Design, Verification.

Keywords
superscalar processors, instruction-level parallelism (ILP),
heterogeneous (asymmetric) multi-core, custom processors

1. INTRODUCTION
A growing body of work has compiled a strong case for the
single-ISA heterogeneous multi-core paradigm. A single-ISA
heterogeneous multi-core provides multiple, differently-designed
superscalar core types for streamlining the execution of sequential
[8][11][16][17], parallel [5][15][18][25], and multiprogrammed
[9][10] workloads, by exploiting diversity across and within
applications. The core types may differ in their superscalar
fetch/issue widths, pipeline depths, instruction scheduling (in-
order or out-of-order), sizes of units involved in exposing
instruction-level parallelism (ILP) (issue queue, load and store
queues, physical register file, reorder buffer, etc.), function unit
mix, and sizes of predictors and caches.

Prior works in this area project significant performance and power
advantages for microarchitecturally diverse superscalar cores. No
prior research has addressed the “Achilles’ heel” of this paradigm:
design and verification effort is multiplied by the number of
different core types. This factor limits the amount of
microarchitectural diversity that can be practically implemented.

In this paper, we propose framing superscalars in a canonical
form, so that it becomes feasible to quickly design many cores
that differ in the three major superscalar dimensions: superscalar
width, pipeline depth, and sizes of structures for extracting ILP
(frequency depends on these three). The canonical form is at the
level of logical pipeline stages: fetch, decode, rename, dispatch,
issue, etc. We call this a “canonical superscalar processor” and its
logical pipeline stages are called “canonical pipeline stages”.
Within this framework, all superscalar processors have the same
canonical structure, i.e., each has a complete set of canonical
pipeline stages and the same interfaces among them. Where they
differ is in the underlying implementations of their canonical
pipeline stages. A Canonical Pipeline Stage Library (CPSL) is
populated with multiple designs for each canonical pipeline stage.
A specific superscalar processor can be composed by selecting
one design for each canonical pipeline stage from the CPSL and
stitching together a complete set of canonical pipeline stages. This
composition is automated due to invariant interfaces among
canonical pipeline stages and the confinement of
microarchitectural diversity within the canonical pipeline stages.
Finally, microarchitectural diversity is focused along key
dimensions that both define superscalar architecture and
differentiate individual superscalar processors. Namely, the
different designs of a given canonical pipeline stage vary along
three major dimensions:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ISCA’11, June 4–8, 2011, San Jose, California, USA.
Copyright 2011 ACM 978-1-4503-0472-6/11/06…$10.00.

(1) Superscalar complexity: The superscalar complexity of a
canonical pipeline stage is a product of its superscalar width
(number of pipeline “ways”) and the sizes of its associated
ILP-extracting structures (e.g., issue queue, physical
register file, predictors, etc.). Increasing superscalar
complexity may contribute to extracting more ILP in the
program but typically increases the logic delay through the
canonical pipeline stage. The effect of increasing logic
delay on overall performance ultimately depends on the
next differentiating factor.

(2) Sub-pipelining: A canonical pipeline stage is nominally one
cycle in duration, but may be sub-pipelined deeper to
achieve a higher clock frequency.

(3) Stage-specific design choices: Often there are multiple
alternatives for handling certain microarchitectural issues,
such as speculation alternatives, recovery alternatives, and
so forth. These alternatives present a range of costs and
benefits, moreover, the costs and benefits often depend on
specific instruction-level behavior in the program.

Our approach has been implemented in a novel toolset called
FabScalar. FabScalar consists of a definition of the canonical
superscalar processor, a CPSL containing many synthesizable
register-transfer-level (RTL) designs of each canonical pipeline
stage, and a tool for automatically composing the RTL designs of
arbitrary superscalar cores by referencing the CPSL.

In addition, the FabScalar toolset has several other notable
features. Since highly-ported RAMs and CAMs are prevalent in
superscalar processors and significantly impact area, power, and
cycle time, we developed FabMem, a tool for automatically
generating the physical designs (layouts) of multiported RAMs
and CAMs. While memory compilers are not new, to the best of
our knowledge, there is no commercially available memory
compiler that can generate more than a few ports (otherwise we
would gladly use it); a 4-issue superscalar requires a 12-ported
register file, for example. FabScalar also provides a co-simulation
environment in which a functional simulator written in C++ runs
concurrently with verilog simulation of the superscalar processor.
The two are independent and the functional simulator assists with
checking and debugging the verilog simulation by comparing
instructions’ results as they retire from the processor. The co-
simulation environment also simplifies running standard
benchmarks by not requiring full-system simulation. Finally,
FabScalar provides a cycle-accurate C++ simulator which can
accurately model all of the cores that can be composed from the
CPSL. Cycle-accuracy is achieved by using the same canonical
superscalar processor definition and the same interfaces among
canonical pipeline stages. The cycle-accurate simulator is useful
for faster exploration and performance debugging of RTL designs.

Validation experiments are performed along three fronts to
evaluate the quality of RTL designs generated by FabScalar:
functional and performance (instructions-per-cycle (IPC))
validation, timing validation (cycle time), and confirmation of
suitability for standard ASIC flows. For functional and IPC
validation, a dozen different cores are generated and they all
successfully run 100 million instruction SimPoints of SPEC
integer benchmarks. The IPCs are within expected ranges for
SPEC, IPC differences among cores correspond well with their
microarchitectural differences, and IPCs closely track the IPCs
produced by FabScalar’s cycle-accurate C++ simulator. For
timing validation, we compare the cycle times of three
commercial RISC superscalar processors with cycle times of

FabScalar generated cores having similar configurations. (Delays
are converted to technology-agnostic FO4 delays.) The three
commercial processors represent a spectrum of highly custom
designed to fully-synthesized cores and the results confirm that
the FabScalar RTL is of good quality. To demonstrate suitability
of FabScalar generated RTL for standard ASIC flows, we
synthesize and place-and-route a sample core.

FabScalar does not address physical design effort beyond
automated synthesis and place-and-route. Nonetheless, verified
synthesizable RTL is the essential starting point for the physical
design process. Physical design proceeds from full synthesis to
incrementally tuned custom designs. By way of example,
FabMem replaces structures that are otherwise synthesized to flip-
flops with physical designs of RAMs and CAMs. Some
superscalar cores in the embedded space are fully synthesized,
such as the MIPS 74K [7]. There is even a recent example of out-
sourcing processor tuning: Intrinsity performed targeted custom
circuit design of the ARM Cortex-A8 to boost its frequency [1].

To be clear, since we are attacking the design-effort problem,
ultimately, we intend FabScalar to be used for the design,
verification, and fabrication of chips comprised of
microarchitecturally diverse superscalars. Although still in the
academic stages at this point, this is the trajectory we are aiming
for.

That said, FabScalar is also useful for general computer
architecture research. As computer architecture research becomes
increasingly driven by technology related problems (Moore’s law
scaling, power, temperature, reliability, variability), open-source
synthesizable verilog and physical designs of arbitrary superscalar
processors are potentially of value. Another promising application
of FabScalar is FPGA-based acceleration of superscalar processor
simulation. Along these lines, we synthesized a FabScalar-
generated 4-way superscalar processor to a single Virtex-5 FPGA,
leveraging Block RAMs to emulate the core’s numerous RAMs
and CAMs. (We present FPGA results in Section 5.3.)

This paper makes the following contributions:

 The idea of framing superscalar processors in a canonical
form to address the design-effort problem posed by single-
ISA heterogeneous multi-core. This is also the first paper to
bring solutions to bear on this problem.

 The FabScalar toolset which streamlines the design and
verification of superscalar processors. The ability to
automatically generate synthesizable RTL models of
superscalar processors of different widths and depths is
unprecedented, as these dimensions are not a simple matter
of parameterization.

 Validation of the quality of the generated RTL along three
fronts: functional and IPC validation, cycle time validation,
and suitability for standard ASIC flows. We also confirm the
feasibility of mapping the RTL to a dense FPGA (useful for
accelerating verification and architectural exploration) and
match the cycle counts from verilog simulation.

 We propose and analyze G21, a generic heterogeneous multi-
core design comprised of 21 core types. The core types are
selected, not based on a priori knowledge of applications,
rather, based on providing a broad range of
microarchitectural configurations. G21 achieves near-
speediest execution on 59 SPEC SimPoints considering the
entire design space, despite not tailoring G21 to these

benchmarks. This also implies G21 captures the diversity of
the entire design space, and is therefore a far more efficient
platform for selecting fewer core types based on workloads.

The rest of this paper is organized as follows. Section 2 discusses
related work. Section 3 describes the methodology used
throughout the paper. Section 4 describes FabScalar, including the
canonical superscalar processor, the CPSL, and FabMem. Section
5 presents the validation experiments. In Section 6, we apply
FabScalar to explore G21, and provide key insights from this
exercise. Section 7 discusses extensibility and design and
verification effort. Section 8 summarizes the paper and discusses
future work.

2. RELATED WORK
The Illinois Verilog Model (IVM) [27] provides the verilog for a
semi-parameterizable 4-issue superscalar processor. Drawbacks of
the current IVM are its unsynthesizable or poorly synthesizable
(low frequency) verilog modules. More importantly, IVM’s
superscalar width and pipeline depth are inflexible. These aspects
are not easily parameterized and require FabScalar’s approach: an
RTL generator that uses the canonical superscalar template and
CPSL to compose a core of desired width and depth. Finally,
FabScalar runs SPEC benchmarks out-of-the-box, and has been
validated in terms of IPC, cycle time, and synthesizability via
standard ASIC flows.

Strozek and Brooks’ developed a framework for high level
synthesis of very simple cores for embedded systems [24]. The
Program-In-Chip-Out (PICO) framework out of HP labs [6] is
closely related in that it customizes VLIW cores and non-
programmable accelerators for embedded applications. Tensilica’s
Xtensa Configurable Processors automate the designer’s task of
customizing instructions, functional units, and even VLIW
datapaths [28]. FabScalar is unique in that it generates complex
superscalar processors and this is evident in the novel composable
CPSL.

Palacharla, Jouppi, and Smith [19] developed models for
estimating propagation delays of key superscalar pipeline stages
(rename, issue, and bypasses). Li et. al describe a comprehensive
power, area, and timing modeling framework for multi-core
systems, McPAT [12]. The timing models extend Palacharla’s
approach to multiple microarchitectural styles. FabScalar extends
delay modeling to other critical pipeline stages such as instruction
fetch, arbitrary core logic, and the whole core; it considers sub-
pipelining and its imbalances; and it produces RTL
implementations of cores. FabScalar’s RTL output underscores a
crucial distinction with computer architecture tools: the goal of
FabScalar is to streamline the design, verification, and fabrication
of chips, i.e., it is meant to serve as a development tool for
designing heterogeneous multi-core chips, not just an estimation
tool for research.

3. METHODOLOGY
Table 1 shows the EDA tools used for functional verification,
synthesis, and place-and-route. For synthesis, we used the
FreePDK 45nm standard cell library [23].

Table 1. EDA environment: ASIC flow.
Phase EDA tool(s) used

functional
verification

Cadence NC-Verilog, vers. 06.20-s006

logic synthesis Synopsys Design Compiler, vers. X-2005.09-SP3
place & route Cadence SoC Encounter, vers. 7.1

Since specialized, highly-ported RAMs and CAMs are so
pervasive and essential to a superscalar processor, we have
developed a tool (FabMem [32]) for generating their physical
layouts and extracting timing, power, and area. While memory
compilers are not new, we are not aware of any commercial one
that can generate RAMs with more than a few ports. For
simulation, RAMs and CAMs are represented with behavioral
modules. For synthesis and place-and-route, they are replaced
with cells and LEF macros, respectively, both from FabMem. The
FabMem tool is described in Section 4.2.

Custom RAM and CAM macros are used for the rename map
table, architectural map table, active list, free list, fetch queue
(separates the decode and rename stages), issue queue wakeup
CAM and payload RAM, physical register file, load queue CAM
and RAM, and store queue CAM and RAM.

The level-1 (L1) instruction and data caches, branch target buffer
(BTB), and conditional branch predictor are also abstracted as
macros, with timing information obtained from CACTI 5.1 [26].
CACTI uses device and wire parameters derived from ITRS (refer
to Tables 4 and 6, respectively, in the CACTI 5.1 report [26]). The
BSIM4 Predictive Technology Model used by FreePDK and used
for our custom circuit design, is different and more conservative.
To bring the cache delays in line with our synthesized and custom
logic, we recalculated CACTI’s device and wire parameters using
the BSIM4 model. Table 2 shows the original and adjusted
CACTI device parameters for 45nm. The table of wire parameters
is large and is omitted due to space constraints.

Table 2. Original and adjusted CACTI device parameters
(45nm).

Device Parameter HP/LSTP/LOP
ITRS Model

BSIM4
Predictive

Technology
Model

Lgate (nm) 18/28/22 22.6
EOT (equiv. oxide thickness) (nm) 0.65/1.4/0.9 1.2
VDD (V) 1/1.1/0.7 1.1
Vth (mV) 181/532/256 400
Ion (μA/ μ) 2047/666/749 1110
Cox-elec (fF/ μ2) 37.7/20.1/28.2 31.3
FO4 delay (ps) 8.21/31.2/17.86 24.22

Each canonical pipeline stage has many underlying
implementations in the CPSL that differ in their superscalar width
and depth of sub-pipelining. For each design in the CPSL, we
performed multiple synthesis runs with successively tighter timing
constraints until the constraint could not be met. In this way, we
converged upon the minimum propagation delay.

4. FABSCALAR
This section describes the FabScalar toolset, including the
canonical superscalar processor and CPSL (Section 4.1) and
FabMem (Section 4.2). Section 1 described the benefits of
FabScalar’s verilog/C++ co-simulation environment and the
cycle-accurate configurable C++ model. Due to space constraints,
however, we do not elaborate further on them.

4.1 Canonical Superscalar Processor and the
CPSL
The canonical superscalar processor defined by FabScalar is
shown in Figure 1. It consists of nine canonical pipeline stages:
Fetch, Decode, Rename, Dispatch, Issue, Register Read, Execute,
Writeback, and Retire.

Fetch Decode Rename Dispatch Issue Reg. Read Execute Writeback Retire

Figure 1. Canonical superscalar processor.

The CPSL instruction-set architecture (ISA) is PISA [3], a close
derivative of the MIPS ISA (minus load and branch delay slots).
The rationale for using a simple RISC ISA is three-fold: (1) As a
practical matter, our primary experience is with MIPS. (2)
Contemporary processors often dynamically transform the binary
level ISA into an implementation ISA sometimes referred to as
micro-operations. Micro-operations resemble RISC primitives.
One can view the chosen CPSL ISA as a canonical
implementation ISA. Binary translation technology provides
another path for supporting different binary level and
implementation ISAs [4]. (3) A simpler implementation ISA
results in a smaller core.

The CPSL contains many synthesizable RTL designs for each
canonical pipeline stage, that differ in their superscalar width and
depth of sub-pipelining. Table 3 summarizes the
microarchitectural diversity available in the current CPSL. The
first column identifies the canonical pipeline stage. The second
column shows ranges of width and depth. All front-end stages
(Fetch through Dispatch) and the Retire stage vary from 1-way to
8-way superscalar. The minimum width of all back-end stages
(Issue through Writeback) is currently 4 because at least four
different function units (FUs) are required: one each of simple
ALU, complex ALU, load/store port, and branch unit. Narrower
issue widths can be accommodated by aggregating multiple FU
types into one pipeline way, which we have left for future work.
The maximum width of all back-end stages is 8-way superscalar.

The second column of Table 3 also shows ranges of depth of sub-
pipelining. Sub-pipelining was guided by natural logic boundaries
within each canonical pipeline stage design and timing results
from synthesis (including RAM and CAM macros generated by
FabMem). Dispatch has only 1-deep implementations in the CPSL
and Retire has only 2-deep implementations. All other stages have
a range of depths. Fetch goes the deepest, ranging from 2-deep to
5-deep. This is a result of the fetch unit having substantial logic in
two phases, Fetch-1 and Fetch-2. Fetch-1 corresponds to
accessing all the structures (2-way interleaved instruction cache,
branch target buffer, branch predictor) and it also implements the
complex next-PC logic. Fetch-2 corresponds to all logic after the
instruction cache for extracting the fetch block from two cache
blocks and aligning it for the decode stage, including branch
predecode logic. Thus, Fetch is at least 2-deep: 1-deep for each of
Fetch-1 and Fetch-2. A 2-deep version of Fetch-1 was designed
and features block-ahead prediction [20], a somewhat elaborate
approach for effectively pipelining the branch prediction logic. To
our knowledge, this may be the first RTL implementation of it
[30]. The Decode and Rename stages are separated by an
instruction buffer (Fetch Queue), which facilitates assembling the
full superscalar width of instructions for the Rename and Dispatch
stages. The Decode stage can be as deep as 3-deep due to the logic
complexity for steering and writing instructions into the buffer,
including cracking doubleword instructions into two micro-ops.
The Rename stage varies from 1-deep to 3-deep, with deeper
versions increasing the amount of hazard logic for dependencies
among multiple groups in-flight in the Rename stage. The CPSL
provides five sub-pipelined designs of the Issue stage [31]:

 “1-cycle issue / 1-cycle loop” (1/1): 1 cycle for the Issue stage
as a whole (i.e., no sub-pipelining), including wakeup, select,
and reading the payload RAM. 1 cycle for the critical
wakeup+select loop.

 “2-cycle issue / 1-cycle loop” (2/1): 2 cycles for the Issue
stage as a whole, but only 1 cycle for the critical
wakeup+select loop. The logic partitions are: (a)
wakeup+select and (b) payloadRAM. An optimization makes
the selected instruction’s destination tag available prior to
reading the payloadRAM, decoupling it from the wakeup-
select loop.

 “2-cycle issue / 2-cycle loop” (2/2): 2 cycles for the Issue
stage as a whole and 2 cycles for the critical wakeup+select
loop. The logic partitions are: (a) wakeup and (b)
select+payloadRAM.

 “3-cycle issue / 3-cycle loop” (3/3): 3 cycles for the Issue
stage as a whole and 3 cycles for the critical wakeup+select
loop. The logic partitions are: (a) wakeup, (b) select, and (c)
payloadRAM.

 “3-cycle issue / 2-cycle loop” (3/2): Same as 3/3, but only 2
cycles for the critical wakeup+select loop (as with 2/1, the
payloadRAM is decoupled from wakeup-select loop).

The Register Read stage ranges from 1-deep to 4-deep. Based on
experience with FabMem, we pipeline the wordlines of the
Physical Register File, i.e., a sub-word of the register is returned
each cycle. Due to pipelining the wordlines, Writeback takes the
same number of cycles (write one sub-word per cycle). A nice
feature is that the canonical interfaces for bypass buses are
invariant with the degree of sub-pipelining: a value is bypassed to
canonical pipeline stages Execute and Register Read irrespective
of their underlying implementations, and a bypassed value is
steered appropriately to one or multiple sub-stages within Register
Read.

The third column in Table 3 shows stage-specific structures that
are implemented in the RTL. Sizes of all stage-specific structures
are parameterized in the RTL: since sizes can take on arbitrary
values, no ranges are specified for structures in the third column
of Table 3.

The final column in Table 3 considers another dimension for
microarchitectural diversity, which we refer to broadly as
“microarchitectural approaches”. This dimension is a potpourri of
design choices specific to each canonical pipeline stage. It is
outside the scope of this paper to cover all of these techniques in
the CPSL, at the level of synthesizable RTL. Nonetheless, we felt
it would be of interest to enumerate notable examples in Table 3
to emphasize the potential for growing the CPSL in the future, and
to underscore the specificity with which microarchitectural
diversity can be targeted to specific instruction-level behavior. For
example, certain program phases will favor one branch
misprediction recovery strategy over another depending on the
frequency of mispredicted branches, their distribution, and the
criticality of their backward slices. As another example,
techniques that are of no use for subsets of the workload space can
be excluded from a core to streamline its frequency and static and
dynamic power. Specific design choices that are represented in the
current CPSL are highlighted in boldface in the last column of
Table 3.

4.2 FabMem: A Multiported RAM and CAM
Compiler
We custom-designed RAM and CAM bitcells with a wide range
of port configurations supporting scalar through 8-way
superscalar pipelines. Bitcell designs, address decoder blocks,
wordline drivers, precharge circuits, write circuits, column muxes,
sense amps, and input and output drivers, form a cell library for
composing RAMs and CAMs. Figure 2 shows the layout of a
16R8W RAM bitcell.

Figure 3 shows the FabMem tool flow [32]. The first script takes
as input the logical depth (D) and width (W) of the memory as

well as the desired number of read (Rp) and write ports (Wp). The
script references the cell library to generate a SPICE netlist of the
critical path of the memory. It generates three different netlists,
for three different degrees of column muxing (1, 2, and 4), to find
a good underlying physical geometry. It also generates top-level
simulation files that apply performance stress tests. These tests
induce worst-case coupling capacitance scenarios (e.g, bitlines
transitioning in opposite directions) and loading capacitance
scenarios (e.g., heavy loading of the bitcell by reading it
simultaneously on all ports). The SPICE simulation results are
tabulated and the user identifies the best degree of column muxing
(DC) based on this initial exploration.

Table 3. Overview of canonical pipeline stage designs available in the CPSL.
Canonical pipeline

stage
Dimensions

(W=width, D=depth)
Stage-specific structures

(sizes parameterized in RTL)
Microarchitectural approaches

Fetch W = 1 to 8, D = 2 to 5

Fetch-1: 1 or 2 sub-stages
Fetch-2: 1 to 3 sub-stages

Branch or pattern history table
(BHT or PHT)

Branch target buffer (BTB)
Return address stack (RAS)
L1 Instruction Cache

Branch prediction algorithm
No interleaving vs. 2-way interleaving
Block-based BTB vs. interleaved BTB
Multi-cycle fetch:

unpipelined
pipelined using block-ahead prediction [20]

Decode W = 1 to 8, D = 1 to 3 Fetch queue Micro-operation cracking
Non-speculative vs. speculative decode (if variable
length ISA)

Rename &

Retire

W = 1 to 8, D = 1 to 3

W = 1 to 8, D = 2

Rename map table (RMT)
Architectural map table (AMT)
Shadow map tables: 0 or 4
Free list
Active list
Phys. reg. ready bit table

AMT vs. no AMT
Branch misprediction recovery

checkpoint (shadow map)
handle like exception
walk active list forward from head
walk active list backward from tail

Exception recovery
restore RMT using AMT
restore RMT by walking active list backward

Freeing registers
read prev. mapping from RMT, active list

pushes freelist
read prev. mapping from AMT, AMT pushes

freelist
Dispatch W = 1 to 8, D = 1 Issue queue (IQ) freelist Collapsing IQ vs. freelist based IQ
Issue W = 4 to 8, D = 1 to 3

Sub-pipelining variants:
1/1, 2/1, 2/2, 3/3, 3/2
(see text for explanation)

Issue queue (IQ) In-order vs. out-of-order
Collapsing IQ vs. freelist based IQ
Multiple schedulers vs. single scheduler
Pipelined wakeup+select:

1-cycle producers non-speculatively wakeup
dependents

1-cycle producers speculatively wakeup
dependents [2]

Load hit/miss:
predict hit always
predict miss always
hit predictor

Load SQ conflict (with unknown store address):
predict no SQ conflict always
predict SQ conflict always
memory dependence predictor

Recovery for spec. wakeup & load conflict spec.:
replay from IQ
replay from replay buffer
handle like exception (squash)

Split stores
Register Read W = 4 to 8, D = 1 to 4 Physical register file n/a
Execute

W = 4 to 8, D = FU specific

simple ALU: 1 to 5, D = 1
complex ALU: 1, D = 3
load/store ports: 1, D = 2
branch units: 1, D=1

Load queue (LQ)
Store queue (SQ)
L1 Data Cache

Store-load forwarding vs. no forwarding
Many LQ/SQ designs possible for reducing

associative searches (NLQ, SVW, SQIP)

Writeback/Bypass W = 4 to 8
D = matches Register Read

n/a Full bypasses vs. hierarchical or partial bypasses

Figure 2. Top: Layout of 16R8W RAM bitcell. Bottom: 128-
entry 32-bit 16R8W register file macro.

A SKILL script takes inputs D, W, Rp, Wp, and now DC. SKILL
is a scripting language for automatically generating layouts.
Cadence Virtuoso runs the SKILL script and it generates a full
layout of the memory, referencing the cell library. In parallel, the
user runs a third script that also takes D, W, Rp, Wp, and DC as
input, and generates a full source netlist of the memory.
Meanwhile Calibre DRC runs design rule checks on the full
layout. After passing DRC, Calibre LVS verifies that the full
layout is logically equivalent to the source netlist. After
confirming this, Calibre PEX is run on the full layout in order to
extract parasitics which are combined with the netlist for
performing full layout SPICE simulation. The results of the full
layout simulation can be compared against results from the faster,
critical-path only simulation performed earlier to validate the
latter or firm up timing and power estimates. Moreover the full
layout can be used as a hard macro. For example, Figure 2 shows
a 128-entry 32-bit 16R8W register file macro.

Figure 4 compares access times produced by CACTI 5.1 (adjusted
for BSIM4 predictive tech. model) and the RAM tool, varying
size and port configuration (1R1W, 4R4W, and 8R8W). CACTI
5.1 requires a minimum block size of 8B so this width is used.
The two tend to differ more at smaller RAM sizes (CACTI does
not produce valid results for 128B) or for a high number of ports,
two reasons that motivated us to develop the tool. That said, they
produce similar results at 4KB for 1R1W and 4R4W.

script

SKILL script

script

D, W, Rp, Wp

Cell Library
critical
path

netlist

top-level
simulation

file

DC=1

DC=2

DC=4

area,
read time,
write time,
read power,
write power,
EDP

HSPICE
critical
path

netlist

top-level
simulation

file

critical
path

netlist

top-level
simulation

file

Cell Library

D, W, Rp, Wp, DC

Cadence
Virtuoso

layout
file

Calibre
DRC

Calibre
LVS

D, W, Rp, Wp, DC

source
netlist:
.src.net

file

Calibre
PEX

Figure 3. Flow for generating RAM/CAM macros.

5. RESULTS: VALIDATION
In this section, we evaluate the quality of the RTL designs
produced by FabScalar. Prior to the validation experiments
presented in this section, we performed extensive unit-level
testing of the CPSL and testing of a baseline 4-way superscalar
core. The latter enabled perfecting the interfaces and interactions
among canonical pipeline stages. Subsequently, assembling and
debugging all of the cores in this section proceeded efficiently
within the span of a month, moreover, most of the bugs
encountered in this period were in the course of implementing the
composition tool itself (scripted verilog instantiation and stitching
of stages).

Validation is performed along three fronts:

1. Functional and IPC validation: A dozen different cores are
generated, covering a range of widths, sizes, and depths. 100
million instruction SimPoints [21] of six SPEC2000 integer
benchmarks are executed on the cores and the instructions-
per-cycle (IPC) results are within expected ranges and follow
expected trends. The other six integer benchmarks were not
tested because their SimPoints have occasional floating-point
instructions and will be tested in future work when CPSL
stage designs are augmented to handle floating-point
instructions.

2. Timing validation: We also evaluate the quality of the RTL
and FabMem in terms of cycle time. To validate cycle time,
we compare several commercial general-purpose and
embedded cores with similarly configured FabScalar

0

0.2

0.4

0.6

0.8

1

1.2

1.4

128 256 512 1024 2048 4096

RAM Size (B)

A
cc

es
s

T
im

e
(n

s)

Cacti
Reg File Compiler

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

128 256 512 1024 2048 4096

RAM Size (B)

A
c

c
e

s
s

 T
im

e
 (

n
s

)

Cacti
Reg File Compiler

0

0.5

1

1.5

2

2.5

3

128 256 512 1024 2048 4096

RAM Size (B)

A
cc

es
s

T
im

e
(n

s)

Cacti
Reg File Compiler

Figure 4. Comparison of CACTI (using BSIM4 Predictive Tech. Model) and RAM tool. From left to right: 1R1W ports, 4R4W
ports, and 8R8W ports.

generated cores. Validating cycle time is challenging and
imperfect for a number of reasons:

 Different technology nodes, technology libraries, and
foundry processes. We deal with this issue by
converting cycle time into the number of FO4 inverter
delays of the technology, yielding a technology-
independent comparison (although the subtle influence
that the underlying technology had on design choices
and circuit opimization choices cannot be undone).

 Different degrees of custom design, including the extent
of circuit optimization, dynamic logic, and latch based
design for accommodating logic partition imbalances.
We deal with this issue only partially by employing
multiported RAMs and CAMs generated by FabMem.
We also compare to a commercial fully-synthesized
embedded core at one end of the spectrum. Regarding
latch based design, in addition to comparing cycle time,
we also examine raw total logic delay through the
pipeline from Fetch to Execute.

 Different ISAs and unique microarchitecture features.
For example, the current CPSL does not have Issue
stage designs with multiple schedulers (see Table 3, last
column) or replicated register files. Multiple smaller
schedulers reduce the select logic delay by reducing the
number of instructions contending for a given execution
pipeline way, at the cost of some load imbalance among
the multiple issue queues. More importantly, when there
are multiple FUs of the same type, providing each FU
with a dedicated issue queue avoids cascading select
trees, a big delay savings. Replicated register files
reduce the number of read ports in each register file
copy, improving their access times. While these
techniques are not yet represented in the CPSL, their
effect can be modeled for timing validation purposes by
applying a smaller/simpler issue queue and a register
file with fewer read ports.

3. Suitability for physical design: We demonstrate the
suitability of the generated RTL for full synthesis and place-
and-route by a standard ASIC flow.

5.1 Functional and IPC Validation
The FabScalar tool was used to generate the RTL designs for the
twelve cores described in Table 4. Before discussing the cores,
several points about the table need clarification. First, some stage
depths are omitted from the table: stages that have only a single
depth implemented in the CPSL (Dispatch and Retire are always
1-deep and 2-deep, respectively) or stages that are not varied
among the twelve cores (Decode is fixed at 1-deep). Second, the
Branch Order Buffer (BOB) is a FIFO buffer in the Fetch stage
holding control information for all predicted but not yet retired
branches. It facilitates updating the Branch History Table (BHT)
non-speculatively as branches retire as well as checkpointing
certain predictor state (such as the global branch history register).
Third, the quoted fetch-to-execute pipeline depth reflects the
minimum branch misprediction penalty, and includes 1 cycle of
execution in the branch unit (Writeback and Retire depths are

excluded from this number). Of the two branch recovery
implementations represented in the CPSL – shadow maps vs.
handle like exception (Table 3) – all twelve cores employ the
latter lower complexity and lower performance approach.

Cores 1 through 6 were selected primarily to explore stage widths
and structure sizes. Except for Core-6, depths are the same across
these cores. Core-6 is a particularly narrow core: 2-way
superscalar in the front-end. Core-2 has different widths in the
front-end (4) and back-end (6). Core-5 is a particularly wide core:
8-way superscalar fetch and execute with large resources.

Cores 6 through 10 aim to explore depths of stages and the fetch-
to-execute pipeline depth. Cores 7 and 8 resemble Core-1 except
that Core-7 is shallower (fetch-to-execute = 9) and Core-8 is
deeper (fetch-to-execute = 14). They differ in their Issue and
Register Read depths. Cores 9 and 10 are unique in that their
Fetch-1 sub-stage of Fetch is pipelined into two cycles, using
block-ahead branch prediction. This yields a total Fetch depth of
three cycles. Cores 9 and 10 differ in their Issue and Register
Read depths. Core-10 is the deepest of the twelve cores (fetch-to-
execute = 15), although not the deepest possible with the CPSL
since Rename and Fetch (the Fetch-2 logic) can be deepened
further.

Cores 11 and 12 are the same as Cores 1 and 2, respectively,
except they use the gshare [13] instead of the bimodal branch
predictor. Since the gshare predictor can only conveniently supply
one branch prediction per cycle, Fetch stage designs in the CPSL
employing gshare present a tradeoff between slightly reducing
fetch bandwidth and increasing fetch accuracy.

Results of executing the 100 million instruction SimPoints of six
benchmarks are shown in Figure 5. Results are shown for both
RTL (“Verilog”) and the cycle-accurate C++ simulator (“C++”).
Block-ahead prediction is not yet implemented in the C++ so its
datapoints are missing for Cores 9/10. The first thing to note is
that the cores execute the benchmarks successfully. Second, IPCs
are within the norm for SPEC integer benchmarks, especially
considering the conservative method for recovering from load
misspeculations (load issues before a conflicting store) and branch
mispredictions employed by these cores. Third, the RTL and C++
follow each other closely. The latter result increases confidence in
the RTL modeling of the design: if performance anomolies are
observed, they are more likely inherent in the design rather than in
the RTL modeling of the design.

Differences in IPCs among cores tend to correspond with their
microarchitectural differences. For example, among Cores 1
through 5, we expect Core 5 to have the highest IPC since it is the
most aggressive core, the depths are the same, and no negative
cycle time consequences are applied in an IPC-only comparison.
Cores 8 and 10 are the deepest pipelines and they have lower IPCs
than other configurations as a result. Some pairwise comparisons
of cores could go either way due to increasing some parameters
and decreasing others, leading to potentially non-monotonic cores.
For example, Core-6 has the same or higher IPC than Core-2 in all
benchmarks except bzip. Core-6 is narrow (2-way fetch) but its
advantage over other configurations is its 1-cycle wakeup-select
loop. In the case of bzip, however, there is apparently sufficient
ILP to outweigh the longer wakeup-select loop.

If there are anomolies, for example, a more aggressive core
having lower IPC than a simpler core of the same pipeline depth,
they are sometimes caused by more frequent load misspeculations
or branch mispredictions that stem from larger window sizes.
Extra recoveries are performance-debilitating when recovery is a
full squash from the head of the active list.

5.2 Timing Validation
For timing validation, we compare cycle times and fetch-to-
execute delays of FabScalar generated cores with three different
commercial processors: 90nm POWER5 [22], 180nm Alpha
21364 [14], and 65nm MIPS32 74K [7][29]. All three implement
RISC ISAs and they represent extremes from highly custom
designed to fully synthesized (MIPS32 74K). Table 5 shows
major microarchitecture parameters of the three processors.

All delays are converted into the number of FO4 inverter delays
for the underlying technology. We obtained the number of FO4
delays in a pipeline stage for each commercial processor, from
published data [7][14][22][29].

The shaded section in Table 5 shows delay comparisons between
the commercial cores and similarly configured FabScalar
generated cores. Five numbers are shown:

1. Cycle time of the commercial core.

Table 4. Cores used for functional and IPC validation experiments.

 Core-1 Core-2 Core-3 Core-4 Core-5 Core-6 Core-7 Core-8 Core-9 Core-10 Core-11 Core-12

Fetch/Decode/Rename/Dispatch width 4 4 5 6 8 2 4 4 6 6 4 4
Issue/RR/Execute/WB/Retire width 4 6 5 6 8 4 4 4 6 6 4 6
function unit mix
(simple, complex, branch, load/store)

1,1,1,1 3,1,1,1 2,1,1,1 3,1,1,1 5,1,1,1 1,1,1,1 1,1,1,1 1,1,1,1 3,1,1,1 3,1,1,1 1,1,1,1 3,1,1,1

fetch queue 16 16 32 32 64 8 16 16 32 32 16 16
active list (ROB) 128 128 128 256 512 64 128 128 256 256 128 128
physical register file (PRF) 96 128 128 192 512 64 96 96 192 192 96 128
issue queue (IQ) 32 32 32 64 128 16 16 32 64 64 32 32
load queue / store queue (LQ/SQ) 32 / 32 32 / 32 32 / 32 32 / 32 32 / 32 16 / 16 32 / 32 32 / 32 32 / 32 32 / 32 32 / 32 32 / 32

branch predictor bimodal
bimodal with
block-ahead

gshare

branch history table (BHT) (# entries) 64K 64K 64K 64K 64K 64K 64K 64K 64K 64K 64K 64K
branch target buffer (BTB) (# entries) 4K 4K 4K 4K 4K 4K 4K 4K 4K 4K 4K 4K
return address stack (RAS) 16 16 16 32 64 8 16 16 32 32 16 16
branch order buffer (BOB) 16 16 32 32 32 8 16 16 32 32 16 16
Fetch depth 2 2 2 2 2 2 2 2 3 3 2 2
Rename depth 2 2 2 2 2 2 2 2 2 2 2 2
Issue depth: total / wakeup-select loop 2 / 2 2 / 2 2 / 2 2 / 2 2 / 2 1 / 1 1 / 1 3 / 2 2 / 2 3 / 2 2 / 2 2 / 2
Register Read (and Writeback) depth 1 1 1 1 1 1 1 4 2 4 1 1
fetch-to-execute pipeline depth 10 10 10 10 10 9 9 14 12 15 10 10

2. Cycle time of the similarly-configured FabScalar core of the
same pipeline depth.

3. Cycle time of a deeper version of the FabScalar core, with its
fetch-to-execute pipeline depth shown in parentheses. This
shows how much additional sub-pipelining is needed to
compensate for the lesser degree of custom design of the
FabScalar core.

4. Raw fetch-to-execute delay of the FabScalar core. This is the
sum of propagation delays of all the stages between Fetch
and Execute.

5. The final number is #4 above divided by the fetch-to-execute
pipeline depth of the commercial core. This corresponds to
the FabScalar core’s hypothetical cycle time if pipeline
registers evenly divided up the raw fetch-to-execute delay
(no imbalance among pipeline stages). This cycle time is the
best that could be achieved with careful latch based design,
for the same pipeline depth.

The cycle time of the FabScalar-Power5 is relatively close to that
of the Power5: 29 FO4 compared to 23 FO4, respectively. Slightly

bzip

0

0.5

1

1.5

1 2 3 4 5 6 7 8 9 10 11 12
Cores

IP
C

Verilog C++

gap

0
0.2
0.4
0.6
0.8

1

1 2 3 4 5 6 7 8 9 10 11 12
Cores

IP
C

Verilog C++

gzip

0
0.2
0.4
0.6
0.8

1

1 2 3 4 5 6 7 8 9 10 11 12
Cores

IP
C

Verilog C++

mcf

0
0.2
0.4
0.6
0.8

1

1 2 3 4 5 6 7 8 9 10 11 12
Cores

IP
C

Verilog C++

parser

0
0.2
0.4
0.6
0.8

1

1 2 3 4 5 6 7 8 9 10 11 12
Cores

IP
C

Verilog C++

vortex

0

0.5

1

1.5

1 2 3 4 5 6 7 8 9 10 11 12
Cores

IP
C

Verilog C++

Figure 5. Results of executing 100 million instruction SimPoints of six benchmarks on the twelve cores.

deeper pipelining (15 deep instead of 12 deep) yields an even
closer 25 FO4 cycle time. The same cycle time of 24 FO4 can also
be gotten with ideal latch-based design. All of these comparisons,
and especially the latter (raw fetch-to-execute delay), confirm that
the FabScalar generated RTL and the FabMem generated
RAMs/CAMs are of reasonable quality from the standpoint of
propagation delay.

Table 5. Delay comparisons of commercial processors with
similarly configured FabScalar generated cores.

Power5 Alpha-21364 MIPS

74K
Fetch Width 8 4 4

Dispatch Width 5 4 2
Issue Width 8 6 1

Fetch Queue 24 24 12

Issue Queue(s)
Int+Ld/St: 36,
FP: 24, Br.: 12,

CR: 10

Int:20, FP:15 Int:8,
Agen:8

Physical Reg ister File(s) Int:120, FP:120 Int:80, FP:72 64
Load Queue / Store Queue 32 / 32 32 / 32 8 / 8

L1 I$ / L1 D$ (KB) 64 / 32 64 / 64 32 / 32
fetch-to-execute pipeline depth 12 6 12

Cycle Time of commercial core 23 FO4 25 FO4 33 FO4
Cycle Time of FabScalar core 29 FO4 37 FO4 32 FO4
Cycle Time of deeper
FabScalar core

25 FO4
(depth=15)

26 FO4
(depth=11)

N/A

raw fetch-to-execute delay of
FabScalar core

291 FO4 188 FO4 384 FO4

Cycle Time of FabScalar core
with ideal latch-based design

24 FO4 32 FO4 N/A

A larger difference is observed for the FabScalar-21364 and
21364: 37 FO4 compared to 25 FO4. What is interesting is that
the 21364 has a cycle time close to the Power5 despite the 21364
being half as deep. This is partly due to lower superscalar
complexity of the older 21364 but it also suggests a significant
degree of total delay optimization (Alpha processors gained a
reputation as “speed demons”). Indeed, the deeper FabScalar-
21364 needs nearly twice the pipeline depth to reach the 21364
cycle time, despite being similarly configured.

The MIPS 74K is a fully-synthesized design. This means that
structures normally implemented with custom RAMs and CAMs
are synthesized to flip-flops (except for caches). Accordingly, for
a fair comparison, the delays for FabScalar-74K are also based on
synthesis alone: FabMem is not used. The cycle times of these
two fully-synthesized cores are nearly identical: 32 FO4 for the
FabScalar-74K versus 33 FO4 for the 74K. That both cores are
fully-synthesized, use virtually the same ISA, and have the same
cycle time, further supports the assertion that the RTL is of
reasonable quality from the standpoint of propagation delay.

5.3 Suitability for Standard ASIC Flows
To demonstrate that FabScalar-generated RTL can be taken
through standard ASIC flows, we synthesized and place-and-
routed a 4-way superscalar processor. The physical design is
shown in Figure 6(a). This particular core uses shadow maps for
quickly recovering from mispredictions. Since FabMem cannot
generate the highly specialized shadow map to rename map
connectivity, the rename map table and shadow map table are
synthesized to flip-flops in this physical design: this is evident in
the large rename block in the chip diagram.

We also synthesized the same core, minus the shadow maps, to a
Virtex-5 FPGA in a BEE3 system, shown in Figure 6(b). Results
of the FPGA experiments are shown in Table 6. The FPGA

produces the same results as verilog simulation: number of retired
instructions, number of cycles, and IPC (first three rows of the
table). The FPGA yields a tremendous reduction in simulation
time (2,000–5,000x speedup). The FPGA speed is 50 MHz,
although due to virtual cycles for FPGA management the effective
speed (simulated cycles ÷ simulation time) is 7 MHz to 15 MHz,
still substantial.

(a) Physical design of a 4-way superscalar processor.

(b) Same design synthesized to Virtex-5 FPGA.

Figure 6.

Table 6. FPGA results with several 10M SimPoints.
 bzip gzip mcf parser
FPGA & verilog retired instr. 10000000 10000000 10000000 10000000
FPGA & verilog cycles 11239464 17000790 8342999 11588294
FPGA & verilog IPC 0.89 0.59 1.20 0.86
FPGA simulation time (s) 0.75 1.22 1.21 0.87
verilog simulation time (s) 4,018 5,536 2,870 3,748
simulation speedup 5,357 4,538 2,372 4,308
FPGA speed (MHz) 50 50 50 50
FPGA effective speed (MHz) 15 14 7 13

6. RESULTS: ANALYSIS OF A
WORKLOAD-AGNOSTIC
HETEROGENEOUS MULTI-CORE
In this section, we explore a heterogeneous multi-core design with
the goal of maximizing single-thread performance. Prior work
achieved similar objectives by exhaustively simulating
applications on all cores [16][17] or multiprogrammed workloads
on all core combinations [10], in a huge design space. Aside from
the computational complexity of this approach, there is some
concern about the performance robustness of a design trained to a
specific workload.

These perceived drawbacks motivate us to take a very different
approach. Cores are selected to provide a broad range of
microarchitectural configurations without a priori knowledge of
applications. We intentionally do not customize cores or core
combinations to a specific workload (other than as optimal
yardsticks), because we want a heterogeneous multi-core design
that maximizes single-thread performance for arbitrary
instruction-level behavior. Our first, unsophisticated application
of this idea produced a heterogeneous multi-core with 21 core
types, which we call G21: the “G” stands for generic
heterogeneous multi-core, a reference to its broad diversity that
was not influenced by a specific workload.

This section is organized as follows. Section 6.1 describes the
design space and performance metric. Section 6.2 describes the
design process for coming up with G21. Section 6.3 describes the
benchmarks. Section 6.4 presents results and analysis of G21 and
its derivatives.

6.1 The Design Space
Using FabScalar’s CPSL, we created a design space of almost
38,000 different cores with cycle times that range from 0.5ns to
1.2ns in 0.1ns increments. For a given width and depth of a
canonical pipeline stage, its stage-specific structures are
maximized within the cycle time constraint (thus pruning designs
that underutilize slack). IPC is measured using FabScalar’s cycle-
accurate C++ simulator (faster than verilog simulation, and we
can also include floating-point benchmarks in the exercise).
Performance is measured in billions-of-instructions-per-second
(BIPS), the product of IPC and frequency.

6.2 G21: The Proposed Workload-Agnostic
Heterogeneous Multi-core
The proposed workload-agnostic design provides superscalar
widths of 2 through 8. For each width, a cycle time range is
chosen commensurate with the width, i.e., narrower cores have a
faster cycle time range than wider cores. Table 7 shows the three
cycle times selected for each width. The three cycle times
accommodate small, medium, and large structure sizes for that
width and maximum depth. This yields a total of 21 core types,
three sizes/frequencies for each of seven widths.

Table 7. The 21 cores.
 larger structures
 higher frequency
 cycle time (ns)

2 or 3 0.5 0.6 0.7
4 or 5 0.6 0.7 0.8
6 or 7 0.7 0.8 0.9

superscalar width

8 0.8 0.9 1.0

6.3 The Benchmarks
We use integer and floating-point benchmarks from SPEC. The
SimPoint tool [21] was used to select up to four or five 10 million
instruction SimPoints from each integer or floating-point
benchmark, respectively. In all, there are 59 SimPoints in the
experiments, which we call “benchmarks” from now on.

6.4 Results and Analysis of G21
We assume ideal steering: for a given multi-core design, the
performance reported for a benchmark is the highest performance
attainable among all cores in the design. We consider the
following multi-core designs:

 Best-1: This design has only 1 core type. It is the best core in
the entire design space, on average, i.e., Best-1 achieves the
highest harmonic-mean of BIPS (over all the benchmarks) of
any one core.

 G21: This is the proposed generic heterogeneous multi-core
with 21 core types (Section 6.2).

In all graphs that follow, the performance of a given design is
normalized to the peak performance attainable by the benchmark
considering the entire design space (BIPS / Peak_BIPS).

Figure 7 shows the performance of G21. G21 is remarkably
robust. On average, G21 comes within 3% of peak performance.
More importantly, no individual benchmark achieves less than
88% of its peak performance considering the entire design space.
This level of performance robustness is not due to a lack of
diversity among benchmarks: the performance of Best-1, also
shown in Figure 7, while impressive for just a single core type,
shows severe sub-optimality for many benchmarks. On average, it
is 10% off of peak performance. The real problem with Best-1 is
two-fold: individual benchmarks for which the Best-1 design was
trained are as much as 30% off of their peak performance. Being
heavily trained to this workload, it is possible to observe even
more severe sub-optimality for other applications.

The fact that G21 was not trained for these benchmarks, and yet
attains close to peak performance with no severe outliers,
highlights the merits of workload-agnostic design: low
computational complexity and some relief from concerns about
performance robustness. Whereas G21 is not practical to design
today, FabScalar may make it practical in the near future.

0.0

0.2

0.4

0.6

0.8

1.0

b
zi
p
.1
8
7
3

b
zi
p
.3
0
8
9

b
zi
p
.3
4
1

b
zi
p
.9
2
7
7

cr
af
ty
.2
1
5
1
3

cr
af
ty
.1
2
1
6
6

cr
af
ty
.5
6
4
7

cr
af
ty
.2
3
4

ga
p
.3
2
2
9

ga
p
.1
5
7
8
3

ga
p
.1
6
9
1
3

ga
p
.2
1
0
1
0

gc
c.
2
6
4

gc
c.
8
7
3

gc
c.
4
7
3

gc
c.
6
2
8

gz
ip
.1
3
6
1

gz
ip
.7
7
9

gz
ip
.5
0
3
0

m
cf
.2
0
1
8

m
cf
.3
0
9
1

p
ar
se
r.
5
2
0
1

p
ar
se
r.
1
9
9
7
2

p
ar
se
r.
2
4
8
5
6

p
ar
se
r.
1
0
7
5
8

p
e
rl
.1
8

p
e
rl
.1
3
0
9

p
e
rl
.7
8
1

p
e
rl
.4
1
5

tw
o
lf
.2
4
8
2

tw
o
lf
.2
7
7
5
5

tw
o
lf
.1
5
9
6
8

tw
o
lf
.8
1
5
5

vo
rt
e
x.
7
4
3
2

vo
rt
e
x.
9
0
2
5

vo
rt
e
x.
5
8
7
7

vp
r.
3
4
6
3

vp
r.
1
3
5
0

vp
r.
6
1
2
0

am
m
p
.3
7
8
3

am
m
p
.2
9
4
5

am
m
p
.3
0
1
8

am
m
p
.2
8
9
1

am
m
p
.2
4
2
3

ap
p
lu
.1
0

ap
p
lu
.1
2

e
q
u
ak
e
.1
0
9
3

e
q
u
ak
e
.8
6
9

e
q
u
ak
e
.1
0
4
6

e
q
u
ak
e
.2
7
9
6

e
q
u
ak
e
.4
6
3

m
gr
id
.3
6
5
7

m
gr
id
.2
9
7
7

m
gr
id
.3
2
8
3

m
gr
id
.3
4
9
0

sw
im

.1
5
8
3

sw
im

.1
2
2
6

sw
im

.1
5
8
2

sw
im

.1
3
1
2

A
V
ER
A
G
EB
IP
S
/
p
e
ak
 B
IP
S

Best‐1 G21

Figure 7. Performance of G21 and Best-1, normalized to peak performance considering entire design space.

We also infer that, from the standpoint of single-thread
performance, the microarchitectural diversity provided by G21 is
highly representative of the entire design space. In other words,
G21 can be used in lieu of the full design space if we do want to
distill a smaller number of cores by leveraging knowledge of the
workload. We consider the following multi-core designs:

 Best-N-of-G21: This design has N core types (we vary N)
selected from G21’s core types. These cores constitute the
best N-core combination from G21, on average (harmonic-
mean of BIPS).

 Robust-N-of-G21: This design has N core types (we vary N)
selected from G21’s core types. The N cores are selected to
minimize the maximum performance degradation for any one
benchmark, compared to its peak performance on G21.

Table 8 shows results of these two consolidation strategies as N is
varied. The BIPS of each design is shown normalized to the peak
BIPS on G21. Also shown is the maximum degradation observed
for any one benchmark (compared to its peak performance on
G21). For N=2–5, there is a tradeoff between maximizing average
performance and minimizing the impact on any one benchmark.
Best-4 and Robust-4 both use one more core than Best-3, but to
different ends. Best-4 maintains the same worst-case individual-
benchmark degradation as Best-3, but improves average
performance. In contrast, Robust-4 achieves the same average
performance as Best-3, but bounds worst-case individual-
benchmark degradation to 11% compared to 15.4% for Best-3.
Evidently, Robust-4 picks an extra core that is more “outlier” than
“average”, to serve the most “outlier” benchmark, whereas Best-4
picks an extra core that is more “average” than “outlier” to serve
more benchmarks. In both approaches, outlier benchmarks tend to
dominate the selection of additional cores at a certain point (N>5).

Table 8. Using a smaller number of cores from G21.
Best-N-of-G21 Robust-N-of-G21

N BIPS/
Peak-BIPS-G21

Max %
degradation

BIPS/
Peak-BIPS-G21

Max %
degradation

1 0.924 27.1 0.924 27.1
2 0.965 19.3 0.951 14
3 0.977 15.4 0.967 14
4 0.985 15.4 0.976 11
5 0.992 11 0.980 10
6 0.996 5.1 0.996 5.1
7 0.998 3.9 0.998 3.9
8 0.998 3.9 0.998 3.9

7. DISCUSSION
7.1 Extensibility
While it is difficult to make generalizations about extensibility,
we present two specific examples. The examples relate to two
major IPC bottlenecks in the FabScalar-generated cores presented
earlier: load misspeculations and branch mispredictions.

In the cores presented earlier, completion of a load is not stalled
by prior unissued stores. If the speculatively-completed load is
later discovered to depend on one of the stores, the recovery
penalty is severe: the processor waits until the load reaches the
head of the active list, squashes the load and all instructions after
it, and restarts from the load. It took one of the authors two days
to enhance the CPSL with a simple dependence predictor (predict
a load will conflict if it has in the past) and logic to stall
completion of suspect loads in the load queue until all prior stores
have issued. There is already a mechanism to complete loads that
were once stalled (for cache-missed loads): the load is reinjected
into the load-store pipe (in the next free cycle) at which time it is

safely completed. The changes are localized to the Dispatch stage
(dependence predictor) and load queue (bit vectors for tracking
store queue entries of unissued stores). The global impact is small:
there is an additional signal from the Retire stage to Dispatch
stage (PC of a misspeculated load trains the dependence predictor)
and loads carry an extra bit with them (whether or not to
speculatively complete). Two of the benchmarks, bzip and vortex,
have quite low branch misprediction rates, hence, their
performance is sensitive to load misspeculations. Consequently,
adding the dependence predictor increased the IPC of bzip from
0.89 to 1.39 and the IPC of vortex from 0.76 to 1.14 (for 10M
SimPoints).

In the second example, one of the authors changed the Fetch-1
stage to totally decouple the conditional branch predictor
(taken/not-taken prediction) from the next-PC logic (BTB, RAS,
and next-PC mux), enabling pipelining a large/complex branch
predictor arbitrarily deep (high accuracy with fast cycle-time)
[30]. This change took longer to implement than the previous
example because it is more complex and required inventive
design. Nevertheless, changes were confined to the Fetch-1 stage.

7.2 Design and Verification Effort
FabScalar does not completely eliminate design effort or take the
designer out of the picture. Rather, it boosts designer productivity
by generating RTL designs of whole cores, the starting point for
design tuning, verification, and physical design.

An open question is whether or not FabScalar reduces verification
effort and by how much. In future work, we would like to reduce
verification to (1) formally proving that the canonical superscalar
template is correct and (2) “certifying” specific implementations
of canonical pipeline stages, in isolation. Aside from formal
methods, as open-source gateware, verification coverage may
increase over time through a community of users.

8. SUMMARY AND FUTURE WORK
We presented FabScalar, a novel toolset for automatically
composing the synthesizable register-transfer-level (RTL) designs
of arbitrary cores within a canonical superscalar template. Each
canonical pipeline stage has many variants that differ in their
complexity (superscalar width and stage-specific structure sizes)
and depth of sub-pipelining, and canonical pipeline stages are
composable into an overall core. Thus, FabScalar helps mitigate
practical issues that currently impede proliferating
microarchitecturally diverse cores.

We performed detailed validation experiments along three fronts
to evaluate the quality of RTL designs generated by FabScalar:
functional and performance (IPC) validation, timing validation
(cycle time), and confirmation of suitability for standard ASIC
flows. These experiments confirmed that FabScalar-generated
RTL designs are of good quality.

We plan to release the FabScalar toolset for other researchers and
developers to use and expand, as open-source gateware. We
intend to add floating-point instruction support, media instruction
support, and TLBs; implement the MIPS ISA so that the latest gcc
toolchain can be leveraged; relax backend constraints (multiple of
any FU type, any combination of FUs in each execution pipeline,
etc.); and explore microarchitectural alternatives, such as those
outlined in Table 3. The problem of choosing a set of diverse
cores to maximize single-thread performance on arbitrary
applications, deserves a more comprehensive treatment and
should also consider power. A closely related problem is matching
programs and program phases to cores at run-time. Applying

formal verification methods and tools in the FabScalar framework
is worth pursuing. We are currently working on automating the
mapping of FabScalar-generated cores onto FPGAs for
accelerating verification, superscalar processor simulation, and
design space exploration.

9. ACKNOWLEDGMENTS
We thank the anonymous reviewers for their valuable feedback.
This research was supported by NSF grant CCF-0811707 and
gifts from Intel and IBM. Any opinions, findings, and conclusions
or recommendations expressed herein are those of the authors and
do not necessarily reflect the views of the National Science
Foundation.

10. REFERENCES
[1] M. Anderson. A More Cerebral Cortex. IEEE Spectrum, pp.

58-63, Jan. 2010.
[2] M. D. Brown, J. Stark, Y. N. Patt. Select-Free Instruction

Scheduling Logic. 34th Int’l Symp. on Microarch., Dec. 2001.
[3] D. Burger, T. M. Austin, S. Bennett. Evaluating Future

Microprocessors: The SimpleScalar ToolSet. University of
Wisconsin-Madison Technical Report CS-TR-1308, 1996.

[4] J.C. Dehnert, B.K. Grant, J.P. Banning, R. Johnson, T.
Kistler, A. Klaiber, J. Mattson. The Transmeta Code
Morphing™ Software: Using Speculation, Recovery, and
Adaptive Retranslation to Address Real-life Challenges. Int’l
Symp. on Code Generation and Optimization, March 2003.

[5] M. D. Hill and M. R. Marty. Amdahl’s Law in the Multicore
Era. IEEE Computer, July 2008.

[6] V. Kathail, S. Aditya, R. Schreiber, B. Ramakrishna Rau, D.
C. Cronquist, M. Sivaraman. PICO: Automatically Designing
Custom Computers. IEEE Computer, 35(9):39-47, Sep.
2002.

[7] K. R. Kishore, V. Rajagopalan, G. Beloev, R. Thekkath.
Architectural Strengths of the MIPS32 74K Core Family.
White Paper, May 2000.

[8] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and D.
M. Tullsen. Single-ISA Heterogeneous Multi-core
Architectures: The Potential for Processor Power Reduction.
Int’l Symposium on Microarchitecture, Dec. 2003.

[9] R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi, K. I.
Farkas. Single-ISA Heterogeneous Multi-Core Architectures
for Multithreaded Workload Performance. 31st Int’l
Symposium on Computer Architecture, June 2004.

[10] R. Kumar, D. M. Tullsen, and N. P. Jouppi. Core
Architecture Optimization for Heterogeneous Chip
Multiprocessors. 15th Int’l Symposium on Parallel
Architecture and Compilation Techniques, Sep. 2006.

[11] B. C. Lee and D. M. Brooks. Efficiency Trends and Limits
from Comprehensive Microarchitectural Adaptivity. 13th
Int’l Conference on Architectural Support for Programming
Languages and Operating Systems, March 2008.

[12] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M.
Tullsen, N. P. Jouppi. McPAT: An Integrated Power, Area,
and Timing Modeling Framework for Multicore and
Manycore Architectures. 42nd Int’l Symposium on
Microarchitecture, Dec. 2009.

[13] S. McFarling. Combining Branch Predictors. DEC WRL TN-
36, 1993.

[14] E. J. McLellan, D. A. Webb. The Alpha 21264
Microprocessor Architecture. Int’l Conference on Computer
Design, Oct. 1998.

[15] T. Y. Morad, U. C. Weiser, A. Kolodny, M. Valero, and E.
Ayguadé. Performance, Power Efficiency and Scalability of

Asymmetric Cluster Chip Multiprocessors. Computer
Architecture Letters (CAL), 5(1):14-17, 2006.

[16] H. H. Najaf-abadi, E. Rotenberg. Configurational Workload
Characterization. ISPASS, 2008.

[17] H. H. Najaf-abadi, E. Rotenberg. Architectural Contesting.
15th Int’l Symp. on High-Perf. Comp. Arch., Feb. 2009.

[18] H. H. Najaf-abadi, N. K. Choudhary, and E. Rotenberg.
Core-Selectability in Chip Multiprocessors. 18th Int’l
Conference on Parallel Architectures and Compilation
Techniques, Sep. 2009.

[19] S. Palacharla, N. P. Jouppi, J. E. Smith. Complexity-effective
Superscalar Processors. Int’l Symposium on Computer
Architecture, June 1997.

[20] A. Seznec, S. Jourdan, P. Sainrat, and P. Michaud. Multiple-
block Ahead Branch Predictors. 7th Int’l Conference on
Architectural Support for Programming Languages and
Operating Systems, Oct. 1996.

[21] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder.
Automatically Characterizing Large Scale Program
Behavior. 10th Int’l Conference on Architectural Support for
Programming Languages and Operating Systems, Oct. 2002.

[22] B. Sinharoy, R. N. Kalla, J. M. Tendler, R. J. Eickemeyer, J.
B. Joyner. POWER5 System Microarchitecture. IBM Journal
of Research and Development, 49(4/5):505-521, July 2005.

[23] J. E. Stine, I. Castellanos, M. Wood, J. Henson, F. Love, W.
R. Davis, P. D. Franzon, M. Bucher, S. Basavarajaiah, J. Oh,
R. Jenkal. FreePDK: An Open-Source Variation-Aware
Design Kit. Int’l Conference on Microelectronic Systems
Education, 2007.

[24] L. Strozek, D. Brooks. Efficient Architectures through
Application Clustering and Architectural Heterogeneity. Int’l
Conference on Compilers, Architecture, and Synthesis for
Embedded Systems, 2006.

[25] M. A. Suleman, O. Mutlu, M. K. Qureshi, and Y. N. Patt.
Accelerating Critical Section Execution with Asymmetric
Multi-Core Architectures. 14th Int’l Conference on
Architectural Support for Programming Languages and
Operating Systems, March 2009.

[26] S. Thoziyoor, N. Muralimanohar, J. H. Ahn, N. P. Jouppi.
CACTI 5.1. Tech. Report HPL-2008-20, HP Labs, 2008.

[27] N. J. Wang, J. Quek, T. M. Rafacz, and S. J. Patel.
Characterizing the Effects of Transient Faults on a High-
Performance Processor Pipeline. Int’l Conference on
Dependable Systems and Networks (DSN), 2004.

[28] http://www.tensilica.com/products/xtensa-customizable.htm
[29] http://www.mips.com/media/files/74k/MIPS_74K_509.pdf
[30] J. Gandhi. FabFetch: A Synthesizable RTL Model of a

Pipelined Instruction Fetch Unit for Superscalar Processors.
M.S. Thesis, ECE Dep’t, NC State University, June 2010.

[31] H. Mayukh. FabIssue: Automatic RTL Generation of Issue
Logic in Superscalar Processors for Core Customization.
M.S. Thesis, ECE Dep’t, NC State University, June 2010.

[32] T. A. Shah. FabMem: A Multiported RAM and CAM
Compiler for Superscalar Design Space Exploration. M.S.
Thesis, ECE Dep’t, NC State University, May 2010.

* The following authors contributed to this paper while at North
Carolina State University. Tanmay A. Shah is now with Intel,
LTD Advanced Design, Hillsboro, OR, USA. Hiran Mayukh and
Jayneel Gandhi are now with the Department of Electrical and
Computer Engineering, University of Wisconsin, Madison, WI,
USA. Hashem H. Najaf-abadi is now with Intel, Visual & Parallel
Computing Group (VPG), Folsom, CA, USA.

	1. INTRODUCTION
	2. RELATED WORK
	3. METHODOLOGY
	4. FABSCALAR
	4.1 Canonical Superscalar Processor and the CPSL
	 FabMem: A Multiported RAM and CAM Compiler

	 RESULTS: VALIDATION
	5.1 Functional and IPC Validation
	5.2 Timing Validation
	5.3 Suitability for Standard ASIC Flows

	6. RESULTS: ANALYSIS OF A WORKLOAD-AGNOSTIC HETEROGENEOUS MULTI-CORE
	6.1 The Design Space
	6.2 G21: The Proposed Workload-Agnostic Heterogeneous Multi-core
	6.3 The Benchmarks
	6.4 Results and Analysis of G21

	7. DISCUSSION
	7.1 Extensibility
	7.2 Design and Verification Effort

	8. SUMMARY AND FUTURE WORK
	9. ACKNOWLEDGMENTS
	10. REFERENCES

