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Abstract

This paper presents a highly efficient, very accurate re-

gression approach for face alignment. Our approach has

two novel components: a set of local binary features, and

a locality principle for learning those features. The locality

principle guides us to learn a set of highly discriminative

local binary features for each facial landmark independent-

ly. The obtained local binary features are used to jointly

learn a linear regression for the final output. Our approach

achieves the state-of-the-art results when tested on the cur-

rent most challenging benchmarks. Furthermore, because

extracting and regressing local binary features is computa-

tionally very cheap, our system is much faster than previous

methods. It achieves over 3,000 fps on a desktop or 300 fps

on a mobile phone for locating a few dozens of landmarks.

1. Introduction

Discriminative shape regression has emerged as the

leading approach for accurate and robust face alignment

[5, 11, 12, 29, 4, 32, 3, 27]. This is primarily because these

approaches have some distinct characteristics : 1) they are

purely discriminative; 2) they are able to enforce shape con-

strain adaptively; 3) they are capable of effectively leverag-

ing large bodies of training data.

The shape regression approach predicts facial shape S

in a cascaded manner [12, 5, 4, 32, 3]. Beginning with an

initial shape S0, S is progressively refined by estimating a

shape increment ∆S stage-by-stage. In a generic form, a

shape increment ∆St at stage t is regressed as:

∆St = W tΦt
(

I, St−1
)

, (1)

where I is the input image, St−1 is the shape from the pre-

vious stage, Φt is a feature mapping function, and W t is a

linear regression matrix. Note that Φt depends on both I

and St−1. The feature learned in this way is referred to as

a “shape-indexed” feature [5, 3]. The regression goes to the

next stage by adding ∆St to St−1.

The feature mapping function Φt is essential in shape re-

gression. In previous works, it is either designed by hand

[32] or by learning [5, 3]. The process in [32] simply us-

es SIFT features for feature mapping and trains W t by a

linear regression. While this simple approach works well,

the handcrafted general purpose features are not optimal for

specific face alignment. In contrast, the processes in [5, 3]

jointly learn both Φt and W t by a tree-based regression, on

the whole face region in a data-driven manner.

In principle, the latter learning-based approach should be

better because it learns task-specific features. However, as

reported in existing literature, it is only on par with the ap-

proach using a hand-designed SIFT feature. We believe this

is due to two issues caused by the overly high freedom of

Φt. The first is a practical issue. Using the entire face region

as the training input results in an extremely large feature

pool, which translates into unaffordable training costs if we

want to learn the most discriminative feature combination.

The second is a generalization issue, which is more crucial.

The large feature pool has many noisy features. This can

easily cause over fitting and hurt performance in testing.

In this work, we propose a better learning based ap-

proach. It regularizes learning with a “locality” principle.

This principle is based on two insights: for locating a cer-

tain landmark at a stage, 1) the most discriminative texture

information lies in a local region around the estimated land-

mark from the previous stage; 2) the shape context (loca-

tions of other landmarks) and local texture of this landmark

provide sufficient information. These insights imply that we

may first learn intrinsic features to encode the local texture

for each landmark independently, then perform joint regres-

sion to incorporate the shape context.

We propose the following two types of regularization for

learning Φt:

• Φt is decomposed into a set of independent local fea-

ture mapping functions, i.e. Φt = [φt
1
, φt

2
, ..., φt

L] (L
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Figure 1. Overview of our approach. In the training phase, we begin by learning a feature mapping function Φt(Ii, S
t−1

i
) to generate local

binary features. Given the features and target shape increments {∆Ŝt

i = Ŝi −St−1

i
}, we learn a linear projection W t by linear regression.

In the testing phase, the shape increment is directly predicted and applied to update the current estimated shape.

is the number of landmarks).

• Each φt
l is learned by independently regressing lth

landmark, in the corresponding local region.

The proposed regularization can effectively screen out

the majority of noisy or less discriminative features, reduce

learning complexity, and lead to better generalization.

To learn each φt
l , we use ensemble trees based regres-

sion to induce binary features. The binary features encode

the intrinsic structure in a local region, for predicating the

landmark position. After concatenating all local binary fea-

tures to form the feature mapping Φt, we discriminatively

learn W t for global shape estimation. We find that our two-

step learning process (local binary features and global linear

regression) is much better than the one-step joint learning of

Φt and W t by tree-based regression in [5, 3].

In addition to better accuracy, our approach is also much

more efficient. Because the local binary features are tree

based and highly sparse, the process of extracting and re-

gressing such features is extremely rapid. We show that a

fast version of our approach runs at 3,000+ frames per sec-

ond (FPS) on a single-core desktop and achieves compara-

ble results with state-of-the-art methods. Our normal ver-

sion runs at 300+ FPS and significantly outperforms state-

of-the-art equivalents in terms of accuracy on a variety of

benchmarks. The high speed of our approach is crucial for

scenarios and devices where computational power is limit-

ed and computational budget is a major concern. For ex-

ample, our fast version still runs at 300 FPS on a modern

mobile phone. To the best of our knowledge, this is the

first approach that is several times faster than real-time face

alignment approach on mobile phone. This opens up new

opportunities for all online face applications.

2. Related Works

Active Appearance Models (AAM) [7] solves the face

alignment problem by jointly modeling holistic appearance

and shape. Many improvements over AAM have been

proposed [19, 18, 14, 15, 25, 28]. Instead of modeling

holistic appearance, “Constrained Local Model” [8, 9, 10,

1, 35, 29, 34, 26] learns a set of local experts (detectors

[9, 31, 24, 1, 34] or regressors [10, 29, 11]) and constrain-

s them using various shape models. These approaches are

better for generalization and robustness.

Our work belongs to the shape regression approach

[5, 11, 12, 29, 4, 32, 3] category. Xiong et al. [32] pre-

dict shape increment by applying linear regression on SIFT

features. Both Cao et al. [5] and Burgos-Artizzu et al. [3]

use boosted ferns (a kind of tree) to regress the shape incre-

ment. We note that the ensemble tree-based methods (either

boosted trees or random forest) can also be viewed as a lin-

ear summation of regressors using binary features induced

by the trees, yet, our feature learning method differs from

previous tree based methods.

Ensemble trees can be used as a codebook for efficient

encoding [22] or learning better descriptors [6, 33]. En-

semble trees have recently been exploited for direct feature
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mapping to handle non-linear classification [30, 16]. In this

work, we demonstrate the effectiveness of ensemble trees

induced features in shape regression.

3. Regressing Local Binary Features

In Equation (1), both the linear regression matrixW t and

the feature mapping function Φt are unknown. In our ap-

proach, we propose learning them in two consecutive steps.

We first learn a local feature mapping function to generate

local binary features for each landmark. We concatenate all

local features to get Φt. Then we learn W t by linear re-

gression. This learning process is repeated stage-by-stage

in a cascaded fashion. Figure 1 shows the overview of our

approach.

3.1. Learning local binary features Φ
t

The feature mapping function is composed of a set of

local feature mapping functions i.e., Φt = [φt
1
, φt

2
, ..., φt

L].
We learn each of them independently. The regression target

for learning φt
l is the ground truth shape increment ∆Ŝt:

min
wt,φt

l

∑

i=1

‖πl ◦∆Ŝt
i − wt

lφ
t
l

(

Ii, S
t−1

i

)

‖2
2
, (2)

where i iterates over all training samples, operator πl ex-

tracts two elements (2l − 1, 2l) from the vector ∆Ŝi, and

πl ◦∆Ŝi is the ground truth 2D-offset of lth landmark in ith

training sample.

We use a standard regression random forest [2] to learn

each local mapping function φt
l . The split nodes in the trees

are trained using the pixel-difference feature [5, 3]. To train

each split node, we test 500 randomly sampled features and

pick the feature that gives rise to maximum variance reduc-

tion. Testing more features results in only marginal im-

provement in our experiment. After training, each leaf n-

ode stores a 2D offset vector that is the average of all the

training samples in the leaf.

We only sample pixel features in a local region around

the landmark that is estimated. Using such a local region is

critical to our approach. In the training, the optimal region

size is estimated in each stage via cross validation. We will

discuss more details in Section 3.3.

During testing, a sample traverses the trees until it reach-

es one leaf node for each tree. The output of the random

forest is the summation of the outputs stored in these leaf

nodes. Supposing the total number of leaf nodes is D, the

output can be rewritten as:

wt
lφ

t
l

(

Ii, S
t−1

i

)

, (3)
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Figure 2. Local binary features. (a) The local feature mapping

function φt

l encodes the corresponding local region into a binary

feature; all local binary features are concatenated to form high-

dimensional binary features. (b) We use random forest as the local

mapping function. Each extracted binary feature indicates whether

the input image contains some local patterns or not.

where wt
l is a 2-by-D matrix in which each column is the

2D vector stored in the corresponding leaf node, and φt
l is a

D-dimensional binary vector. For each dimension in φt
l , its

value is 1 if the test sample reaches the corresponding leaf

node and 0 otherwise. Therefore, φt
l is a very sparse binary

vector. The number of non-zero elements in φt
l is the same

as the number of trees in the forest, which is much smaller

than D. We call such φt
ls “local binary features”. Figure 2

illustrates the process of extracting local binary features.

3.2. Learning global linear regression W
t

After the local random forest learning, we obtain not on-

ly the binary features φt
l , but also the local regression output

wt
l . We discard such learned local output wt

l . Instead, we

concatenate the binary features to a global feature mapping

function Φt and learn a global linear projection W t by min-

imizing the following objective function:

min
W t

N
∑

i=1

‖∆Ŝt
i −W tΦt(Ii, S

t−1

i )‖2
2
+ λ||W t||2

2
, (4)

where the first term is the regression target, the second term

is a L2 regularization on W t, and λ controls the regular-

ization strength. Regularization is necessary because the

dimensionality of the features is very high. In our exper-

iment, for 68 landmarks, the dimensionality of Φt could

be 100K+. Without regularization, we observe substantial

overfitting. Because the binary features are highly sparse,

we use a dual coordinate descent method [13] to deal with

such a large-scale sparse linear system. Since the objective

function is quadratic with respect to W t, we can always

reach its global optimum.

We find that such global “relearning” or “transfer learn-

ing” significantly improves performance. We believe this is
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Figure 3. The horizontal axis stands for the local region radius.

The vertical axis stands for the alignment error on a test set. From

left to right, standard deviation of the distribution of ∆s are 0.05,

0.1, 0.2. Herein both local region radius and alignment error is

normalized by the size of face rectangle.

for two reasons. On one hand, the locally learned output by

random forest is noisy because the number of training sam-

ples in a leaf node may be insufficient. On the other hand,

the global regression can effectively enforce a global shape

constraint and reduce local errors caused by occlusion and

ambiguous local appearance.

3.3. Locality principle

As we have described previously, we apply two impor-

tant regularization methods in feature learning, as guided by

a locality principle: 1) we learn a forest for each landmark

independently; 2) we only consider the pixel features in the

local region of a landmark. In this section, we explain why

we made such choices.

Why the local region? We begin with the second

choice. Suppose we want to predict the offset ∆s of a s-

ingle landmark and we select features from a local region

with radius r. Intuitively, the optimal radius r should de-

pend on the distribution of ∆s. If ∆s of all training samples

are scattered widely, we should use a large r; otherwise we

use a small one.

To study the relationship between the distribution of ∆s

and the optimal radius r, for a landmark we synthesize train-

ing and test sample regions whose ∆s follow a Gaussian

distribution with different standard deviations. For each dis-

tribution, we experimentally determine the optimal region

radius (in terms of test error) by training regression forests

on various radii. We use the same forest parameters (tree

depth and number of trees) as in our cascade training. We

repeat this experiment for all landmarks and take the aver-

age of the optimal region radius.

Figure 3 shows the results of three distributions whose

std. are 0.05, 0.1, and 0.2 (normalized distance by face rect-

angle size). The optimal radiuses are 0.12, 0.21 and 0.39.

The results indicate that the optimal region radius is almost

linearly to the standard deviation of ∆s. Therefore, we can

conclude that, given limited computation budget (the num-

Stage1 Stage3 Stage5

Figure 4. The best local region sizes at stage 1, 3, and 5.

ber of features tested in training forests), it is more effective

to only consider candidate features in a local region instead

of the global face image.

In our cascade training, at each stage, we search for

the best region radius (from 10 discrete values) by cross-

validation on an hold-out validation set. Figure 4 shows

the best region radiuses found at stage 1, 3, and 5. As

expected, the radius gradually shrinks from early stage to

later stage, because the variation of regressed face shapes

decreases during the cascade.

Why a single landmark regression? It may appear that

independent regression of each landmark is sub-optimal.

For example, we could probably miss a good feature that

can be shared by multiple landmarks. However, we argue

that local regression has a few advantages over the global

learning such as in [5].

First, the feature pool in local learning is less noisy.

There may be more useful features in global learning. But

the “signal-to-noise ratio” in global learning could be lower,

which will make feature selection more difficult.

Second, using local learning does not mean that we do

local prediction. In our approach, the linear regression in

the second step exploits all learned local features to make a

global prediction. Because the local learning of landmarks

is independent, the resulting features are by nature more di-

verse and complementary to each other. Such features are

more appropriate for global learning in the second step.

Last, the local learning is adaptive in different stages. In

the early stage, the local region size is relatively large and

a local region actually covers multiple landmarks. The fea-

tures learned from one landmark can indeed help its neigh-

boring landmarks. In the late stage, the region size is small

and local regression fine-tunes each landmark. Local learn-

ing is actually more appropriate in the late stage.

Note that we do not claim that global learning is infe-

rior to our local learning by nature. We believe that local

learning delivers better performance mainly due to practical

reasons. Given limited training capability (the amount of

training data, affordable training time, available computing

resources, and power of learning algorithm), the local ap-
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proach can better resist noisy features in the global feature

pool, which is extremely large and may cause over fitting.

We hope our empirical findings in this work can encourage

more similar investigations in the future.

4. Experiments

Datasets There are quite a few datasets for face align-

ment. We use three more recent and challenging ones. They

present different variations in face shape, appearance, and

number of landmarks.

LFPW (29 landmarks) [1] is collected from the web. As

some URLs are no longer valid, we only use 717 of the

1,100 images for training and 249 of the 300 images for

testing. Although each image is labeled with 35 landmarks,

we use 29 of 35 landmarks in our experiments, following

previous work [5].

Helen (194 landmarks) [17] contains 2,300 high resolu-

tion web images. We follow the same setting in [17]: 2000

images for training and 330 images for testing. The high

resolution is beneficial for high accuracy alignment, but the

large number of landmarks is challenging in terms of com-

putation.

300-W (68 landmarks) is short for 300 Faces in-the-

Wild [23]. It is created from existing datasets, including

LFPW [1], AFW [35], Helen [17], XM2VTS [20], and a

new dataset called IBUG. It is created as a challenge and

only provides training data. We split their training data into

two parts for our own training and testing. Our training set

consists of AFW, the training sets of LFPW, and the train-

ing sets of Helen, with 3148 images in total. Our testing

set consists of IBUG, the testing sets of LFPW, and the test-

ing sets of Helen, with 689 images in total. We do not use

images from XM2VTS as it is taken under a controlled en-

vironment and is too simple. We should point out that the

IBUG subset is extremely challenging as its images have

large variations in face poses, expressions and illumination-

s.

Evaluation metric Following the standard [1, 5], we

use the inter-pupil distance normalized landmark error. For

each dataset we report the error averaged over all landmarks

and images. Note that the error is represented as a percent-

age of the pupil-distance, and we drop the notation % in the

reported results for clarity.

In the following section, we first compare our approach

against state-of-the-art methods, then validate the proposed

approach via comparison with certain baseline methods.

4.1. Comparison with stateoftheart methods

During our training, we use similar data augmentation

as in [5] to enlarge the training data and improve general-

ization ability: each training image is translated to multi-

ple training samples by randomly sampling the initial shape

multiple times. Note that during testing we only use the

mean shape as the initialization. We do not use multiple

initializations and median based refinement as in [5].

Our approach has a few free parameters: the number of

stages T , the number of trees in each stage N 1, and the tree

depth D. To test different speed-accuracy trade-offs, we

use two sets of settings: 1) more accurate: T = 5, N =
1200, D = 7; and 2) faster: (T = 5, N = 300, D = 5). We

call the two versions LBF (local binary features) and LBF

fast.

Our main competitors are the shape regression based

methods, including explicit shape regression (ESR) [5] and

supervised descent method (SDM) [32]. We implement

these two methods and our implementation achieves com-

parable accuracy to that which was reported by the original

authors. For comparison with other methods, we used the o-

riginal results in the literature. Table 1 reports the errors and

speeds (frames per second or FPS) of all compared methods

on three datasets. Note that we also divide the testing set of

300-W into two subsets: the common subset consists of the

testing sets of Helen and LFPW, and the challenging IBUG

subset. We report all results on the two subsets as well.

Comparison of accuracy Overall, the regression-based

approaches are significantly better than ASM-based meth-

ods. Our proposed approach LBF wins by a large margin

over all datasets. Our faster version is also comparable with

the previous best. Specifically, our method achieves signif-

icant error reduction with respect to ESR and SDM of 30%

and 22%, respectively, on the challenging IBUG subset. We

believe this is due to the good generalization ability of our

method. In Figure 7–9, some example images and com-

parison results from IBUG are shown. Note that the per-

formance on LFPW is almost saturated, because the human

performance is 3.28 as reported in [3].

Comparison of speed Our approach, ESR, and SDM are

all implemented in C++ and tested on a single core i7-2600

CPU. The speed of other methods is quoted from the orig-

inal papers. While ESR and SDM are already the fastest

face alignment methods in the literature, our method has a

even larger advantage in terms of speed. Our fast version

is dozens of times faster and achieves thousands of FPS for

a large number of landmarks. The high speed comes from

the sparse binary features. As each testing sample has only

1We fix the total number of trees so few trees will be used for each

landmark if there are more landmarks.
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LFPW (29 landmarks)

Method Error FPS

[1] 3.99 ≈ 1
ESR[5] 3.47 220

RCPR[3] 3.50 -

SDM[32] 3.49 160

EGM[34] 3.98 < 1
LBF 3.35 460

LBF fast 3.35 4200

Helen (194 landmarks)

Method Error FPS

STASM[21] 11.1 -

CompASM[17] 9.10 -

ESR[5] 5.70 70

RCPR[3] 6.50 -

SDM[32] 5.85 21

LBF 5.41 200

LBF fast 5.80 1500

300-W (68 landmarks)

Method Fullset
Common

Subset

Challenging

Subset
FPS

ESR[5] 7.58 5.28 17.00 120

SDM[32] 7.52 5.60 15.40 70

LBF 6.32 4.95 11.98 320

LBF fast 7.37 5.38 15.50 3100

Table 1. Error and runtime (in FPS) on LFPW, Helen and 300-W datasets, respectively. The errors of ESR and SDM are from our

implementation. Note that ESR and SDM have reported error on LFPW in the original papers. Their accuracy is similar as ours (3.43 and

3.47, respectively)
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Figure 5. Comparison between local learning and global learning.

a small number of non-zero entries in its high dimensional

features, the shape update is performed only a few times by

efficient look up table and vector addition, instead of ma-

trix multiplication in the global linear regression. The sur-

prisingly high performance makes our approach especially

attractive for applications with limited computational pow-

er. For example, our method runs in about 300 FPS on a

mobile. This opens up new opportunities for online face

applications on mobile phone.

4.2. Validation of proposed approach

We verify the effectiveness of the two key components of

our approach, local learning and binary features, by com-

paring them with baseline methods that only differ in those

aspects but remain exactly the same in all others. We use

the 300-W dataset and LBF settings.

Local learning vs. global learning. In the baseline

method, the difference is that, during the learning of lo-

cal binary features, the pixels are indexed over the global

shape, in the same way as [5], instead of only in a local re-

gion around the local landmark as in the proposed approach.

Regression is performed on the entire shape instead of only

the local landmark. All other parameters are the same to

ensure the same training effort. We call this baseline global

learning. Figure 5 shows that the proposed local learning is

significantly better (25% error reduction) and verifies that it
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Figure 6. Comparison between tree induced binary features and

local forest regression.

is capable of finding much better features.

Tree induced binary features vs. local forest regres-

sion. In the baseline method, we do not use the locally

learned high dimensional binary features for global regres-

sion. Instead, we directly use the local random forest’s re-

gression output (a 2D offset vector) of each landmark as

features to learn a global regression in the same way. Note

that the learning process of the local trees is also exactly

the same. Figure 6 shows that high dimensional binary fea-

tures clearly outperform the simple raw output from local

regression as features, because the former faithfully retains

the full information of local learning.

5. Conclusion

In this work, we have presented a novel approach to

learning local binary features for highly accurate and ex-

tremely fast face alignment. The shape regression frame-

work regularized by locality principle is also promising

for use in other relevant areas such as anatomic structure

segmentation and human pose estimation. Furthermore, it

is worth exploring the refitting strategy in other scenarios

where regression trees are applied.
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Figure 7. Example results from the Challenging Subset of the 300-W dataset.
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Figure 8. Example images from the Challenging Subset of 300-W dataset where our method outperforms ESR and SDM. These cases are

extremely difficult due to the mixing of large head poses, extreme lighting, and partial occlusions.
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Figure 9. Some failure cases from the Challenging Subset of 300-W dataset.

8


