
UC Irvine
UC Irvine Previously Published Works

Title
FABSYN: Floorplan-aware bus architecture synthesis

Permalink
https://escholarship.org/uc/item/6pj3w7z0

Journal
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 14(3)

ISSN
1063-8210

Authors
Pasricha, S
Dutt, N D
Bozorgzadeh, E
et al.

Publication Date
2006-03-01

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6pj3w7z0
https://escholarship.org/uc/item/6pj3w7z0#author
https://escholarship.org
http://www.cdlib.org/

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 14, NO. 3, MARCH 2006 241

FABSYN: Floorplan-Aware Bus Architecture
Synthesis

Sudeep Pasricha, Student Member, IEEE, Nikil D. Dutt, Senior Member, IEEE, Elaheh Bozorgzadeh, Member, IEEE,
and Mohamed Ben-Romdhane, Member, IEEE

Abstract—As system-on-chip (SoC) designs become more com-
plex, it is becoming harder to design communication architectures
to handle the ever increasing volumes of inter-component com-
munication. Manual traversal of the vast communication design
space to synthesize a communication architecture that meets
performance requirements becomes infeasible. In this paper, we
address this problem by proposing an automated approach for
floorplan-aware bus architecture synthesis (FABSYN) to synthe-
size cost-effective, bus-based communication architectures that
satisfy the performance constraints in a design. Our synthesis
approach incorporates a high-level floorplanning and wire delay
estimation engine to evaluate the feasibility of the synthesized
bus architecture and detect bus cycle time violations early in the
design flow, at the system level. We present case studies of network
communication SoC subsystems for which we synthesized bus
architectures, detected and eliminated timing violations, and
generated core placements in a matter of hours instead of several
days for a manual effort.

Index Terms—Bus architecture synthesis, high level floorplan-
ning, on-chip communication architecture, system-on-chip (SoC).

I. INTRODUCTION

I
MPROVEMENTS in process technology have led to more

and more functionality being integrated onto a single chip,

which has, in turn, resulted in a sharp increase in the amount

of overall on-chip communication volumes between the inte-

grated components. In such highly complex systems, on-chip

communication is expected to become a major performance bot-

tleneck [1]. Already, increasingly demanding performance re-

quirements from the next generation of multimedia, broadband

and network applications are making interconnect design a chal-

lenging proposition.

Bus-based communication architectures [2]–[4] remain

a popular choice for handling on-chip communication in

system-on-chip (SoC) designs today because they are simple

to design and take up very little area. However, selecting and

reconfiguring standard bus-based communication architectures

such as the advanced microprocessor architecture (AMBA)

[2] and CoreConnect [3] architectures, to meet application

Manuscript received June 21, 2005; revised September 14, 2005 and De-
cember 8, 2005. This work was supported in part by grants from Conexant Sys-
tems Incorporated, CPCC fellowship, and UC Micro under 03-029.

S. Pasricha, N. D. Dutt, and E. Bozorgzadeh are with the School of Informa-
tion and Computer Science, University of California, Irvine, CA 92617 USA
(e-mail: sudeep@cecs.uci.edu; dutt@cecs.uci.edu; eli@ics.uci.edu).

M. Ben-Romdhane was with Conexant Systems Inc., Newport Beach, CA
92660 USA. He is now with Newport Media Inc., Lake Forest, CA 92630 USA.

Digital Object Identifier 10.1109/TVLSI.2006.871763

specific performance requirements, is a very time consuming

process. This is due to the large exploration space created

by customizable bus topologies, arbitration protocols, direct

memory access (DMA) burst sizes, data bus widths, bus clock

speeds, and buffer sizes, all of which significantly impact

system performance [5], [12], [26].

To counter the challenge of ever increasing on-chip band-

width requirements and a vast communication exploration

space, early planning of the interconnect architecture at the

system level must become an integral part of an SoC design

process. However, the complex interplay between communi-

cation architecture parameters is becoming hard to analyze

effectively, especially at the system level. Very often, designers

end up evaluating the communication design space by creating

simulation models annotated with detail based on experience,

and manually iterating through different design configurations.

Such an effort remains time consuming and produces systems

which are generally overdesigned for the application at hand.

To address this problem, we propose a floorplan-aware bus

architecture synthesis (FABSYN) approach in this paper, which

automates the generation of a cost effective communication ar-

chitecture for an SoC. We make use of SystemC [23] to quickly

capture components at the behavioral level and automate the

bus architecture synthesis for the design. The novelty of our ap-

proach is in the ability to automatically satisfy performance con-

straints and detect bus clock cycle time violations, while synthe-

sizing a feasible, low-cost configuration of a standard bus-based

communication architecture (such as [2]) which is commonly

used in SoC designs. Our approach synthesizes the bus topology,

as well as values for bus architecture parameters such as arbitra-

tion priority orderings, data bus widths, bus clock speeds, and

DMA burst sizes. We make use of a high-level floorplanning en-

gine to generate estimates of core placements on the chip. Typ-

ically, once the system architecture is frozen, it takes several

months before a floorplan of the design becomes available. Vio-

lations of bus clock cycle time constraints (described in more

detail in Section III-E) detected late in the flow at the phys-

ical implementation stage can require changes in the architec-

ture which can severely impact time-to-market. Since the bus

architecture synthesis process determines the number and type

of components assigned to each bus, which decides the cumu-

lative load capacitance on a bus and which, in turn, has a direct

impact on signal delay and bus clock cycle time constraint sat-

isfiability (Section III-E), there is a need to make the synthesis

process more physically aware. Our high-level floorplanning

and wire delay estimation engines detect bus cycle time viola-

tions early in the design flow at the system level, during the syn-

1063-8210/$20.00 © 2006 IEEE

242 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 14, NO. 3, MARCH 2006

thesis process, where architectural modifications and tradeoff

analysis can be performed quickly and efficiently to eliminate

such violations. To demonstrate the usefulness of our approach,

we present case studies of network communication SoC sub-

systems, used for data packet processing and forwarding. Com-

pared to a manual effort which took several days and produced

overdesigned systems, our automated flow synthesized low-cost

bus architectures, detected and eliminated timing violations and

generated core placements which satisfied performance con-

straints for the SoC subsystems in a matter of hours.

II. RELATED WORK

There is already a significant body of research in the area of

bus architecture synthesis. Early work was aimed at minimizing

bus width [6], interface synthesis and simple synchronization

protocol selection [7], and topology generation for simple buses

without arbitration [8]. Ryu et al. [9] performed studies to find

optimal bus topologies for an SoC design. Pinto et al. [10]

proposed an algorithm for constraint-driven topology synthesis

under the assumption that relative positions of components were

fixed. Lyonnard et al. [11] proposed a synthesis flow which

supported shared bus and point-to-point connection templates.

These templates have to be parameterized manually, which

makes the process time consuming. Lahiri et al. [12] designed

communication architectures after exploring different solutions

using fast performance simulation. However, they assumed

the bus topology to be given. Shin et al. [13] used a genetic

algorithm for automating the generation of bus architecture

parameters to meet performance requirements. However, they

do not focus on bus topology synthesis. Our approach differs

from these existing approaches in the way we automate the

synthesis of not only the bus topology, but also the generation

of values for bus architecture parameters, while also satisfying

performance constraints.

A key component of our synthesis flow is the integrated floor-

planner. There have been other approaches in the past which

have made use of a floorplanning tool [14]–[18] in a synthesis

flow, but for different reasons. Bergamaschi et al. [18] and The-

payasuwan et al. [14] used the floorplanner to generate an early

core placement estimate. Drinic et al. [15] used the floorplanner

to determine feasibility of the synthesized design by comparing

estimates of wire length with an upper bound on wire length.

However, an upper bound on wire length has the disadvantage of

not accounting for varying capacitive loads of the components.

Hu et al. [16] also used the floorplanner to estimate wire length,

which they used to calculate energy consumption in point-to-

point networks. Dick et al. [17] invoked the floorplanner repeat-

edly in their custom bus topology synthesis approach to obtain

global wiring delays and ensure that real time deadlines were

met. Unlike existing approaches, the floorplanner, in our ap-

proach, is used to identify and eliminate bus cycle time vio-

lations early in the design flow. We believe that this step will

become increasingly important in the deep-submicrometer era

as clock speeds increase and lengthy propagation delays cause

frequent violations of timing constraints that will need to be de-

tected and corrected early in the design flow if shrinking time-to-

market constraints are to be met.

Fig. 1. Communication Throughput Graph (CTG).

III. AUTOMATED BUS SYNTHESIS

This section describes our approach for automated bus

architecture synthesis. Section III-A discusses how SoC

performance requirements are represented in our approach.

Section III-B presents our assumptions and states the problem

description. Section III-C discusses the simulation engine while

Section III-D describes communication parameter constraints,

which guide the bus synthesis process. Section III-E gives an

overview of our floorplan and wire delay calculation engines

used for detecting timing violations in the design. Finally,

Section III-F presents our automated bus architecture synthesis

approach in detail.

A. SoC Performance Requirements

Typically, SoC designs need to satisfy performance require-

ments that are dependent on the nature of the application. The

throughput of communication between components is a good

measure of the performance of a system [8]. We assume that

we are given one or more throughput constraints that need to be

satisfied for the system. These constraints can involve commu-

nication between two or more IPs.

Fig. 1 shows a Communication Throughput Graph (CTG)

which is a directed graph, where each vertex represents a com-

ponent in the system, and an edge connects components

and that need to communicate with each other. Each vertex

contains information about the component it represents, such

as its area, dimensions (fixed width/height or bounds on aspect

ratio), capacitive loads on output pins and which bus type it can

be connected to—a main high bandwidth bus like AHB [2], a

peripheral low bandwidth bus like APB [2], or both. An edge

is associated with a throughput constraint if it lies

within a throughput constraint path (TCP). Fig. 1 shows a TCP

involving CPU1, MEM1, S1, and M2 components, where the

rate of data packets streaming out of M2 must not fall below

360 Mb/s. A TCP, in general, has a single master for which data

throughput must be maintained and other masters, slaves, and

memories which are in the critical path that impacts the main-

tenance of the throughput.

B. Problem Description

We are given an application for which we assume the

HW/SW partitioning has already been performed. The re-

sulting SoC design has possibly several hardware and software

components (IPs) onto which application functionality has been

mapped and which need to communicate with each other. The

standard bus-based communication architecture (e.g., AMBA

PASRICHA et al.: FABSYN: FLOORPLAN-AWARE BUS ARCHITECTURE SYNTHESIS 243

[2], CoreConnect [3]), which determines the pins at the IP

interface and for which the bus topology and communication

parameter values must be synthesized, is also specified. The

IPs are assumed to be standard “black box” library components

which cannot be modified during the bus synthesis process,

except for the memory components.

The goal of the FABSYN communication architecture syn-

thesis approach is to determine the number of buses and the

allocation of SoC IPs on these buses (bus topology synthesis),

and generate values for arbitration priorities, data bus widths,

bus clock speeds, and DMA burst sizes (bus architecture pa-

rameter synthesis) for the selected standard bus-based commu-

nication architecture, while ensuring that all system throughput

constraints are satisfied. In addition, we want to consider layout

information of the chip to detect bus cycle time violations early

in the design flow, so that we can modify the bus architecture to

eliminate these violations which might otherwise take up costly

design iterations later in the flow.

This leads us to our problem definition:

Problem Definition: A bus can be considered to be a par-

tition of the set of components in a CTG, where .

Our primary objective is to determine a component to bus as-

signment for a hierarchical bus architecture, such that the parti-

tioning of onto buses results in a minimal number of buses

and satisfies bus cycle timing constraints, while meeting

all performance requirements in the design, represented by the

TCPs in a CTG. As a secondary objective, we attempt to reduce

the clock speeds and data widths of the buses in the synthesized

solution.

C. Simulation Engine

Since communication behavior is characterized by unpre-

dictability due to dynamic bus requests from cores, nondeter-

ministic bus contention delays, buffer overflow delays etc., a

simulation based approach is necessary for accurate perfor-

mance estimation. In our synthesis flow, we capture behavioral

models of components and bus architectures in SystemC

[23], and keep them in an IP library database. Since we were

concerned about the speed of simulation, we chose a fast trans-

action-based, bus cycle accurate modeling abstraction, which

averaged simulation speeds of 150–200 kHz [5], while running

embedded software applications on processor instruction-set

simulator (ISS) models.

D. Communication Parameter Constraints

The exploration space for a typical SoC bus-based commu-

nication architecture such as AMBA [2] consists of combina-

tions of bus topology configurations with communication pa-

rameter values for arbitration schemes, data bus widths, bus

clock speeds, and DMA burst sizes. If we allow these parame-

ters to have any arbitrary values, an incredibly vast design space

is created. The time required to simulate through all possible

system configurations searching for one which satisfies every

design constraint would become unreasonably large, even with

the fast simulation engine. More importantly, once we manage

to find such a system configuration, there would be no guar-

antee that the values generated for the communication parame-

ters would be practically feasible. To ensure that our synthesis

approach generates a realistic communication architecture con-

figuration, we allow the designer to specify a Communication

Parameter Constraint set . These constraints are in the form

of a discrete set of valid values for the communication param-

eters to be synthesized. A major motivation to allow this con-

straint specification is that it allows the designer to bias the syn-

thesis process based on knowledge of the design and the tech-

nology being targeted. For instance, a designer might decide that

the synthesized design should only have data buses with 16, 32,

or 64 bit widths, because the IPs in the design cannot support

larger widths effectively. Or a designer might set the allowable

bus clock frequency to multiples of 33 MHz, with a maximum

speed of 166 MHz, based on the operation frequency of the cores

in the system and past experience of the clock generation mech-

anism. Such knowledge about the design is not a prerequisite

for using our synthesis framework. As long as is populated

with any discrete set of values for the parameters, our frame-

work will attempt to synthesize a feasible communication ar-

chitecture. However, informed decisions can greatly reduce the

time taken for synthesis and help the designer generate a more

practical system.

E. Floorplanning and Delay Estimation Engines

The floorplanning stage in a typical design flow arranges ar-

bitrarily shaped, but usually rectangular blocks representing cir-

cuit partitions, into a nonoverlapping placement while mini-

mizing a cost function, which is usually some linear combina-

tion of die area and total wirelength. Our floorplanning engine

is adapted from the simulated annealing based floorplanner pro-

posed in [19]. The input to the floorplanner is a list of compo-

nents and their interconnections in the system. Each component

has an area associated with it (obtained from RTL synthesis).

Dimensions in the form of width and height (for “hard” com-

ponents) or bounds on aspect ratio (for “soft” components) are

also required for each component. Additionally, maximum die

size and fixed locations for hard macros can also be specified as

inputs. Given these inputs, our floorplanner minimizes the cost

function

(1)

where Area is the area of the chip, Bus is the wire length cor-

responding to wires connecting components on a bus, Total

is total wire length for all connections on the chip (including

inter-bus connections), and , , are adjustable weights

which are used to bias the solution. The floorplanner outputs a

nonoverlapping placement of components from which the wire

lengths can be calculated by using half-perimeter of the min-

imum bounding box containing all terminals of a wire (HPWL)

[20].

Once the wire lengths have been calculated, the delay esti-

mation engine is invoked. The wire delay is calculated based

on formulations proposed in [21]. The inputs to this stage are

the wire lengths from the floorplanner and the capacitive loads

of component output pins (obtained from RTL synthesis).

We can simplify the multiple pin net problem (which is repre-

sentative of a bus line) depicted in Fig. 2(a) to multiple two pin

244 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 14, NO. 3, MARCH 2006

Fig. 2. Transforming multiple pin net into a two-pin net.

TABLE I
PARAMETERS BASED ON NTRS ’97

net problems, as shown in Fig. 2(b). Then the delay for a wire

of length , with optimal wire sizing (OWS) [21], is given as

(2)

where , , and is

Lambert’s function defined as the value of which satisfies

. is the resistance of the driver, is the wire length,

and are capacitive loads which are calculated as shown

in Fig. 2(c) and the rest of the parameters are dependent on the

process technology used, is the sheet resistance in ,

is unit area capacitance in , and is unit fringing

capacitance in (defined to be the sum of fringing and

coupling capacitances). The values for these technology depen-

dent parameters are listed in Table I, and have been calculated

from [22].

The delay estimation engine is ultimately used to check

for bus cycle time violations in the design. This is illustrated

through an example. Fig. 3 shows a floorplan for a system

where IP1 and IP2 are connected to the same bus as ASIC1,

Mem4, ARM, VIC, and DMA, and the bus has a speed of

333 MHz. This implies that the bus cycle time is 3 ns. For a

0.13- m process and a driver resistance value of 0.4 k ,

the floorplanner finds a wire length of 9.9 mm between pins

connecting the two IPs to the bus, with p and

p for the wire. The wire delay, obtained by

inserting these values in (2), is found to be 3.5 ns, which

clearly violates the bus clock cycle time constraint of 3 ns. In

this way, our floorplanning and wire delay estimation engines

can determine if a synthesized design has buses with clock

cycle timing violations. Typically, once such violations are

detected at the physical implementation stage in the design

flow, designers end up pipelining the buses by inserting latches,

flip-flops, or register slices on the bus, in order to meet bus

cycle time constraints. However, we found that such pipelining

Fig. 3. Example floorplan.

of the bus can not only have an adverse effect on critical path

performance, but also requires tedious manual reworking of

RTL code and extensive reverification of the design, which can

be very time consuming. As we will show later, our synthesis

flow attempts to automatically eliminate such violations early

in the design flow at the system level once they are detected.

F. Synthesis Approach

In this section, we describe our bus architecture synthesis ap-

proach. First, we will present a few definitions that will be used

later when explaining the synthesis flow in more detail.

Definitions: Let be a Communi-

cation Throughput Graph, where is the set of vertices,

each of which represents a component (a master or a slave)

in the design, and is the set of edges used to connect

the components in that need to communicate with

each other. is the set of slave components in ,

where . is the set of memory

components in , such that .

is a set of slave leaf components (i.e.,

slave components with a single incident edge connecting them

to a single master component) in the ,

and where master refers to the master connected to the leaf

component . Next, let be a

superset of all throughput constraint paths in a ,

where each in is itself a set of vertices representing the

components that are part of the , as discussed previously

in Section III-B. is the set of master components

and is the set of slave components in the constraint

path , such that .

We now describe our automated synthesis approach in detail.

Fig. 4 gives a high level overview of the flow. The inputs to

the flow include a Communication Throughput Graph, a target

bus-based communication architecture (e.g., AMBA), a set of

Communication Parameter Constraints , and a library of be-

havioral IP models. The general idea is to first perform prepro-

cessing transformations on the CTG to improve the performance

of the entire system (preprocess) and then map all the com-

ponents from the CTG to a simple bus topology of the target

bus-based communication architecture. Then, we iteratively se-

lect a Throughput Constraint Path (TCP) from set , starting

from the TCP with the most stringent constraint, and search the

PASRICHA et al.: FABSYN: FLOORPLAN-AWARE BUS ARCHITECTURE SYNTHESIS 245

Fig. 4. FABSYN bus architecture synthesis flow.

Fig. 5. Preprocess procedure.

communication parameter space for a suitable parameter config-

uration (explore_params) and possibly perform topology muta-

tions if needed (mutate_topology) till the TCP constraint is sat-

isfied. Once all TCP constraints are satisfied, we optimize the

design (optimize_design) to further lower the cost of the system.

Next, we invoke the floorplanning and delay estimation engines

to detect bus cycle time violations. If timing violations are de-

tected, we update with the TCPs having components on the

buses with violations, and use a feedback loop to re-enter the

flow to repeat the topology mutation and parameter exploration

phase to eliminate these violations or proceed to output the syn-

thesized system and floorplan once there are no violations.

Fig. 5 shows the pseudocode for the preprocess stage. In the

first step we map the components in the CTG from the behav-

ioral IP library database to a bus protocol-independent, trans-

action-level simulation model in SystemC [24] having a virtual

channel for every edge in the graph. This model has no con-

tention since there are no shared channels and also because we

assume infinite ports at IP interfaces. The purpose of this step is

to obtain, through simulation, a memory usage profile (Step 2).

Once we have obtained this profile, we attempt to split those

memory nodes for which different masters access nonoverlap-

ping regions (Step 3). Finally we merge local slave nodes with

their master nodes to reduce contention and loading on shared

buses (Step 4). Note that we perform Step 3 before Step 4 be-

cause it allows us to generate local memories which can then

be merged with their corresponding masters. Fig. 6(a)–(c) illus-

trates this process. The CTG shown in Fig. 6(a) is taken through

the preprocess procedure and the MEM2 node is split, as shown

in Fig. 6(b), into two nodes (MEM2a and MEM2b), since CPU1

accesses a region of memory which is distinct from that ac-

cessed by masters M2 and M3. Finally, the leaf slave nodes for

CPU1 (slave nodes Mem2a and S4) are merged with CPU1 into

a hypernode, as shown in Fig. 6(c).

After the preprocess stage, all the components in the en-

hanced CTG and the selected bus architecture are mapped

from the IP library database to the fast transaction-based bus

cycle-accurate simulation model (Section III-C) with a simple

bus topology; a single shared main and a single shared pe-

ripheral bus. As mentioned earlier, every node in a CTG has

information relating to the type of bus it can be connected to,

which guides the mapping process. A bus can be considered

to be a partition of nodes in a CTG, such that .

Fig. 6(d) shows the mapped components on the main and pe-

ripheral bus partitions, for the preprocessed CTG in Fig. 6(c).

Once the simple topology has been created, we select the

largest unsatisfied TCP constraint from set and search for

a suitable combination of communication parameter values to

satisfy the constraint in the explore_params stage (Fig. 4). Fig. 7

gives the pseudocode for this procedure. The explore_params

procedure searches for a suitable combination of parameter

values which satisfies the TCP constraint under consideration,

for the current bus topology. The parameter values are bounded

by the constraint set specified by the designer. However, the

exploration space arising from the combinations of the bounded

values can still be very large. In the interest of achieving prac-

tical running times, we must further prune this space.

We start by decoupling the bus widths and speeds from the ar-

bitration schemes and DMA burst sizes. We set the bus widths

and speeds to the maximum allowed values set by the designer

in (Step 1). We do this because if TCP constraints are not

met for the maximum values of bus widths and speeds, they

will certainly not be met for lower values of these parameters.

We cannot, however, set the DMA burst size to its maximum

value and the arbitration priority to a fixed value, and make the

same guarantee. Therefore, Step 1 allows us to quickly prune

only the bus width and speed parameter space. Next, we select

a combination of a valid arbitration priority ordering and DMA

burst size, and then proceed to simulate the design (Steps 2 and

3). The best result configuration in Step 3 is the combination

of parameters for which the least number of TCP constraints

are violated and the throughput for the TCP being considered is

the highest. The set of valid arbitration priorities is governed by

the following rules: a) priorities of masters in TCPs with larger

throughput constraints are always greater than priorities of mas-

ters in TCPs with lower throughput constraints; b) once a TCP

constraint is satisfied, the relative arbitration priority ordering

for masters in the TCP is updated (Step 5) and not changed any-

more; and c) only combinations of priority orderings within the

TCP under consideration need to be explored if the previous two

rules are followed. These three rules reduce the large arbitration

space and make it more manageable. The set of valid DMA burst

sizes is governed by the following rule: once a TCP constraint

is satisfied, only those DMA burst size values which did not vi-

olate the satisfied TCP constraint are considered for subsequent

TCPs. Thus, as TCP constraints are satisfied, the set of valid

DMA burst size values shrinks, reducing the DMA burst size

exploration space. Fig. 7 shows how once a TCP constraint is

246 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 14, NO. 3, MARCH 2006

Fig. 6. FABSYN bus architecture synthesis illustration. (a) Initial system CTG, (b) after splitting MEM2, (c) merging local nodes to create hypernode, (d) after
mapping nodes to main and peripheral buses, (e) after the first call to mutate_topology, (f) after migrating all nodes in TCP to main2, (g) creating a new bus and
migrating CPU1 to it, (h) final topology with TCP satisfied, and (i) synthesized bus architecture.

satisfied, we simulate the design for different DMA burst size

values to generate an updated set of allowed DMA burst sizes

(Step 6), which will be used for subsequent TCP explorations.

If the TCP constraint is not satisfied for any combination

of communication parameter values, we attempt to change the

communication topology in the mutate_topology stage. Fig. 8

shows the pseudocode for this procedure. To meet TCP con-

straints, we need to eliminate conflict on shared buses, and this

can be done by creating a new bus and migrating IPs, from the

TCP being considered, iteratively to the new bus until the con-

flict is resolved.

In mutate_topology, we first check to see if this is the first

time that the procedure has been called, and if so, then we create

a new bus, choose an unselected master at random, and mi-

grate the master to the new bus (Steps 2 and 6). If it is the first

time that the procedure has been called, then none of the mas-

ters in have been previously selected for migration,

and the function call NoneSelected returns a true

PASRICHA et al.: FABSYN: FLOORPLAN-AWARE BUS ARCHITECTURE SYNTHESIS 247

Fig. 7. explore_params procedure.

Fig. 8. Mutate_topology procedure.

value. In subsequent invocations of mutate_topology, we iter-

atively migrate the slaves in to the new bus (Steps 3

and 7). The function call AllSelected returns a false

value if there are any remaining slaves in which have

yet to be selected for migration. Once all slaves in

have been considered for migration and the TCP is still not

satisfied, we check for unselected masters in the current TCP

(Step 4). If there are still unselected masters remaining, we undo

all slave migrations since the last master migration by calling

UndoNodeMigration , mark the slaves as being uns-

elected, and migrate a randomly chosen previously unselected

master to the new bus (Steps 4 and 6). In subsequent invoca-

tions of mutate_topology, we again migrate the slaves to the

new bus (Steps 3 and 7). After all masters and slaves in the cur-

rent TCP have been moved to the new bus or at least considered

for migration, it is possible that the TCP constraint is still not

met (Step 5). In that case, we mark all the master and slaves in

the TCP as unselected, randomly select a master on the previ-

ously created bus and permanently assign it to that bus, create

another bus and starting from a randomly selected master (or

Fig. 9. optimize_design procedure.

a randomly selected slave if there are no more masters to mi-

grate), we iteratively migrate IPs to that bus (Steps 5 and 6). In

this way, new buses are created until enough bandwidth is avail-

able to satisfy the TCP constraint. Note that if a topology mu-

tation causes the best result configuration from explore_params

to violate any previously satisfied TCP constraints, we undo the

mutation (Step 1). Otherwise we keep the mutation, even if it de-

teriorates current TCP performance slightly. This allows us to

take into account the effect of local minima in the exploration

phase.

Fig. 6(e)–(h) illustrates the topology mutation process,

starting from the simple bus mapping in Fig. 6(d). The

components in the TCP are shown in gray;

and . The result of the

first invocation of mutate_topology is shown in Fig. 6(e), which

depicts a newly created bus onto which the CPU1 master has

been migrated. Subsequent calls to the procedure iteratively

migrate the rest of the components in the TCP to the new bus.

However, the TCP constraint is not satisfied for any of the

intermediate topologies, due to data traffic conflicts on both the

main1 and main2 buses, even when all the components in the

TCP have been migrated to a separate bus, as shown in Fig. 6(f).

Therefore, we proceed to create another bus (main3) and first

migrate a master (CPU1) as shown in Fig. 6(g), followed by

slaves in the TCP. For the configuration shown in Fig. 6(h),

after MEM1 has been migrated to the new bus, the throughput

constraint is found to be satisfied, and no more topology muta-

tion is required, unless there is a timing violation detected by

the floorplanning and wire delay estimation engine later in the

flow (Fig. 4).

Once all the TCP constraints are satisfied, we arrive at the

optimize_design stage. The pseudocode for this stage is shown

in Fig. 9. The purpose of this stage is to reduce the maximum

values we selected earlier for bus widths and bus clock speeds.

Here we iteratively consider each bus in the system and attempt

to lower the value for data bus width (Step 2) and bus clock

speed (Step 4), without violating any TCP constraints. Reducing

the bus width reduces the number of wires in a bus and lowers

the cost of the system. Reducing the bus speed on the other hand,

reduces the probability of a bus cycle time violations since it

lengthens the bus clock cycle time period. The order in which

the bus width or the bus speed is reduced is flexible and is left

to the designer.

Next, we pass the optimized system through our floorplan-

ning and wire delay estimator engine. For the system shown

in Fig. 6, we pass the final modified CTG shown in Fig. 6(h)

to the engine. If a timing violation is detected (as discussed in

248 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 14, NO. 3, MARCH 2006

Fig. 10. Network communication subsystem.

Section III-E), the set is updated with TCPs which have com-

ponents on the buses with violations, and we use a feedback loop

to go back and attempt to eliminate these violations. Since the

cumulative capacitive load of components directly contributes

to increasing signal propagation delay (Section III-E), we at-

tempt to reduce the number of components on the bus having a

violation. Therefore, when we go back into the flow using the

feedback loop, we first select the TCP from which has com-

ponents on the violated bus with the largest load capacitance

on its pins, and iteratively migrate them to another existing bus

(or a new bus if migration to existing buses causes TCP con-

straint violations). If there is still a violation, we select another

TCP from and migrate components from that TCP away from

the violated bus. We also give higher priority to reducing bus

clock speed over reducing data bus width in the optimize_design

stage, since reducing bus clock speed improves the probability

of meeting the bus clock cycle period constraint. Note that the

solution is guaranteed to converge when we use a feedback path.

This is because in the worst case we end up creating a new bus

(to migrate components away from the violated bus), which in-

creases the cost of the system, but as a tradeoff we get improved

system performance (even after we consider bridge overhead

delays) and the ability to meet bus cycle time constraints.

Finally, after all violations have been resolved and all

TCP constraints satisfied, we output the final synthesized bus

topology, parameter values for bus speeds, data bus widths,

DMA burst size and arbitration priority ordering, along with

the feasible floorplan. For the system shown in Fig. 6, the final

synthesized architecture looks like the one shown in Fig. 6(i).

IV. CASE STUDIES

We applied our automated bus-based communication archi-

tecture synthesis approach on three industrial strength designs

from the network communication domain. In the first case

study, we selected a network communication SoC subsystem

used for fast data packet processing and forwarding. Fig. 10

shows the CTG for this system. There are two data manipulation

related TCP constraints that must be satisfied in this system.

The first TCP involves the encryption engine and includes the

ARM926, ASIC1, RAM3 and EXT_IF blocks. The EXT_IF

block fetches data and stores it in RAM3. The ASIC1 and

ARM926 blocks fetch nonoverlapping sections of the data,

TABLE II
CUSTOMIZABLE PARAMETER SET

Fig. 11. Synthesized SoC subsystem.

TABLE III
COMMUNICATION PARAMETER VALUES

process them, and store them back in RAM3, from where the

EXT_IF block fetches and streams them out at a minimum rate

of 200 Mb/s. The second TCP involves the USB subsystem.

Data packets received at the USB are routed to RAM1. The

ARM926 reads this data, processes it, and stores it back to

RAM1 from where the DMA engine transfers it to SDRAM_IF,

which streams it out at a minimum rate of 480 Mb/s. There is

also a third subsystem which involves the SWITCH, RAM2 and

ARM926 components. However, this is a very low priority data

path which has no data rate constraint from the designer, and,

therefore, we do not classify it as another TCP to be satisfied.

Table II shows the Communication Parameter Constraint set

for this case study. The target communication architecture

for the automated synthesis is the AMBA2 high performance

AHB bus and a low bandwidth APB bus [2]. For the floor-

planner, we give maximum priority to minimizing wire length

for components on a bus, and equal lower priorities for area and

total wire length minimization.

Fig. 11 shows the final output of our synthesis flow; a synthe-

sized architecture which meets all throughput and timing con-

straints. The values for the generated communication parame-

ters are given in Table III and the final floorplan for this system

is shown in Fig. 12. The automated synthesis engine initially

PASRICHA et al.: FABSYN: FLOORPLAN-AWARE BUS ARCHITECTURE SYNTHESIS 249

Fig. 12. Floorplan for SoC subsystem.

Fig. 13. Network communication subsystem derivative.

created 2 AHB buses, with the SWITCH and RAM2 compo-

nents connected to AHB1, which was assigned a clock speed of

200 to meet the encryption path throughput constraint. However,

the floorplanning engine detected a cycle time violation for the

bus due to excessive capacitive loading. The topology_mutate

stage then split the shared AHB bus and assigned the ARM926,

ASIC1, and EXT_IF masters and their associated slaves to one

bus, and the SWITCH and RAM2 components to another AHB

bus, to reduce capacitive loading. Finally, the optimize_design

function reduced the bus speeds for the AHB buses from 200 to

133 MHz and the APB bus to 66 MHz, to lower the cost of the

system. Both the throughput constraints were still met at these

lower bus speeds. The synthesis engine made a simple assump-

tion and assumed a 133-MHz bus speed for AHB3 to simplify

the design of BRIDGE3 to AHB1, but a designer can choose to

further lower the AHB3 bus speed if a more complex bridge is

acceptable.

For our second case study, we considered a derivative of

the network communication subsystem from Fig. 10, which

extends and partially modifies the functionality of the previous

system. Fig. 13 shows this derivative architecture, which has an

additional TCP constraint involving the ARM926, SWITCH,

RAM2, and two newly added components: a memory array

TABLE IV
CUSTOMIZABLE PARAMETER SET

Fig. 14. Synthesized SoC subsystem for derivative architecture.

TABLE V
COMMUNICATION PARAMETER VALUES (DERIVATIVE ARCH)

(RAM4) and an ASIC block (ASIC2). In this TCP, data packets

received from the SWITCH are stored in RAM2. These packets

are retrieved by ASIC2, which reads and modifies some pro-

tocol header information before storing it back to RAM4 from

where the SWITCH must stream it out at a minimum data rate

of 3.2 Gb/s. The ARM926 is used minimally, for directing data

flow in this TCP.

The Communication Parameter Constraint set for this

case study is shown in Table IV and is slightly modified from

Table II, with the addition of a larger data bus width value of

64, to handle the increased bandwidth requirements. Also, in-

stead of using the AMBA2 AHB bus architecture like in the pre-

vious case, we modify the target communication architecture to

AMBA3 AXI [25]. Our synthesis flow outputs the architecture

shown in Fig. 14. The values for the generated communication

parameters are shown in Table V and the final floorplan is shown

in Fig. 15. Since AXI supports separate channels for reads and

writes, the bus speeds required to maintain throughput are lower

(100 MHz). The AXI3 bus which supports the SWITCH TCP

250 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 14, NO. 3, MARCH 2006

Fig. 15. Final floorplan for derivative SoC subsystem.

Fig. 16. MPSoC networking subsystem.

has a 64-bit data width and a high 200-MHz bus clock speed in

order to maintain the high data flow rate.

For the third case study, we chose a multiprocessor system

(MPSoC) networking subsystem. Fig. 16 shows the CTG for

the system. For clarity, the TCPs are presented separately in

Table VI. The Communication Parameter Constraint set is

shown in Table VII. The target communication architecture for

the synthesis process is the AMBA2 AHB bus architecture.

ARM1 is a protocol processor (PP) while ARM2 is a net-

work processor (NP). The ARM1 PP is responsible for setting

up and closing network connections, converting data from one

TABLE VI
THROUGHPUT CONSTRAINT PATHS (TCPS)

TABLE VII
CUSTOMIZABLE PARAMETER SET

protocol type to another and exchanging data with the NP using

shared memory. The ARM2 NP directly interacts with the net-

work ports and is used for assembling incoming packets into

frames for the network connections, network port packet/cell

flow control, keeping track of errors, and gathering statistics.

The ASIC1 block performs hardware cryptography accelera-

tion, while ASIC2 and ASIC3 are used for other data packet

and frame processing. The DMA is used to handle fast memory

to memory and network interface data transfers, freeing up the

processors for more useful work.

The synthesis process first generated the system shown in

Fig. 17(a). However, once we passed the architecture through

the floorplanning and wire delay estimation stage, it was dis-

covered that the system was not feasible because of the ex-

cessive cumulative load capacitance on the AHB1 bus, which

caused a timing violation. Fig. 17(b) shows the floorplan layout

for this configuration. The synthesis process records this viola-

tion, and resynthesizes the communication architecture to come

up with the architecture shown in Fig. 17(c) with a reduced ca-

pacitive loading on AHB1 while still satisfying all TCP con-

straints. This architecture does not violate any bus cycle time

constraints and the final floorplan is shown in Fig. 17(d). Note

that the synthesis process splits the SDRAM2 and MEM4 com-

ponents, moving portions of both these components to a local

bus of the ARM2 processor. This reduces unnecessary traffic

and capacitive loading on the shared AHB bus. The synthesized

communication parameter values are shown in Table VIII. Since

most of the streamed data was native 32 bits, a higher 64-bit bus

width did not affect the performance significantly and the syn-

thesized buses all have 32-bit data bus widths.

We now compare the quality of our synthesis process. Since

none of the existing synthesis approaches are aimed at detecting

bus cycle time violations early in the design flow, there is no

direct point of comparison. We chose to compare the quality

of our synthesized designs with an approach which maps all

the components in the application to a single main/peripheral

PASRICHA et al.: FABSYN: FLOORPLAN-AWARE BUS ARCHITECTURE SYNTHESIS 251

Fig. 17. Synthesis output for MPSoC networking subsystem: (a) intermediate MPSoC configuration, (b) floorplan for intermediate MPSoC configuration, c) final
synthesized MPSoC subsystem, and (d) final floorplan for synthesized MPSoC subsystem.

TABLE VIII
COMMUNICATION PARAMETER VALUES

shared bus (initial), an automated bus architecture synthesis

flow which does not use a high level floorplanner (ABS), and

a manually intensive, high level synthesis effort by a designer

which also makes use of a floorplanning and wire delay estima-

tion engine to detect timing violations (manual) just like our

floorplan-aware automated bus architecture synthesis approach

(FABSYN). The manual synthesis approach involves a designer

manually selecting a combination of bus topology and com-

munication parameter values, simulating the high level design

models in SystemC and then iteratively modifying the bus archi-

tecture and parameter values based on the simulation results and

designer intuition, until all constraints are found to be satisfied.

Table IX compares the results from our synthesis approach for

the three case studies with the results from the other approaches.

The initial approach is unable to satisfy any of the TCP con-

straints for all three of the case studies, because of excessive data

traffic conflicts on its restricted number of buses. In contrast, the

ABS approach does manage to satisfy TCP constraints for all

the case studies, but in each case it synthesizes a bus architec-

ture with bus clock cycle time violations that remain undetected,

and, thus, the synthesized architecture is not feasible in each

case. The manual approach satisfies all TCP constraints and is

also able to detect and eliminate bus clock cycle time violations

in the design, just like our FABSYN approach. However, there

are a few key differences between the manual approach and our

FABSYN approach. First, the manual approach generates bus ar-

chitectures having a greater implementation cost (i.e., having a

larger number of buses) when compared with architectures gen-

erated using our approach. This is because our automated flow

is able to traverse a much larger communication parameter ex-

ploration space than the manual approach, and prevents us from

making conservative decisions to create a new bus like in the

manual approach, unless all suitable combinations of commu-

nication parameters are unable to meet the TCP constraint for

the existing bus topology. Second, the performance of the ar-

chitecture generated by the manual approach is actually found

to be better than our FABSYN approach (except for the third

252 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 14, NO. 3, MARCH 2006

TABLE IX
SYNTHESIS RESULT COMPARISON

case study, where frequent bridge delay overheads reduce per-

formance). This is because of the larger number of buses used

by the manual approach, which reduces data traffic conflict and

improves concurrency, at the cost of increasing the implemen-

tation cost. But it is important to note is that we are not really

concerned about the absolute performance of the system. What

is important to us is that we satisfy all TCP constraints and min-

imize the implementation cost of the synthesized architecture,

and that we do so in a reasonable amount of time. The manual

approach suffers from the major drawback that it takes several

days for the designer to come up with a bus architecture which is

typically overdesigned and exceeds the requirements (resulting

in a more expensive system), whereas our FABSYN approach

generates a better quality architecture in a matter of a few hours.

V. CONCLUSION

In this paper, we presented an approach for automating the

synthesis of bus-based communication architectures for systems

characterized by several possible throughput constraints. Our

approach synthesizes a low-cost bus topology and generates

values for bus architecture parameters such as arbitration pri-

ority ordering, bus widths, bus speeds, and a DMA burst size,

required to meet the performance constraints in the design. In

addition, we use a high level floorplanning and delay estima-

tion engine to generate a layout of the components on the chip,

and detect bus cycle time violations early in the design flow

at the system level. Results from the automated synthesis of

AMBA based bus architectures for the network communication

subsystem case studies show the usefulness of our approach.

Our approach reduces the exploration and design time by at

least an order of magnitude when compared to a manual effort,

while also guaranteeing feasibility of physical design. Further-

more, our approach is easily portable across different standard

bus-based communication architectures, such as CoreConnect

[3] and OCP [4], and can be extended to automatically synthe-

size other bus architecture specific parameters such as out-of-

order (OO) buffer sizes as well. Future work will focus on ex-

tending the FABSYN approach to crossbar based communica-

tion architectures.

ACKNOWLEDGMENT

The authors would like to thank Prof. I. Markov and the

PARQUET group at the University of Michigan for all their

assistance.

REFERENCES

[1] D. Sylvester and K. Keutzer, “Getting to the bottom of deep sub-mi-
cron,” in Proc. of Int. Conf. Comput.-Aided Des., 1998, pp. 203–211.

[2] D. Flynn, “AMBA: Enabling reusable on-chip designs,” IEEE Micro,
vol. 17, no. 4, pp. 20–27, Jul./Aug. 1997.

[3] IBM CoreConnect [Online]. Available: http://www.chips.ibm.com/
products/powerpc/cores

[4] Open Core Protocol International Partnership (OCP-IP), OCP
Datasheet [Online]. Available: http://www.ocpip.org

[5] S. Pasricha, N. Dutt, and M. Ben-Romdhane, “Fast exploration of bus-
based on-chip communication architectures,” in Proc. CODES-ISSS,
2004, pp. 242–247.

[6] S. Narayan and D. Gajski, “Synthesis of system level bus interfaces,”
in Proc. Eur. Des. Test Conf., 1994, pp. 395–399.

[7] J. Daveau, G. Marchioro, T. Ben-Ismail, and A. A. Jerraya, “Protocol
selection and interface generation for HW-SW codesign,” IEEE Trans.

Very Large Scale Integr. (VLSI) Syst., vol. 5, no. 1, pp. 136–144, Mar.
1997.

[8] M. Gasteier and M. Glesner, “Bus-based communication synthesis on
system level,” in Proc. 9th Int. Symp. Syst. Synthesis, Nov. 1996, pp.
65–70.

[9] K. K. Ryu and V. J. Mooney, III, “Automated bus generation for mul-
tiprocessor SoC design,” in Proc. Des. Automat. Test Eur. Conf., 2003,
pp. 282–287.

[10] A. Pinto, L. Carloni, and A. Sangiovanni-Vincentelli, “Con-
straint-driven communication synthesis,” in Des. Automat. Conf.,
2002, pp. 783–788.

[11] D. Lyonnard, S. Yoo, A. Baghdadi, and A. A. Jerraya, “Automatic gen-
eration of application-specific architectures for heterogeneous multi-
processor system-on-chip,” in Des. Automat. Conf., 2001, pp. 518–523.

[12] K. Lahiri, A. Raghunathan, and S. Dey, “Efficient exploration of the
SoC communication architecture design space,” in Proc. IEEE/ACM

Int. Conf. Comput.-Aided Des., 2000, pp. 424–430.
[13] C. Shin, Y. Kim, E. Chung, K. Choi, J. Kong, and S. Eo, “Fast ex-

ploration of parameterized bus architecture for communication-centric
SoC design,” in Proc. Des. Automat. Test Eur., 2004, pp. 352–357.

[14] N. Thepayasuwan and A. Doboli, “Layout conscious bus architecture
synthesis for deep submicron systems on chip,” in Proc. Des. Automat.

Test Eur., 2004, pp. 108–113.
[15] M. Drinic, D. Kirovski, S. Meguerdichian, and M. Potkonjak, “La-

tency-guided on-chip bus network design,” in Proc. IEEE/ACM Int.

Conf. Comput.-Aided Des., 2000, pp. 420–423.
[16] J. Hu, Y. Deng, and R. Marculescu, “System-level point-to-point

communication synthesis using floorplanning information,” in Proc.

ASP/DAC Des. Automat. Conf., 2002, pp. 573–579.
[17] R. P. Dick and N. K. Jha, “MOCSYN: Multiobjective core-based

single-chip system synthesis,” in Proc. Des. Automat. Test Eur., 1999,
pp. 263–270.

[18] R. A. Bergamaschi, Y. Shin, N. Dhanwada, S. Bhattacharya, W.
Dougherty, I. Nair, J. Darringer, and J. Paliwal, “SEAS: A system
for early analysis of SoCs,” in Proc. IEEE/ACM/IFIP Int. Conf.

Hardware/Software Codesign Syst. Synthesis, 2003, pp. 150–155.
[19] S. N. Adya and I. L. Markov, “Fixed-outline floorplanning: Enabling

hierarchical design,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
vol. 11, no. 6, pp. 1120–1135, Dec. 2003.

PASRICHA et al.: FABSYN: FLOORPLAN-AWARE BUS ARCHITECTURE SYNTHESIS 253

[20] A. E. Caldwell, A. B. Kahng, S. Mantik, I. L. Markov, and A. Ze-
likovsky, “On wirelength estimations for row-based placement,” IEEE

Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 18, no. 9, pp.
1265–1278, Sep. 1999.

[21] J. Cong and D. Z. Pan, “Interconnect performance estimation models
for design planning,” IEEE Trans. Comput.-Aided Des. Integr. Circuits

Syst., vol. 20, no. 6, pp. 739–752, Jun. 2001.
[22] “National Technology Roadmap for Semiconductors,” Semiconductor

Industry Association, 1997.
[23] SystemC initiative [Online]. Available: http://www.systemc.org
[24] S. Pasricha, “Transaction level modeling of SoC with systemC 2.0,” in

Proc. Synopsys User Group Conf. (SNUG), 2002, pp. 55–59.
[25] AMBA AXI Specification [Online]. Available: http://www.arm.com/

armtech/AXI
[26] S. Pasricha, N. Dutt, and M. Ben-Romdhane, “Extending the transac-

tion level modeling approach for fast communication architecture ex-
ploration,” in Proc. Des. Automat. Conf., 2004, pp. 113–118.

Sudeep Pasricha (S’02) received the B.E. degree
in electronics and communication engineering from
Delhi Institute of Technology, Delhi, India, in 2000.
He is currently working toward the Ph.D. degree
in computer science at the University of California,
Irvine.

From 2000 to 2002, he was a Design Engineer
with STMicroelectronics, India. As part of the
Embedded Systems Team at the Center for Research
and Development, he worked on developing an Ar-
chitecture Description Language (ADL) framework

for processor/memory systems, and a Transaction Level Modeling (TLM)
methodology for SoC exploration, verification and eSW development. From
2003 to 2004, he worked in collaboration with Conexant Systems, Newport
Beach, CA, to develop a methodology for high-level exploration and synthesis
of SoC communication architectures. His research interests include SoC
communication architecture modeling, exploration and synthesis, system level
modeling languages and methodologies, and CAD for embedded systems.

Mr. Pasricha received a best paper award nomination at DAC in 2005 and the
best paper award at ASPDAC in 2006.

Nikil D. Dutt (S’81–M’89–SM’97) received the
Ph.D. degree in computer science from the Univer-
sity of Illinois at Urbana-Champaign, Urbana, in
1989.

He was an ACM SIGDA Distinguished Lecturer
during 2001 and 2002, and an IEEE Computer
Society Distinguished Visitor between 2003–2005.
He has served on the steering, organizing, and
program committees of several premier CAD and
Embedded System Design conferences and work-
shops, including ASPDAC, CASES, CODES+ISSS,

DATE, ICCAD, ISLPED and LCTES. He is currently a Professor of Computer
Science and Electrical and Electronic Computer Science at the University of
California, Irvine, where he is affiliated with the following centers: CECS,
CPCC, and CAL-IT2. His research interests include embedded systems design
automation, computer architecture, optimizing compilers, system specification
techniques, and distributed embedded systems.

Prof. Dutt received best paper awards at CHDL89, CHDL91,
VLSIDesign2003, CODES+ISSS 2003, and ASPDAC-2006. He currently
serves as Editor-in-Chief of the ACM Transactions on Design Automation

of Electronic Systems (TODAES) and is an Associate Editor of the ACM
Transactions on Embedded Computer Systems (TECS). He serves or has
served on the advisory boards of ACM SIGBED and ACM SIGDA, and is
Vice-Chair of IFIP WG 10.5.

Elaheh Bozorgzadeh (S’00–M’03) received the B.S.
degree in electrical engineering from Sharif Univer-
sity of Technology, Tehran, Iran, in 1998, the M.S.
degree in computer engineering from Northwestern
University, Evanston, IL, in 2000, and the Ph.D. de-
gree in computer science from the University of Cal-
ifornia, Los Angeles, in 2003.

She is currently an Assistant Professor in the
Department of Computer Science at the University
of California, Irvine. Her research interests include
CAD for FPGAs, reconfigurable computing, and

design automation for embedded systems. She has authored 3 book chapters
and more than 30 journal and conference papers.

Dr. Bozorgzadeh is a member of ACM/IEEE.

Mohamed Ben-Romdhane (M’90) received the
B.S. and the M.S. degrees in electrical engineering
from the Ecole National des Ingenieurs de Tunis
(ENIT), Tunisia, in 1987 and 1989, respectively, and
the Ph.D. degree in digital signal processing from the
Georgia Institute of Technology, Atlanta, in 1995.

He served as Executive Director of SOC, IP, and
Software for Conexant Systems Incorporated, New-
port Beach, CA. He is currently the Vice President of
Engineering for Newport Media Incorporated, Lake
Forest, CA, where he is focusing on designing chips

for mobile audio and video standards such as, DVB-H, ISDB-T, T-DMB, and
DAB. His research interests include wireless systems, low-power design, em-
bedded systems, DSP algorithms and implementation, and SOC design.

