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ABSTRACT 
A growing body of work has compiled a strong case for the 
single-ISA heterogeneous multi-core paradigm. A single-ISA 
heterogeneous multi-core provides multiple, differently-designed 
superscalar core types that can streamline the execution of diverse 
programs and program phases. No prior research has addressed 
the “Achilles’ heel” of this paradigm: design and verification 
effort is multiplied by the number of different core types. 

This work frames superscalar processors in a canonical form, so 
that it becomes feasible to quickly design many cores that differ in 
the three major superscalar dimensions: superscalar width, 
pipeline depth, and sizes of structures for extracting instruction-
level parallelism (ILP). From this idea, we develop a toolset, 
called FabScalar, for automatically composing the synthesizable 
register-transfer-level (RTL) designs of arbitrary cores within a 
canonical superscalar template. The template defines canonical 
pipeline stages and interfaces among them. A Canonical Pipeline 
Stage Library (CPSL) provides many implementations of each 
canonical pipeline stage, that differ in their superscalar width and 
depth of sub-pipelining. An RTL generation tool uses the template 
and CPSL to automatically generate an overall core of desired 
configuration. Validation experiments are performed along three 
fronts to evaluate the quality of RTL designs generated by 
FabScalar: functional and performance (instructions-per-cycle 
(IPC)) validation, timing validation (cycle time), and confirmation 
of suitability for standard ASIC flows. With FabScalar, a chip 
with many different superscalar core types is conceivable. 

Categories and Subject Descriptors 
B.5.2 [Register-Transfer-Level Implementation]: Design Aids 
– automatic synthesis. C.1.3 [Processor Architectures]: Other 
Architecture Styles – pipeline processors, heterogeneous systems. 

General Terms 
Performance, Design, Verification. 

Keywords 
superscalar processors, instruction-level parallelism (ILP), 
heterogeneous (asymmetric) multi-core, custom processors 

1.  INTRODUCTION 
A growing body of work has compiled a strong case for the 
single-ISA heterogeneous multi-core paradigm. A single-ISA 
heterogeneous multi-core provides multiple, differently-designed 
superscalar core types for streamlining the execution of sequential 
[8][11][16][17], parallel [5][15][18][25], and multiprogrammed 
[9][10] workloads, by exploiting diversity across and within 
applications. The core types may differ in their superscalar 
fetch/issue widths, pipeline depths, instruction scheduling (in-
order or out-of-order), sizes of units involved in exposing 
instruction-level parallelism (ILP) (issue queue, load and store 
queues, physical register file, reorder buffer, etc.), function unit 
mix, and sizes of predictors and caches. 

Prior works in this area project significant performance and power 
advantages for microarchitecturally diverse superscalar cores. No 
prior research has addressed the “Achilles’ heel” of this paradigm: 
design and verification effort is multiplied by the number of 
different core types. This factor limits the amount of 
microarchitectural diversity that can be practically implemented. 

In this paper, we propose framing superscalars in a canonical 
form, so that it becomes feasible to quickly design many cores 
that differ in the three major superscalar dimensions: superscalar 
width, pipeline depth, and sizes of structures for extracting ILP 
(frequency depends on these three). The canonical form is at the 
level of logical pipeline stages: fetch, decode, rename, dispatch, 
issue, etc. We call this a “canonical superscalar processor” and its 
logical pipeline stages are called “canonical pipeline stages”. 
Within this framework, all superscalar processors have the same 
canonical structure, i.e., each has a complete set of canonical 
pipeline stages and the same interfaces among them. Where they 
differ is in the underlying implementations of their canonical 
pipeline stages. A Canonical Pipeline Stage Library (CPSL) is 
populated with multiple designs for each canonical pipeline stage. 
A specific superscalar processor can be composed by selecting 
one design for each canonical pipeline stage from the CPSL and 
stitching together a complete set of canonical pipeline stages. This 
composition is automated due to invariant interfaces among 
canonical pipeline stages and the confinement of 
microarchitectural diversity within the canonical pipeline stages. 
Finally, microarchitectural diversity is focused along key 
dimensions that both define superscalar architecture and 
differentiate individual superscalar processors. Namely, the 
different designs of a given canonical pipeline stage vary along 
three major dimensions: 
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(1)  Superscalar complexity: The superscalar complexity of a 
canonical pipeline stage is a product of its superscalar width 
(number of pipeline “ways”) and the sizes of its associated 
ILP-extracting structures (e.g., issue queue, physical 
register file, predictors, etc.). Increasing superscalar 
complexity may contribute to extracting more ILP in the 
program but typically increases the logic delay through the 
canonical pipeline stage. The effect of increasing logic 
delay on overall performance ultimately depends on the 
next differentiating factor. 

(2) Sub-pipelining: A canonical pipeline stage is nominally one 
cycle in duration, but may be sub-pipelined deeper to 
achieve a higher clock frequency. 

(3) Stage-specific design choices: Often there are multiple 
alternatives for handling certain microarchitectural issues, 
such as speculation alternatives, recovery alternatives, and 
so forth. These alternatives present a range of costs and 
benefits, moreover, the costs and benefits often depend on 
specific instruction-level behavior in the program. 

Our approach has been implemented in a novel toolset called 
FabScalar. FabScalar consists of a definition of the canonical 
superscalar processor, a CPSL containing many synthesizable 
register-transfer-level (RTL) designs of each canonical pipeline 
stage, and a tool for automatically composing the RTL designs of 
arbitrary superscalar cores by referencing the CPSL. 

In addition, the FabScalar toolset has several other notable 
features. Since highly-ported RAMs and CAMs are prevalent in 
superscalar processors and significantly impact area, power, and 
cycle time, we developed FabMem, a tool for automatically 
generating the physical designs (layouts) of multiported RAMs 
and CAMs. While memory compilers are not new, to the best of 
our knowledge, there is no commercially available memory 
compiler that can generate more than a few ports (otherwise we 
would gladly use it); a 4-issue superscalar requires a 12-ported 
register file, for example. FabScalar also provides a co-simulation 
environment in which a functional simulator written in C++ runs 
concurrently with verilog simulation of the superscalar processor. 
The two are independent and the functional simulator assists with 
checking and debugging the verilog simulation by comparing 
instructions’ results as they retire from the processor. The co-
simulation environment also simplifies running standard 
benchmarks by not requiring full-system simulation. Finally, 
FabScalar provides a cycle-accurate C++ simulator which can 
accurately model all of the cores that can be composed from the 
CPSL. Cycle-accuracy is achieved by using the same canonical 
superscalar processor definition and the same interfaces among 
canonical pipeline stages. The cycle-accurate simulator is useful 
for faster exploration and performance debugging of RTL designs. 

Validation experiments are performed along three fronts to 
evaluate the quality of RTL designs generated by FabScalar: 
functional and performance (instructions-per-cycle (IPC)) 
validation, timing validation (cycle time), and confirmation of 
suitability for standard ASIC flows. For functional and IPC 
validation, a dozen different cores are generated and they all 
successfully run 100 million instruction SimPoints of SPEC 
integer benchmarks. The IPCs are within expected ranges for 
SPEC, IPC differences among cores correspond well with their 
microarchitectural differences, and IPCs closely track the IPCs 
produced by FabScalar’s cycle-accurate C++ simulator. For 
timing validation, we compare the cycle times of three 
commercial RISC superscalar processors with cycle times of 

FabScalar generated cores having similar configurations. (Delays 
are converted to technology-agnostic FO4 delays.) The three 
commercial processors represent a spectrum of highly custom 
designed to fully-synthesized cores and the results confirm that 
the FabScalar RTL is of good quality. To demonstrate suitability 
of FabScalar generated RTL for standard ASIC flows, we 
synthesize and place-and-route a sample core. 

FabScalar does not address physical design effort beyond 
automated synthesis and place-and-route. Nonetheless, verified 
synthesizable RTL is the essential starting point for the physical 
design process. Physical design proceeds from full synthesis to 
incrementally tuned custom designs. By way of example, 
FabMem replaces structures that are otherwise synthesized to flip-
flops with physical designs of RAMs and CAMs. Some 
superscalar cores in the embedded space are fully synthesized, 
such as the MIPS 74K [7]. There is even a recent example of out-
sourcing processor tuning: Intrinsity performed targeted custom 
circuit design of the ARM Cortex-A8 to boost its frequency [1]. 

To be clear, since we are attacking the design-effort problem, 
ultimately, we intend FabScalar to be used for the design, 
verification, and fabrication of chips comprised of 
microarchitecturally diverse superscalars. Although still in the 
academic stages at this point, this is the trajectory we are aiming 
for. 

That said, FabScalar is also useful for general computer 
architecture research. As computer architecture research becomes 
increasingly driven by technology related problems (Moore’s law 
scaling, power, temperature, reliability, variability), open-source 
synthesizable verilog and physical designs of arbitrary superscalar 
processors are potentially of value. Another promising application 
of FabScalar is FPGA-based acceleration of superscalar processor 
simulation. Along these lines, we synthesized a FabScalar-
generated 4-way superscalar processor to a single Virtex-5 FPGA, 
leveraging Block RAMs to emulate the core’s numerous RAMs 
and CAMs. (We present FPGA results in Section 5.3.) 

This paper makes the following contributions: 

 The idea of framing superscalar processors in a canonical 
form to address the design-effort problem posed by single-
ISA heterogeneous multi-core. This is also the first paper to 
bring solutions to bear on this problem. 

 The FabScalar toolset which streamlines the design and 
verification of superscalar processors. The ability to 
automatically generate synthesizable RTL models of 
superscalar processors of different widths and depths is 
unprecedented, as these dimensions are not a simple matter 
of parameterization. 

 Validation of the quality of the generated RTL along three 
fronts: functional and IPC validation, cycle time validation, 
and suitability for standard ASIC flows. We also confirm the 
feasibility of mapping the RTL to a dense FPGA (useful for 
accelerating verification and architectural exploration) and 
match the cycle counts from verilog simulation. 

 We propose and analyze G21, a generic heterogeneous multi-
core design comprised of 21 core types. The core types are 
selected, not based on a priori knowledge of applications, 
rather, based on providing a broad range of 
microarchitectural configurations. G21 achieves near-
speediest execution on 59 SPEC SimPoints considering the 
entire design space, despite not tailoring G21 to these 

 



benchmarks. This also implies G21 captures the diversity of 
the entire design space, and is therefore a far more efficient 
platform for selecting fewer core types based on workloads. 

The rest of this paper is organized as follows. Section 2 discusses 
related work. Section 3 describes the methodology used 
throughout the paper. Section 4 describes FabScalar, including the 
canonical superscalar processor, the CPSL, and FabMem. Section 
5 presents the validation experiments. In Section 6, we apply 
FabScalar to explore G21, and provide key insights from this 
exercise. Section 7 discusses extensibility and design and 
verification effort. Section 8 summarizes the paper and discusses 
future work. 

2.  RELATED WORK 
The Illinois Verilog Model (IVM) [27] provides the verilog for a 
semi-parameterizable 4-issue superscalar processor. Drawbacks of 
the current IVM are its unsynthesizable or poorly synthesizable 
(low frequency) verilog modules. More importantly, IVM’s 
superscalar width and pipeline depth are inflexible. These aspects 
are not easily parameterized and require FabScalar’s approach: an 
RTL generator that uses the canonical superscalar template and 
CPSL to compose a core of desired width and depth. Finally, 
FabScalar runs SPEC benchmarks out-of-the-box, and has been 
validated in terms of IPC, cycle time, and synthesizability via 
standard ASIC flows. 

Strozek and Brooks’ developed a framework for high level 
synthesis of very simple cores for embedded systems [24]. The 
Program-In-Chip-Out (PICO) framework out of HP labs [6] is 
closely related in that it customizes VLIW cores and non-
programmable accelerators for embedded applications. Tensilica’s 
Xtensa Configurable Processors automate the designer’s task of 
customizing instructions, functional units, and even VLIW 
datapaths [28]. FabScalar is unique in that it generates complex 
superscalar processors and this is evident in the novel composable 
CPSL. 

Palacharla, Jouppi, and Smith [19] developed models for 
estimating propagation delays of key superscalar pipeline stages 
(rename, issue, and bypasses). Li et. al describe a comprehensive 
power, area, and timing modeling framework for multi-core 
systems, McPAT [12]. The timing models extend Palacharla’s 
approach to multiple microarchitectural styles. FabScalar extends 
delay modeling to other critical pipeline stages such as instruction 
fetch, arbitrary core logic, and the whole core; it considers sub-
pipelining and its imbalances; and it produces RTL 
implementations of cores. FabScalar’s RTL output underscores a 
crucial distinction with computer architecture tools: the goal of 
FabScalar is to streamline the design, verification, and fabrication 
of chips, i.e., it is meant to serve as a development tool for 
designing heterogeneous multi-core chips, not just an estimation 
tool for research. 

3.  METHODOLOGY 
Table 1 shows the EDA tools used for functional verification, 
synthesis, and place-and-route. For synthesis, we used the 
FreePDK 45nm standard cell library [23]. 

Table 1.  EDA environment: ASIC flow. 
Phase EDA tool(s) used 

functional 
verification 

Cadence NC-Verilog, vers. 06.20-s006 

logic synthesis Synopsys Design Compiler, vers. X-2005.09-SP3
place & route Cadence SoC Encounter, vers. 7.1 

Since specialized, highly-ported RAMs and CAMs are so 
pervasive and essential to a superscalar processor, we have 
developed a tool (FabMem [32]) for generating their physical 
layouts and extracting timing, power, and area. While memory 
compilers are not new, we are not aware of any commercial one 
that can generate RAMs with more than a few ports. For 
simulation, RAMs and CAMs are represented with behavioral 
modules. For synthesis and place-and-route, they are replaced 
with cells and LEF macros, respectively, both from FabMem. The 
FabMem tool is described in Section 4.2. 

Custom RAM and CAM macros are used for the rename map 
table, architectural map table, active list, free list, fetch queue 
(separates the decode and rename stages), issue queue wakeup 
CAM and payload RAM, physical register file, load queue CAM 
and RAM, and store queue CAM and RAM. 

The level-1 (L1) instruction and data caches, branch target buffer 
(BTB), and conditional branch predictor are also abstracted as 
macros, with timing information obtained from CACTI 5.1 [26]. 
CACTI uses device and wire parameters derived from ITRS (refer 
to Tables 4 and 6, respectively, in the CACTI 5.1 report [26]). The 
BSIM4 Predictive Technology Model used by FreePDK and used 
for our custom circuit design, is different and more conservative. 
To bring the cache delays in line with our synthesized and custom 
logic, we recalculated CACTI’s device and wire parameters using 
the BSIM4 model. Table 2 shows the original and adjusted 
CACTI device parameters for 45nm. The table of wire parameters 
is large and is omitted due to space constraints. 

Table 2.  Original and adjusted CACTI device parameters 
(45nm). 

Device Parameter HP/LSTP/LOP
ITRS Model 

BSIM4 
Predictive 

Technology 
Model 

Lgate (nm) 18/28/22 22.6 
EOT (equiv. oxide thickness) (nm) 0.65/1.4/0.9 1.2 
VDD (V) 1/1.1/0.7 1.1 
Vth (mV) 181/532/256 400 
Ion (μA/ μ) 2047/666/749 1110 
Cox-elec (fF/ μ2) 37.7/20.1/28.2 31.3 
FO4 delay (ps) 8.21/31.2/17.86 24.22 

Each canonical pipeline stage has many underlying 
implementations in the CPSL that differ in their superscalar width 
and depth of sub-pipelining. For each design in the CPSL, we 
performed multiple synthesis runs with successively tighter timing 
constraints until the constraint could not be met. In this way, we 
converged upon the minimum propagation delay. 

4.  FABSCALAR 
This section describes the FabScalar toolset, including the 
canonical superscalar processor and CPSL (Section 4.1) and 
FabMem (Section 4.2). Section 1 described the benefits of 
FabScalar’s verilog/C++ co-simulation environment and the 
cycle-accurate configurable C++ model. Due to space constraints, 
however, we do not elaborate further on them. 

4.1  Canonical Superscalar Processor and the 
CPSL 
The canonical superscalar processor defined by FabScalar is 
shown in Figure 1. It consists of nine canonical pipeline stages: 
Fetch, Decode, Rename, Dispatch, Issue, Register Read, Execute, 
Writeback, and Retire. 
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Figure 1.  Canonical superscalar processor. 

The CPSL instruction-set architecture (ISA) is PISA [3], a close 
derivative of the MIPS ISA (minus load and branch delay slots). 
The rationale for using a simple RISC ISA is three-fold: (1) As a 
practical matter, our primary experience is with MIPS. (2) 
Contemporary processors often dynamically transform the binary 
level ISA into an implementation ISA sometimes referred to as 
micro-operations. Micro-operations resemble RISC primitives. 
One can view the chosen CPSL ISA as a canonical 
implementation ISA. Binary translation technology provides 
another path for supporting different binary level and 
implementation ISAs [4]. (3) A simpler implementation ISA 
results in a smaller core. 

The CPSL contains many synthesizable RTL designs for each 
canonical pipeline stage, that differ in their superscalar width and 
depth of sub-pipelining. Table 3 summarizes the 
microarchitectural diversity available in the current CPSL. The 
first column identifies the canonical pipeline stage. The second 
column shows ranges of width and depth. All front-end stages 
(Fetch through Dispatch) and the Retire stage vary from 1-way to 
8-way superscalar. The minimum width of all back-end stages 
(Issue through Writeback) is currently 4 because at least four 
different function units (FUs) are required: one each of simple 
ALU, complex ALU, load/store port, and branch unit. Narrower 
issue widths can be accommodated by aggregating multiple FU 
types into one pipeline way, which we have left for future work. 
The maximum width of all back-end stages is 8-way superscalar. 

The second column of Table 3 also shows ranges of depth of sub-
pipelining. Sub-pipelining was guided by natural logic boundaries 
within each canonical pipeline stage design and timing results 
from synthesis (including RAM and CAM macros generated by 
FabMem). Dispatch has only 1-deep implementations in the CPSL 
and Retire has only 2-deep implementations. All other stages have 
a range of depths. Fetch goes the deepest, ranging from 2-deep to 
5-deep. This is a result of the fetch unit having substantial logic in 
two phases, Fetch-1 and Fetch-2. Fetch-1 corresponds to 
accessing all the structures (2-way interleaved instruction cache, 
branch target buffer, branch predictor) and it also implements the 
complex next-PC logic. Fetch-2 corresponds to all logic after the 
instruction cache for extracting the fetch block from two cache 
blocks and aligning it for the decode stage, including branch 
predecode logic. Thus, Fetch is at least 2-deep: 1-deep for each of 
Fetch-1 and Fetch-2. A 2-deep version of Fetch-1 was designed 
and features block-ahead prediction [20], a somewhat elaborate 
approach for effectively pipelining the branch prediction logic. To 
our knowledge, this may be the first RTL implementation of it 
[30]. The Decode and Rename stages are separated by an 
instruction buffer (Fetch Queue), which facilitates assembling the 
full superscalar width of instructions for the Rename and Dispatch 
stages. The Decode stage can be as deep as 3-deep due to the logic 
complexity for steering and writing instructions into the buffer, 
including cracking doubleword instructions into two micro-ops. 
The Rename stage varies from 1-deep to 3-deep, with deeper 
versions increasing the amount of hazard logic for dependencies 
among multiple groups in-flight in the Rename stage. The CPSL 
provides five sub-pipelined designs of the Issue stage [31]: 

 “1-cycle issue / 1-cycle loop” (1/1): 1 cycle for the Issue stage 
as a whole (i.e., no sub-pipelining), including wakeup, select, 
and reading the payload RAM. 1 cycle for the critical 
wakeup+select loop. 

 “2-cycle issue / 1-cycle loop” (2/1): 2 cycles for the Issue 
stage as a whole, but only 1 cycle for the critical 
wakeup+select loop. The logic partitions are: (a) 
wakeup+select and (b) payloadRAM. An optimization makes 
the selected instruction’s destination tag available prior to 
reading the payloadRAM, decoupling it from the wakeup-
select loop. 

 “2-cycle issue / 2-cycle loop” (2/2): 2 cycles for the Issue 
stage as a whole and 2 cycles for the critical wakeup+select 
loop. The logic partitions are: (a) wakeup and (b) 
select+payloadRAM. 

 “3-cycle issue / 3-cycle loop” (3/3): 3 cycles for the Issue 
stage as a whole and 3 cycles for the critical wakeup+select 
loop. The logic partitions are: (a) wakeup, (b) select, and (c) 
payloadRAM. 

 “3-cycle issue / 2-cycle loop” (3/2): Same as 3/3, but only 2 
cycles for the critical wakeup+select loop (as with 2/1, the 
payloadRAM is decoupled from wakeup-select loop). 

The Register Read stage ranges from 1-deep to 4-deep. Based on 
experience with FabMem, we pipeline the wordlines of the 
Physical Register File, i.e., a sub-word of the register is returned 
each cycle. Due to pipelining the wordlines, Writeback takes the 
same number of cycles (write one sub-word per cycle). A nice 
feature is that the canonical interfaces for bypass buses are 
invariant with the degree of sub-pipelining: a value is bypassed to 
canonical pipeline stages Execute and Register Read irrespective 
of their underlying implementations, and a bypassed value is 
steered appropriately to one or multiple sub-stages within Register 
Read. 

The third column in Table 3 shows stage-specific structures that 
are implemented in the RTL. Sizes of all stage-specific structures 
are parameterized in the RTL: since sizes can take on arbitrary 
values, no ranges are specified for structures in the third column 
of Table 3. 

The final column in Table 3 considers another dimension for 
microarchitectural diversity, which we refer to broadly as 
“microarchitectural approaches”. This dimension is a potpourri of 
design choices specific to each canonical pipeline stage. It is 
outside the scope of this paper to cover all of these techniques in 
the CPSL, at the level of synthesizable RTL. Nonetheless, we felt 
it would be of interest to enumerate notable examples in Table 3 
to emphasize the potential for growing the CPSL in the future, and 
to underscore the specificity with which microarchitectural 
diversity can be targeted to specific instruction-level behavior. For 
example, certain program phases will favor one branch 
misprediction recovery strategy over another depending on the 
frequency of mispredicted branches, their distribution, and the 
criticality of their backward slices. As another example, 
techniques that are of no use for subsets of the workload space can 
be excluded from a core to streamline its frequency and static and 
dynamic power. Specific design choices that are represented in the 
current CPSL are highlighted in boldface in the last column of 
Table 3. 

 



4.2  FabMem: A Multiported RAM and CAM 
Compiler 
We custom-designed RAM and CAM bitcells with a wide range 
of port configurations supporting scalar through 8-way 
superscalar pipelines. Bitcell designs, address decoder blocks, 
wordline drivers, precharge circuits, write circuits, column muxes, 
sense amps, and input and output drivers, form a cell library for 
composing RAMs and CAMs. Figure 2 shows the layout of a 
16R8W RAM bitcell. 

Figure 3 shows the FabMem tool flow [32]. The first script takes 
as input the logical depth (D) and width (W) of the memory as 

well as the desired number of read (Rp) and write ports (Wp). The 
script references the cell library to generate a SPICE netlist of the 
critical path of the memory. It generates three different netlists, 
for three different degrees of column muxing (1, 2, and 4), to find 
a good underlying physical geometry. It also generates top-level 
simulation files that apply performance stress tests. These tests 
induce worst-case coupling capacitance scenarios (e.g, bitlines 
transitioning in opposite directions) and loading capacitance 
scenarios (e.g., heavy loading of the bitcell by reading it 
simultaneously on all ports). The SPICE simulation results are 
tabulated and the user identifies the best degree of column muxing 
(DC) based on this initial exploration. 

Table 3.  Overview of canonical pipeline stage designs available in the CPSL. 
Canonical pipeline 

stage 
Dimensions 

(W=width, D=depth) 
Stage-specific structures 

(sizes parameterized in RTL) 
Microarchitectural approaches 

Fetch W = 1 to 8, D = 2 to 5 
 
Fetch-1:  1 or 2 sub-stages 
Fetch-2:  1 to 3 sub-stages 

Branch or pattern history table 
(BHT or PHT) 

Branch target buffer (BTB) 
Return address stack (RAS) 
L1 Instruction Cache 

Branch prediction algorithm 
No interleaving vs. 2-way interleaving 
Block-based BTB vs. interleaved BTB 
Multi-cycle fetch: 

unpipelined 
pipelined using block-ahead prediction [20] 

Decode W = 1 to 8, D = 1 to 3 Fetch queue Micro-operation cracking 
Non-speculative vs. speculative decode (if variable 
length ISA) 

Rename & 

Retire 

W = 1 to 8, D = 1 to 3 

W = 1 to 8, D = 2 

 

Rename map table (RMT) 
Architectural map table (AMT) 
# Shadow map tables: 0 or 4 
Free list 
Active list 
Phys. reg. ready bit table 

AMT vs. no AMT 
Branch misprediction recovery 

checkpoint (shadow map) 
handle like exception 
walk active list forward from head 
walk active list backward from tail 

Exception recovery 
restore RMT using AMT 
restore RMT by walking active list backward 

Freeing registers 
read prev. mapping from RMT, active list 

pushes freelist 
read prev. mapping from AMT, AMT pushes 

freelist 
Dispatch W = 1 to 8, D = 1 Issue queue (IQ) freelist Collapsing IQ vs. freelist based IQ 
Issue W = 4 to 8, D = 1 to 3 

 
Sub-pipelining variants: 
1/1, 2/1, 2/2, 3/3, 3/2 
(see text for explanation) 

Issue queue (IQ) In-order vs. out-of-order 
Collapsing IQ vs. freelist based IQ 
Multiple schedulers vs. single scheduler 
Pipelined wakeup+select: 

1-cycle producers non-speculatively wakeup 
dependents 

1-cycle producers speculatively wakeup 
dependents [2] 

Load hit/miss: 
predict hit always 
predict miss always 
hit predictor 

Load SQ conflict (with unknown store address): 
predict no SQ conflict always 
predict SQ conflict always 
memory dependence predictor 

Recovery for spec. wakeup & load conflict spec.: 
replay from IQ 
replay from replay buffer 
handle like exception (squash) 

Split stores 
Register Read W = 4 to 8, D = 1 to 4 Physical register file n/a 
Execute 
 

W = 4 to 8, D = FU specific 
 
# simple ALU: 1 to 5,  D = 1 
# complex ALU: 1,  D = 3 
# load/store ports: 1,  D = 2 
# branch units: 1,  D=1 

Load queue (LQ) 
Store queue (SQ) 
L1 Data Cache  

Store-load forwarding vs. no forwarding 
Many LQ/SQ designs possible for reducing 

associative searches (NLQ, SVW, SQIP) 

Writeback/Bypass W = 4 to 8 
D = matches Register Read 

n/a Full bypasses vs. hierarchical or partial bypasses 

 



 
Figure 2.  Top: Layout of 16R8W RAM bitcell.  Bottom: 128-
entry 32-bit 16R8W register file macro. 

A SKILL script takes inputs D, W, Rp, Wp, and now DC. SKILL 
is a scripting language for automatically generating layouts. 
Cadence Virtuoso runs the SKILL script and it generates a full 
layout of the memory, referencing the cell library. In parallel, the 
user runs a third script that also takes D, W, Rp, Wp, and DC as 
input, and generates a full source netlist of the memory. 
Meanwhile Calibre DRC runs design rule checks on the full 
layout. After passing DRC, Calibre LVS verifies that the full 
layout is logically equivalent to the source netlist. After 
confirming this, Calibre PEX is run on the full layout in order to 
extract parasitics which are combined with the netlist for 
performing full layout SPICE simulation. The results of the full 
layout simulation can be compared against results from the faster, 
critical-path only simulation performed earlier to validate the 
latter or firm up timing and power estimates. Moreover the full 
layout can be used as a hard macro. For example, Figure 2 shows 
a 128-entry 32-bit 16R8W register file macro. 

Figure 4 compares access times produced by CACTI 5.1 (adjusted 
for BSIM4 predictive tech. model) and the RAM tool, varying 
size and port configuration (1R1W, 4R4W, and 8R8W). CACTI 
5.1 requires a minimum block size of 8B so this width is used. 
The two tend to differ more at smaller RAM sizes (CACTI does 
not produce valid results for 128B) or for a high number of ports, 
two reasons that motivated us to develop the tool. That said, they 
produce similar results at 4KB for 1R1W and 4R4W. 
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Figure 3.  Flow for generating RAM/CAM macros. 

5.  RESULTS: VALIDATION 
In this section, we evaluate the quality of the RTL designs 
produced by FabScalar. Prior to the validation experiments 
presented in this section, we performed extensive unit-level 
testing of the CPSL and testing of a baseline 4-way superscalar 
core. The latter enabled perfecting the interfaces and interactions 
among canonical pipeline stages. Subsequently, assembling and 
debugging all of the cores in this section proceeded efficiently 
within the span of a month, moreover, most of the bugs 
encountered in this period were in the course of implementing the 
composition tool itself (scripted verilog instantiation and stitching 
of stages). 

Validation is performed along three fronts: 

1. Functional and IPC validation: A dozen different cores are 
generated, covering a range of widths, sizes, and depths. 100 
million instruction SimPoints [21] of six SPEC2000 integer 
benchmarks are executed on the cores and the instructions-
per-cycle (IPC) results are within expected ranges and follow 
expected trends. The other six integer benchmarks were not 
tested because their SimPoints have occasional floating-point 
instructions and will be tested in future work when CPSL 
stage designs are augmented to handle floating-point 
instructions. 

2. Timing validation: We also evaluate the quality of the RTL 
and FabMem in terms of cycle time. To validate cycle time, 
we compare several commercial general-purpose and 
embedded cores with similarly configured FabScalar 
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Figure 4. Comparison of CACTI (using BSIM4 Predictive Tech. Model) and RAM tool. From left to right: 1R1W ports, 4R4W
ports, and 8R8W ports. 

 



generated cores. Validating cycle time is challenging and 
imperfect for a number of reasons: 

 Different technology nodes, technology libraries, and 
foundry processes. We deal with this issue by 
converting cycle time into the number of FO4 inverter 
delays of the technology, yielding a technology-
independent comparison (although the subtle influence 
that the underlying technology had on design choices 
and circuit opimization choices cannot be undone). 

 Different degrees of custom design, including the extent 
of circuit optimization, dynamic logic, and latch based 
design for accommodating logic partition imbalances. 
We deal with this issue only partially by employing 
multiported RAMs and CAMs generated by FabMem. 
We also compare to a commercial fully-synthesized 
embedded core at one end of the spectrum. Regarding 
latch based design, in addition to comparing cycle time, 
we also examine raw total logic delay through the 
pipeline from Fetch to Execute. 

 Different ISAs and unique microarchitecture features. 
For example, the current CPSL does not have Issue 
stage designs with multiple schedulers (see Table 3, last 
column) or replicated register files. Multiple smaller 
schedulers reduce the select logic delay by reducing the 
number of instructions contending for a given execution 
pipeline way, at the cost of some load imbalance among 
the multiple issue queues. More importantly, when there 
are multiple FUs of the same type, providing each FU 
with a dedicated issue queue avoids cascading select 
trees, a big delay savings. Replicated register files 
reduce the number of read ports in each register file 
copy, improving their access times. While these 
techniques are not yet represented in the CPSL, their 
effect can be modeled for timing validation purposes by 
applying a smaller/simpler issue queue and a register 
file with fewer read ports. 

3. Suitability for physical design: We demonstrate the 
suitability of the generated RTL for full synthesis and place-
and-route by a standard ASIC flow. 

5.1  Functional and IPC Validation 
The FabScalar tool was used to generate the RTL designs for the 
twelve cores described in Table 4. Before discussing the cores, 
several points about the table need clarification. First, some stage 
depths are omitted from the table: stages that have only a single 
depth implemented in the CPSL (Dispatch and Retire are always 
1-deep and 2-deep, respectively) or stages that are not varied 
among the twelve cores (Decode is fixed at 1-deep). Second, the 
Branch Order Buffer (BOB) is a FIFO buffer in the Fetch stage 
holding control information for all predicted but not yet retired 
branches. It facilitates updating the Branch History Table (BHT) 
non-speculatively as branches retire as well as checkpointing 
certain predictor state (such as the global branch history register). 
Third, the quoted fetch-to-execute pipeline depth reflects the 
minimum branch misprediction penalty, and includes 1 cycle of 
execution in the branch unit (Writeback and Retire depths are 

excluded from this number). Of the two branch recovery 
implementations represented in the CPSL – shadow maps vs. 
handle like exception (Table 3) – all twelve cores employ the 
latter lower complexity and lower performance approach. 

Cores 1 through 6 were selected primarily to explore stage widths 
and structure sizes.  Except for Core-6, depths are the same across 
these cores. Core-6 is a particularly narrow core: 2-way 
superscalar in the front-end. Core-2 has different widths in the 
front-end (4) and back-end (6). Core-5 is a particularly wide core: 
8-way superscalar fetch and execute with large resources. 

Cores 6 through 10 aim to explore depths of stages and the fetch-
to-execute pipeline depth. Cores 7 and 8 resemble Core-1 except 
that Core-7 is shallower (fetch-to-execute = 9) and Core-8 is 
deeper (fetch-to-execute = 14). They differ in their Issue and 
Register Read depths. Cores 9 and 10 are unique in that their 
Fetch-1 sub-stage of Fetch is pipelined into two cycles, using 
block-ahead branch prediction. This yields a total Fetch depth of 
three cycles. Cores 9 and 10 differ in their Issue and Register 
Read depths. Core-10 is the deepest of the twelve cores (fetch-to-
execute = 15), although not the deepest possible with the CPSL 
since Rename and Fetch (the Fetch-2 logic) can be deepened 
further. 

Cores 11 and 12 are the same as Cores 1 and 2, respectively, 
except they use the gshare [13] instead of the bimodal branch 
predictor. Since the gshare predictor can only conveniently supply 
one branch prediction per cycle, Fetch stage designs in the CPSL 
employing gshare present a tradeoff between slightly reducing 
fetch bandwidth and increasing fetch accuracy. 

Results of executing the 100 million instruction SimPoints of six 
benchmarks are shown in Figure 5. Results are shown for both 
RTL (“Verilog”) and the cycle-accurate C++ simulator (“C++”). 
Block-ahead prediction is not yet implemented in the C++ so its 
datapoints are missing for Cores 9/10. The first thing to note is 
that the cores execute the benchmarks successfully. Second, IPCs 
are within the norm for SPEC integer benchmarks, especially 
considering the conservative method for recovering from load 
misspeculations (load issues before a conflicting store) and branch 
mispredictions employed by these cores. Third, the RTL and C++ 
follow each other closely. The latter result increases confidence in 
the RTL modeling of the design: if performance anomolies are 
observed, they are more likely inherent in the design rather than in 
the RTL modeling of the design. 

Differences in IPCs among cores tend to correspond with their 
microarchitectural differences. For example, among Cores 1 
through 5, we expect Core 5 to have the highest IPC since it is the 
most aggressive core, the depths are the same, and no negative 
cycle time consequences are applied in an IPC-only comparison. 
Cores 8 and 10 are the deepest pipelines and they have lower IPCs 
than other configurations as a result. Some pairwise comparisons 
of cores could go either way due to increasing some parameters 
and decreasing others, leading to potentially non-monotonic cores. 
For example, Core-6 has the same or higher IPC than Core-2 in all 
benchmarks except bzip. Core-6 is narrow (2-way fetch) but its 
advantage over other configurations is its 1-cycle wakeup-select 
loop. In the case of bzip, however, there is apparently sufficient 
ILP to outweigh the longer wakeup-select loop. 

 



If there are anomolies, for example, a more aggressive core 
having lower IPC than a simpler core of the same pipeline depth, 
they are sometimes caused by more frequent load misspeculations 
or branch mispredictions that stem from larger window sizes. 
Extra recoveries are performance-debilitating when recovery is a 
full squash from the head of the active list. 

5.2  Timing Validation 
For timing validation, we compare cycle times and fetch-to-
execute delays of FabScalar generated cores with three different 
commercial processors: 90nm POWER5 [22], 180nm Alpha 
21364 [14], and 65nm MIPS32 74K [7][29]. All three implement 
RISC ISAs and they represent extremes from highly custom 
designed to fully synthesized (MIPS32 74K). Table 5 shows 
major microarchitecture parameters of the three processors. 

All delays are converted into the number of FO4 inverter delays 
for the underlying technology. We obtained the number of FO4 
delays in a pipeline stage for each commercial processor, from 
published data [7][14][22][29]. 

The shaded section in Table 5 shows delay comparisons between 
the commercial cores and similarly configured FabScalar 
generated cores. Five numbers are shown: 

1. Cycle time of the commercial core. 

Table 4.  Cores used for functional and IPC validation experiments. 

 Core-1 Core-2 Core-3 Core-4 Core-5 Core-6 Core-7 Core-8 Core-9 Core-10 Core-11 Core-12

Fetch/Decode/Rename/Dispatch width 4 4 5 6 8 2 4 4 6 6 4 4 
Issue/RR/Execute/WB/Retire width 4 6 5 6 8 4 4 4 6 6 4 6 
function unit mix  
(simple, complex, branch, load/store) 

1,1,1,1 3,1,1,1 2,1,1,1 3,1,1,1 5,1,1,1 1,1,1,1 1,1,1,1 1,1,1,1 3,1,1,1 3,1,1,1 1,1,1,1 3,1,1,1

fetch queue 16 16 32 32 64 8 16 16 32 32 16 16 
active list (ROB) 128 128 128 256 512 64 128 128 256 256 128 128 
physical register file (PRF) 96 128 128 192 512 64 96 96 192 192 96 128 
issue queue (IQ) 32 32 32 64 128 16 16 32 64 64 32 32 
load queue / store queue (LQ/SQ) 32 / 32 32 / 32 32 / 32 32 / 32 32 / 32 16 / 16 32 / 32 32 / 32 32 / 32 32 / 32 32 / 32 32 / 32

branch predictor bimodal 
bimodal with  
block-ahead 

gshare 

branch history table (BHT) (# entries) 64K 64K 64K 64K 64K 64K 64K 64K 64K 64K 64K 64K 
branch target buffer (BTB) (# entries) 4K 4K 4K 4K 4K 4K 4K 4K 4K 4K 4K 4K 
return address stack (RAS) 16 16 16 32 64 8 16 16 32 32 16 16 
branch order buffer (BOB) 16 16 32 32 32 8 16 16 32 32 16 16 
Fetch depth 2 2 2 2 2 2 2 2 3 3 2 2 
Rename depth 2 2 2 2 2 2 2 2 2 2 2 2 
Issue depth: total / wakeup-select loop 2 / 2 2 / 2 2 / 2 2 / 2 2 / 2 1 / 1 1 / 1 3 / 2 2 / 2 3 / 2 2 / 2 2 / 2 
Register Read (and Writeback) depth 1 1 1 1 1 1 1 4 2 4 1 1 
fetch-to-execute pipeline depth 10 10 10 10 10 9 9 14 12 15 10 10 

2. Cycle time of the similarly-configured FabScalar core of the 
same pipeline depth. 

3. Cycle time of a deeper version of the FabScalar core, with its 
fetch-to-execute pipeline depth shown in parentheses. This 
shows how much additional sub-pipelining is needed to 
compensate for the lesser degree of custom design of the 
FabScalar core. 

4. Raw fetch-to-execute delay of the FabScalar core. This is the 
sum of propagation delays of all the stages between Fetch 
and Execute. 

5. The final number is #4 above divided by the fetch-to-execute 
pipeline depth of the commercial core. This corresponds to 
the FabScalar core’s hypothetical cycle time if pipeline 
registers evenly divided up the raw fetch-to-execute delay 
(no imbalance among pipeline stages). This cycle time is the 
best that could be achieved with careful latch based design, 
for the same pipeline depth. 

The cycle time of the FabScalar-Power5 is relatively close to that 
of the Power5: 29 FO4 compared to 23 FO4, respectively. Slightly 
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Figure 5.  Results of executing 100 million instruction SimPoints of six benchmarks on the twelve cores. 

 



deeper pipelining (15 deep instead of 12 deep) yields an even 
closer 25 FO4 cycle time. The same cycle time of 24 FO4 can also 
be gotten with ideal latch-based design. All of these comparisons, 
and especially the latter (raw fetch-to-execute delay), confirm that 
the FabScalar generated RTL and the FabMem generated 
RAMs/CAMs are of reasonable quality from the standpoint of 
propagation delay. 

Table 5.  Delay comparisons of commercial processors with 
similarly configured FabScalar generated cores. 

 
Power5 Alpha-21364 MIPS 

74K 
Fetch Width 8 4 4 

Dispatch Width 5 4 2 
Issue Width 8 6 1 

Fetch Queue 24 24 12 

Issue Queue(s) 
Int+Ld/St: 36, 
FP: 24, Br.: 12, 

CR: 10 

Int:20, FP:15 Int:8, 
Agen:8

Physical Reg ister File(s) Int:120, FP:120 Int:80, FP:72 64 
Load Queue / Store Queue 32 / 32 32 / 32 8 / 8 

L1 I$ / L1 D$ (KB) 64 / 32 64 / 64 32 / 32 
fetch-to-execute pipeline depth 12 6 12 

Cycle Time of commercial core 23 FO4 25 FO4 33 FO4
Cycle Time of FabScalar core 29 FO4 37 FO4 32 FO4
Cycle Time of deeper 
FabScalar core 

25 FO4  
(depth=15) 

26 FO4  
(depth=11) 

N/A 

raw fetch-to-execute delay of 
FabScalar core 

291 FO4 188 FO4 384 FO4

Cycle Time of FabScalar core 
with ideal latch-based design 

24 FO4 32 FO4 N/A 

A larger difference is observed for the FabScalar-21364 and 
21364: 37 FO4 compared to 25 FO4. What is interesting is that 
the 21364 has a cycle time close to the Power5 despite the 21364 
being half as deep. This is partly due to lower superscalar 
complexity of the older 21364 but it also suggests a significant 
degree of total delay optimization (Alpha processors gained a 
reputation as “speed demons”). Indeed, the deeper FabScalar-
21364 needs nearly twice the pipeline depth to reach the 21364 
cycle time, despite being similarly configured. 

The MIPS 74K is a fully-synthesized design. This means that 
structures normally implemented with custom RAMs and CAMs 
are synthesized to flip-flops (except for caches). Accordingly, for 
a fair comparison, the delays for FabScalar-74K are also based on 
synthesis alone: FabMem is not used. The cycle times of these 
two fully-synthesized cores are nearly identical: 32 FO4 for the 
FabScalar-74K versus 33 FO4 for the 74K. That both cores are 
fully-synthesized, use virtually the same ISA, and have the same 
cycle time, further supports the assertion that the RTL is of 
reasonable quality from the standpoint of propagation delay. 

5.3  Suitability for Standard ASIC Flows 
To demonstrate that FabScalar-generated RTL can be taken 
through standard ASIC flows, we synthesized and place-and-
routed a 4-way superscalar processor. The physical design is 
shown in Figure 6(a). This particular core uses shadow maps for 
quickly recovering from mispredictions. Since FabMem cannot 
generate the highly specialized shadow map to rename map 
connectivity, the rename map table and shadow map table are 
synthesized to flip-flops in this physical design: this is evident in 
the large rename block in the chip diagram. 

We also synthesized the same core, minus the shadow maps, to a 
Virtex-5 FPGA in a BEE3 system, shown in Figure 6(b). Results 
of the FPGA experiments are shown in Table 6. The FPGA 

produces the same results as verilog simulation: number of retired 
instructions, number of cycles, and IPC (first three rows of the 
table). The FPGA yields a tremendous reduction in simulation 
time (2,000–5,000x speedup). The FPGA speed is 50 MHz, 
although due to virtual cycles for FPGA management the effective 
speed (simulated cycles ÷ simulation time) is 7 MHz to 15 MHz, 
still substantial. 

 
(a) Physical design of a 4-way superscalar processor. 

 
(b) Same design synthesized to Virtex-5 FPGA. 

Figure 6. 

Table 6.  FPGA results with several 10M SimPoints. 
 bzip gzip mcf parser 
FPGA & verilog retired instr. 10000000 10000000 10000000 10000000
FPGA & verilog cycles 11239464 17000790 8342999 11588294
FPGA & verilog IPC 0.89 0.59 1.20 0.86 
FPGA simulation time (s) 0.75 1.22 1.21 0.87 
verilog simulation time (s) 4,018 5,536 2,870 3,748 
simulation speedup 5,357 4,538 2,372 4,308 
FPGA speed (MHz) 50 50 50 50 
FPGA effective speed (MHz) 15 14 7 13 

 



6.  RESULTS: ANALYSIS OF A 
WORKLOAD-AGNOSTIC 
HETEROGENEOUS MULTI-CORE 
In this section, we explore a heterogeneous multi-core design with 
the goal of maximizing single-thread performance. Prior work 
achieved similar objectives by exhaustively simulating 
applications on all cores [16][17] or multiprogrammed workloads 
on all core combinations [10], in a huge design space. Aside from 
the computational complexity of this approach, there is some 
concern about the performance robustness of a design trained to a 
specific workload. 

These perceived drawbacks motivate us to take a very different 
approach. Cores are selected to provide a broad range of 
microarchitectural configurations without a priori knowledge of 
applications. We intentionally do not customize cores or core 
combinations to a specific workload (other than as optimal 
yardsticks), because we want a heterogeneous multi-core design 
that maximizes single-thread performance for arbitrary 
instruction-level behavior. Our first, unsophisticated application 
of this idea produced a heterogeneous multi-core with 21 core 
types, which we call G21: the “G” stands for generic 
heterogeneous multi-core, a reference to its broad diversity that 
was not influenced by a specific workload. 

This section is organized as follows. Section 6.1 describes the 
design space and performance metric. Section 6.2 describes the 
design process for coming up with G21. Section 6.3 describes the 
benchmarks. Section 6.4 presents results and analysis of G21 and 
its derivatives. 

6.1  The Design Space 
Using FabScalar’s CPSL, we created a design space of almost 
38,000 different cores with cycle times that range from 0.5ns to 
1.2ns in 0.1ns increments. For a given width and depth of a 
canonical pipeline stage, its stage-specific structures are 
maximized within the cycle time constraint (thus pruning designs 
that underutilize slack). IPC is measured using FabScalar’s cycle-
accurate C++ simulator (faster than verilog simulation, and we 
can also include floating-point benchmarks in the exercise). 
Performance is measured in billions-of-instructions-per-second 
(BIPS), the product of IPC and frequency. 

6.2  G21: The Proposed Workload-Agnostic 
Heterogeneous Multi-core 
The proposed workload-agnostic design provides superscalar 
widths of 2 through 8. For each width, a cycle time range is 
chosen commensurate with the width, i.e., narrower cores have a 
faster cycle time range than wider cores. Table 7 shows the three 
cycle times selected for each width. The three cycle times 
accommodate small, medium, and large structure sizes for that 
width and maximum depth. This yields a total of 21 core types, 
three sizes/frequencies for each of seven widths. 

Table 7.  The 21 cores. 
  larger structures  
   higher frequency 
  cycle time (ns) 

2 or 3 0.5 0.6 0.7 
4 or 5 0.6 0.7 0.8 
6 or 7 0.7 0.8 0.9 

superscalar width 

8 0.8 0.9 1.0 

6.3  The Benchmarks 
We use integer and floating-point benchmarks from SPEC. The 
SimPoint tool [21] was used to select up to four or five 10 million 
instruction SimPoints from each integer or floating-point 
benchmark, respectively. In all, there are 59 SimPoints in the 
experiments, which we call “benchmarks” from now on. 

6.4  Results and Analysis of G21 
We assume ideal steering: for a given multi-core design, the 
performance reported for a benchmark is the highest performance 
attainable among all cores in the design. We consider the 
following multi-core designs: 

 Best-1: This design has only 1 core type. It is the best core in 
the entire design space, on average, i.e., Best-1 achieves the 
highest harmonic-mean of BIPS (over all the benchmarks) of 
any one core. 

 G21: This is the proposed generic heterogeneous multi-core 
with 21 core types (Section 6.2). 

In all graphs that follow, the performance of a given design is 
normalized to the peak performance attainable by the benchmark 
considering the entire design space (BIPS / Peak_BIPS). 

Figure 7 shows the performance of G21. G21 is remarkably 
robust. On average, G21 comes within 3% of peak performance. 
More importantly, no individual benchmark achieves less than 
88% of its peak performance considering the entire design space. 
This level of performance robustness is not due to a lack of 
diversity among benchmarks: the performance of Best-1, also 
shown in Figure 7, while impressive for just a single core type, 
shows severe sub-optimality for many benchmarks. On average, it 
is 10% off of peak performance. The real problem with Best-1 is 
two-fold: individual benchmarks for which the Best-1 design was 
trained are as much as 30% off of their peak performance. Being 
heavily trained to this workload, it is possible to observe even 
more severe sub-optimality for other applications. 

The fact that G21 was not trained for these benchmarks, and yet 
attains close to peak performance with no severe outliers, 
highlights the merits of workload-agnostic design: low 
computational complexity and some relief from concerns about 
performance robustness. Whereas G21 is not practical to design 
today, FabScalar may make it practical in the near future. 
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Figure 7.  Performance of G21 and Best-1, normalized to peak performance considering entire design space. 

 



We also infer that, from the standpoint of single-thread 
performance, the microarchitectural diversity provided by G21 is 
highly representative of the entire design space. In other words, 
G21 can be used in lieu of the full design space if we do want to 
distill a smaller number of cores by leveraging knowledge of the 
workload. We consider the following multi-core designs: 

 Best-N-of-G21: This design has N core types (we vary N) 
selected from G21’s core types. These cores constitute the 
best N-core combination from G21, on average (harmonic-
mean of BIPS). 

 Robust-N-of-G21: This design has N core types (we vary N) 
selected from G21’s core types. The N cores are selected to 
minimize the maximum performance degradation for any one 
benchmark, compared to its peak performance on G21. 

Table 8 shows results of these two consolidation strategies as N is 
varied. The BIPS of each design is shown normalized to the peak 
BIPS on G21. Also shown is the maximum degradation observed 
for any one benchmark (compared to its peak performance on 
G21). For N=2–5, there is a tradeoff between maximizing average 
performance and minimizing the impact on any one benchmark. 
Best-4 and Robust-4 both use one more core than Best-3, but to 
different ends. Best-4 maintains the same worst-case individual-
benchmark degradation as Best-3, but improves average 
performance. In contrast, Robust-4 achieves the same average 
performance as Best-3, but bounds worst-case individual-
benchmark degradation to 11% compared to 15.4% for Best-3. 
Evidently, Robust-4 picks an extra core that is more “outlier” than 
“average”, to serve the most “outlier” benchmark, whereas Best-4 
picks an extra core that is more “average” than “outlier” to serve 
more benchmarks. In both approaches, outlier benchmarks tend to 
dominate the selection of additional cores at a certain point (N>5). 

Table 8.  Using a smaller number of cores from G21. 
Best-N-of-G21 Robust-N-of-G21 

N BIPS/ 
Peak-BIPS-G21 

Max % 
degradation 

BIPS/ 
Peak-BIPS-G21 

Max % 
degradation 

1 0.924 27.1 0.924 27.1 
2 0.965 19.3 0.951 14 
3 0.977 15.4 0.967 14 
4 0.985 15.4 0.976 11 
5 0.992 11 0.980 10 
6 0.996 5.1 0.996 5.1 
7 0.998 3.9 0.998 3.9 
8 0.998 3.9 0.998 3.9 

7.  DISCUSSION 
7.1  Extensibility 
While it is difficult to make generalizations about extensibility, 
we present two specific examples. The examples relate to two 
major IPC bottlenecks in the FabScalar-generated cores presented 
earlier: load misspeculations and branch mispredictions. 

In the cores presented earlier, completion of a load is not stalled 
by prior unissued stores. If the speculatively-completed load is 
later discovered to depend on one of the stores, the recovery 
penalty is severe: the processor waits until the load reaches the 
head of the active list, squashes the load and all instructions after 
it, and restarts from the load. It took one of the authors two days 
to enhance the CPSL with a simple dependence predictor (predict 
a load will conflict if it has in the past) and logic to stall 
completion of suspect loads in the load queue until all prior stores 
have issued. There is already a mechanism to complete loads that 
were once stalled (for cache-missed loads): the load is reinjected 
into the load-store pipe (in the next free cycle) at which time it is 

safely completed. The changes are localized to the Dispatch stage 
(dependence predictor) and load queue (bit vectors for tracking 
store queue entries of unissued stores). The global impact is small: 
there is an additional signal from the Retire stage to Dispatch 
stage (PC of a misspeculated load trains the dependence predictor) 
and loads carry an extra bit with them (whether or not to 
speculatively complete). Two of the benchmarks, bzip and vortex, 
have quite low branch misprediction rates, hence, their 
performance is sensitive to load misspeculations. Consequently, 
adding the dependence predictor increased the IPC of bzip from 
0.89 to 1.39 and the IPC of vortex from 0.76 to 1.14 (for 10M 
SimPoints). 

In the second example, one of the authors changed the Fetch-1 
stage to totally decouple the conditional branch predictor 
(taken/not-taken prediction) from the next-PC logic (BTB, RAS, 
and next-PC mux), enabling pipelining a large/complex branch 
predictor arbitrarily deep (high accuracy with fast cycle-time) 
[30]. This change took longer to implement than the previous 
example because it is more complex and required inventive 
design. Nevertheless, changes were confined to the Fetch-1 stage. 

7.2  Design and Verification Effort 
FabScalar does not completely eliminate design effort or take the 
designer out of the picture. Rather, it boosts designer productivity 
by generating RTL designs of whole cores, the starting point for 
design tuning, verification, and physical design. 

An open question is whether or not FabScalar reduces verification 
effort and by how much. In future work, we would like to reduce 
verification to (1) formally proving that the canonical superscalar 
template is correct and (2) “certifying” specific implementations 
of canonical pipeline stages, in isolation. Aside from formal 
methods, as open-source gateware, verification coverage may 
increase over time through a community of users. 

8.  SUMMARY AND FUTURE WORK 
We presented FabScalar, a novel toolset for automatically 
composing the synthesizable register-transfer-level (RTL) designs 
of arbitrary cores within a canonical superscalar template. Each 
canonical pipeline stage has many variants that differ in their 
complexity (superscalar width and stage-specific structure sizes) 
and depth of sub-pipelining, and canonical pipeline stages are 
composable into an overall core. Thus, FabScalar helps mitigate 
practical issues that currently impede proliferating 
microarchitecturally diverse cores. 

We performed detailed validation experiments along three fronts 
to evaluate the quality of RTL designs generated by FabScalar: 
functional and performance (IPC) validation, timing validation 
(cycle time), and confirmation of suitability for standard ASIC 
flows. These experiments confirmed that FabScalar-generated 
RTL designs are of good quality. 

We plan to release the FabScalar toolset for other researchers and 
developers to use and expand, as open-source gateware. We 
intend to add floating-point instruction support, media instruction 
support, and TLBs; implement the MIPS ISA so that the latest gcc 
toolchain can be leveraged; relax backend constraints (multiple of 
any FU type, any combination of FUs in each execution pipeline, 
etc.); and explore microarchitectural alternatives, such as those 
outlined in Table 3. The problem of choosing a set of diverse 
cores to maximize single-thread performance on arbitrary 
applications, deserves a more comprehensive treatment and 
should also consider power. A closely related problem is matching 
programs and program phases to cores at run-time. Applying 

 



 

                                                          

formal verification methods and tools in the FabScalar framework 
is worth pursuing. We are currently working on automating the 
mapping of FabScalar-generated cores onto FPGAs for 
accelerating verification, superscalar processor simulation, and 
design space exploration. 
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