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Abstract. We present a very efficient, highly accurate,

“Explicit Shape Regression” approach for face alignment.

Unlike previous regression-based approaches, we directly

learn a vectorial regression function to infer the whole fa-

cial shape (a set of facial landmarks) from the image and

explicitly minimize the alignment errors over the training

data. The inherent shape constraint is naturally encoded in-

to the regressor in a cascaded learning framework and ap-

plied from coarse to fine during the test, without using a

fixed parametric shape model as in most previous methods.

To make the regression more effective and efficient, we

design a two-level boosted regression, shape-indexed fea-

tures and a correlation-based feature selection method. This

combination enables us to learn accurate models from large

training data in a short time (20 minutes for 2,000 training

images), and run regression extremely fast in test (15 m-

s for a 87 landmarks shape). Experiments on challenging

data show that our approach significantly outperforms the

state-of-the-art in terms of both accuracy and efficiency.

1. Introduction

Face alignment or locating semantic facial landmarks

such as eyes, nose, mouth and chin, is essential for tasks

like face recognition, face tracking, face animation and 3D

face modeling. With the explosive increase in personal and

web photos nowadays, a fully automatic, highly efficient

and robust face alignment method is in demand. Such re-

quirements are still challenging for current approaches in

unconstrained environments, due to large variations on fa-

cial appearance, illumination, and partial occlusions.

A face shape S = [x1, y1, ..., xNfp
, yNfp

]T consists of Nfp

facial landmarks. Given a face image, the goal of face align-

ment is to estimate a shape S that is as close as possible to

the true shape Ŝ, i.e., minimizing

||S − Ŝ||2. (1)

The alignment error in Eq.(1) is usually used to guide

the training and evaluate the performance. However, dur-

ing testing, we cannot directly minimize it as Ŝ is unknown.

According to how S is estimated, most alignment approach-

es can be classified into two categories: optimization-based

and regression-based.

Optimization-based methods minimize another error

function that is correlated to (1) instead. Such methods

depend on the goodness of the error function and whether

it can be optimized well. For example, the AAM ap-

proach [13, 16, 17, 3] reconstructs the entire face using an

appearance model and estimates the shape by minimizing

the texture residual. Because the learned appearance mod-

els have limited expressive power to capture complex and

subtle face image variations in pose, expression, and illu-

mination, it may not work well on unseen faces. It is also

well known that AAM is sensitive to the initialization due

to the gradient descent optimization.

Regression-based methods learn a regression function

that directly maps image appearance to the target out-

put. The complex variations are learnt from large train-

ing data and testing is usually efficient. However, previ-

ous such methods [6, 19, 7, 16, 17] have certain drawbacks

in attaining the goal of minimizing Eq. (1). Approaches

in [7, 16, 17] rely on a parametric model (e.g., AAM) and

minimize model parameter errors in the training. This is

indirect and sub-optimal because smaller parameter errors

are not necessarily equivalent to smaller alignment errors.

Approaches in [6, 19] learn regressors for individual land-

marks, effectively using (1) as their loss functions. Howev-

er, because only local image patches are used in training and

appearance correlation between landmarks is not exploited,

such learned regressors are usually weak and cannot handle

large pose variation and partial occlusion.

We notice that the shape constraint is essential in all

methods. Only a few salient landmarks (e.g., eye centers,

mouth corners) can be reliably characterized by their im-

age appearances. Many other non-salient landmarks (e.g.,

points along face contour) need help from the shape con-

straint - the correlation between landmarks. Most previous

works use a parametric shape model to enforce such a con-

straint, such as PCA model in AAM [3, 13] and ASM [4, 6].

Despite of the success of parametric shape models, the

model flexibility (e.g., PCA dimension) is often heuristical-
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ly determined. Furthermore, using a fixed shape model in

an iterative alignment process (as most methods do) may al-

so be suboptimal. For example, in initial stages (the shape

is far from the true target), it is favorable to use a restrict-

ed model for fast convergence and better regularization; in

late stages (the shape has been roughly aligned), we may

want to use a more flexible shape model with more subtle

variations for refinement. To our knowledge, adapting such

shape model flexibility is rarely exploited in the literature.

In this paper, we present a novel regression-based ap-

proach without using any parametric shape models. The

regressor is trained by explicitly minimizing the alignmen-

t error over training data in a holistic manner - all facial

landmarks are regressed jointly in a vectorial output. Our

regressor realizes the shape constraint in an non-parametric

manner: the regressed shape is always a linear combina-

tion of all training shapes. Also, using features across the

image for all landmarks is more discriminative than using

only local patches for individual landmarks. These proper-

ties enable us to learn a flexible model with strong expres-

sive power from large training data. We call our approach

“Explicit Shape Regression”.

Jointly regressing the entire shape is challenging in the

presence of large image appearance variations. We design

a boosted regressor to progressively infer the shape - the

early regressors handle large shape variations and guaran-

tee robustness, while the later regressors handle small shape

variations and ensure accuracy. Thus, the shape constraint

is adaptively enforced from coarse to fine, in an automat-

ic manner. This is illustrated in Figure 1 and elaborated in

Section 2.2.

In the explicit shape regression framework, we fur-

ther design a two-level boosted regression, effective shape-

indexed features, and a fast correlation-based feature se-

lection method so that: 1) we can quickly learn accurate

models from large training data (20 mins on 2,000 training

samples); 2) the resulting regressor is extremely efficient in

the test (15 ms for 87 facial landmarks). We show superior

results on several challenging datasets.

2. Face Alignment by Shape Regression

In this section, we introduce our basic shape regression

framework and how to fit it to the face alignment problem.

We use boosted regression [9, 8] to combine T weak re-

gressors (R1, ...Rt, ..., RT ) in an additive manner. Given a

facial image I and an initial1 face shape S0, each regressor

computes a shape increment δS from image features and

then updates the face shape, in a cascaded manner:

St = St−1 +Rt(I, St−1), t = 1, ..., T, (2)

1The initial shape can be simply a mean shape. More details of initial-

ization are discussed in Section 3.

where the tth weak regressor Rt updates the previous shape

St−1 to the new shape St.

Notice that the regressor Rt depends on both image I
and previous estimated shape St−1. As will be described

later, we use shape indexed (image) features that are rela-

tive to previous shape to learn each Rt. Such features can

greatly improve the boosted regression by achieving better

geometric invariance. The similar idea is also used in [7].

Given N training examples {(Ii, Ŝi)}
N
i=1

, the regressors

(R1, ...Rt, ..., RT ) are sequentially learnt until the training

error no longer decreases. Each regressor Rt is learnt by

explicitly minimizing the sum of alignment errors (1) till

then,

Rt = argmin
R

N∑

i=1

||Ŝi − (St−1

i +R(Ii, S
t−1

i ))||, (3)

where St−1

i is the estimated shape in previous stage.

2.1. Two­level cascaded regression

Previous methods use simple weak regressors such as a

decision stump [6] or a fern [7] in a similar boosted re-

gression manner. However, in our early experiments, we

found that such regressors are too weak and result in very

slow convergence in training and poor performance in the

testing. We conjecture this is due to the extraordinary dif-

ficulty of the problem: regressing the entire shape (as large

as dozens of landmarks) is too difficult, in the presence of

large image appearance variations and rough shape initial-

izations. A simple weak regressor can only decrease the

error very little and cannot generalize well.

It is crucial to learn a good weak regressor that can

rapidly reduce the error. We propose to learn each weak

regressor Rt by a second level boosted regression, i.e.,

Rt = (r1, ...rk, ..., rK). The problem is similar as in (2)(3),

but the key difference is that the shape-indexed image fea-

tures are fixed in the second level, i.e., they are indexed on-

ly relative to St−1 and no longer change when those r’s

are learnt2. This is important, as each r is rather weak and

allowing feature indexing to change frequently is unstable.

Also the fixed features can lead to much faster training, as

will be described later. In our experiments, we found using

two-level boosted regression is more accurate than one lev-

el under the same training effort, e.g., T = 10,K = 500 is

better than one level of T = 5000, as shown in Table 3.

Below we describe how to learn each weak regressor rk .

For notation clarity, we call it a primitive regressor and drop

the index k.

2.2. Primitive regressor

We use a fern as our primitive regressor r. The fern was

firstly introduced for classification [15] and later used for

2Otherwise this degenerates to a one level boosted regression.
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regression [7]. A fern is a composition of F (5 in our im-

plementation) features and thresholds that divide the feature

space (and all training samples) into 2F bins. Each bin b is

associated with a regression output δSb that minimizes the

alignment error of training samples Ωb falling into the bin:

δSb = argmin
δS

∑

i∈Ωb

||Ŝi − (Si + δS)||, (4)

where Si denotes the estimated shape in the previous step.

The solution for (4) is the mean of shape differences,

δSb =

∑
i∈Ωb

(Ŝi − Si)

|Ωb|
. (5)

To overcome over-fitting in the case of insufficient train-

ing data in the bin, a shrinkage is performed [9, 15] as

δSb =
1

1 + β/|Ωb|

∑
i∈Ωb

(Ŝi − Si)

|Ωb|
, (6)

where β is a free shrinkage parameter. When the bin has

sufficient training samples, β makes little effect; otherwise,

it adaptively reduces the estimation.

Non-parametric shape constraint By learning a vector

regressor and explicitly minimizing the shape alignment er-

ror (1), the correlation between the shape coordinates is p-

reserved. Because each shape update is additive as in Eq.

(2), and each shape increment is the linear combination of

certain training shapes {Ŝi} as in Eq. (5) or (6), it is easy to

see that the final regressed shape S can be expressed as the

initial shape S0 plus the linear combination of all training

shapes:

S = S0 +

N∑

i=1

wiŜi. (7)

Therefore, as long as the initial shape S0 satisfies the

shape constraint, the regressed shape is always constrained

to reside in the linear subspace constructed by all training

shapes. In fact, any intermediate shape in the regression al-

so satisfies the constraint. Compare to the pre-fixed PCA

shape model, the non-parametric shape constraint is adap-

tively determined during the learning.

To illustrate the adaptive shape constraint, we perform

PCA on all the shape increments stored in all primitive fern

regressors (2F × K in total) for each first level regressor

Rt. As shown in Figure 1, the intrinsic dimension (by re-

taining 95% energy) of such shape spaces increases during

the learning. Therefore, the shape constraint is automati-

cally encoded in the regressors in a coarse to fine manner.

Figure 1 also shows the first three principal components of

the learnt shape increments (plus a mean shape) in first and

final stage. As shown in Figure 1(c)(d), the shape updates
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Figure 1. Shape constraint is preserved and adaptively learned in

a coarse to fine manner in our boosted regressor. (a) The shape is

progressively refined by the shape increments learnt by the boosted

regressors in different stages. (b) Intrinsic dimensions of learnt

shape increments in a 10-stage boosted regressor, using 87 facial

landmarks. (c)(d) The first three principal components (PCs) of

shape increments in the first and final stage, respectively.

learned by the first stage regressor are dominated by glob-

al rough shape changes such as yaw, roll and scaling. In

contrast, the shape updates of the final stage regressor are

dominated by the subtle variations such as face contour, and

motions in the mouth, nose and eyes.

2.3. Shape­indexed (image) features

For efficient regression, we use simple pixel-difference

features, i.e., the intensity difference of two pixels in the

image. Such features are extremely cheap to compute and

powerful enough given sufficient training data [15, 18, 7].

A pixel is indexed relative to the currently estimated shape

rather than the original image coordinates. The similar idea

can also be found in [7]. This achieves better geometric

invariance and in turn leads to easier regression problems

and faster convergence in boosted learning.

To achieve feature invariance against face scales and ro-
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Figure 2. Pixels indexed by the same local coordinates have the

same semantic meaning (a), but pixels indexed by the same glob-

al coordinates have different semantic meanings due to the face

shape variation (b).

tations, we first compute a similarity transform to normal-

ize the current shape to a mean shape, which is estimated

by least squares fitting of all facial landmarks. Previous

works [6, 19, 16] need to transform the image correspond-

ingly to compute Harr like features. In our case, we instead

transform the pixel coordinates back to the original image

to compute pixel-difference features, which is much more

efficient.

A simple way to index a pixel is to use its global co-

ordinates (x, y) in the canonical shape. This is good for

simple shapes like ellipses, but it is insufficient for non-

rigid face shapes. Because most useful features are dis-

tributed around salient landmarks such as eyes, nose and

mouth (e.g., a good pixel difference feature could be “eye

center is darker than nose tip” or “two eye centers are sim-

ilar”), and landmarks locations can vary for different faces

3d-poses/expressions/identities. In this work, we suggest to

index a pixel by its local coordinates (δx, δy) with respect

to its nearest landmark. As Figure 2 shows, such indexing

holds invariance against the variations mentioned above and

make the algorithm robust.

For each weak regressor Rt in the first level, we random-

ly sample3 P pixels. In total P 2 pixel-difference features

are generated. Now, the new challenge is how to quickly

select effective features from such a large pool.

2.4. Correlation­based feature selection

To form a good fern regressor,F out of P 2 features are s-

elected. Usually, this is done by randomly generating a pool

of ferns and selecting the one with minimum regression er-

ror as in (4) [15, 7]. We denote this method as n-Best, where

n is the size of the pool. Due to the combinatorial explosion,

it is unfeasible to evaluate (4) for all of the compositional

features. As illustrated in Table 4, the error is only slight-

ly reduced by increasing n from 1 to 1024, but the training

time is significantly longer.

To better explore the huge feature space in a short time

and generate good candidate ferns, we exploit the correla-

tion between features and the regression target. The target

3We left for future work how to exploit a prior distribution that favors

salient regions (e.g., eyes or mouth) for more effective feature generation.

is vectorial delta shape which is the difference between the

groundtruth shape and current estimated shape. We expec-

t that a good fern should satisfy two properties: (1) each

feature in the fern should be highly discriminative to the re-

gression target; (2) correlation between features should be

low so they are complementary when composed.

To find features satisfying such properties, we propose a

correlation-based feature selection method:

1. Project the regression target(vectorial delta shape) to a

random direction to produce a scalar.

2. Among P 2 features, select a feature with highest cor-

relation to the scalar.

3. Repeat steps 1. and 2. F times to obtain F features.

4. Construct a fern by F features with random thresholds.

The random projection serves two purposes: it can pre-

serve proximity [2] such that the features correlated to the

projection are also discriminative to delta shape; the multi-

ple projections have low correlations with a high probabili-

ty and the selected features are likely to be complementary.

As shown in Table 4, the proposed correlation based method

can select good features in a short time and is much better

than the n-Best method.

Fast correlation computation At first glance, we need

to compute the correlation of P 2 features with a scalar in

step 2, which is still expensive. Fortunately the compu-

tational complexity can be reduced from O(P 2) to O(P )
by the following facts: The correlation between a scalar y
and a pixel-difference feature (fi − fj) can be represent-

ed as the function of three terms: cov(fi, fj), cov(y, fi),
and cov(y, fj). As all shape indexed pixels are fixed for

the first-level regressor Rt, the first term cov(fi, fj) can

be reused for all primitive regressors under the same Rt.

Therefore, the feature correlation computation time is re-

duced to that of computing the covariances between a scalar

and P different pixels, which is O(P ).

3. Implementation details

We discuss more implementation details, including the

shape initialization in training and testing, parameter setting

and running performance.

Training data augmentation Each training sample con-

sists of a training image, an initial shape and a ground truth

shape. To achieve better generalization ability, we augmen-

t the training data by randomly sampling multiple (20 in

our implementation) shapes of other annotated images as

the initial shapes of each training image. This is found to

be very effective in obtaining robustness against large pose

variation and rough initial shapes during the testing.

Multiple initializations in testing The regressor can

give reasonable results with different initial shapes for a test
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Figure 3. Left: results of 5 facial landmarks from multiple runs

with different initial shapes. The distribution indicates the esti-

mation confidence: left eye and left mouth corner estimations are

widely scattered and less stable, due to the local appearance nois-

es. Right: the average alignment error increases as the standard

deviation of multiple results increases.

image and the distribution of multiple results indicates the

confidence of estimation. As shown in Figure 3, when mul-

tiple landmark estimations are tightly clustered, the result is

accurate, and vice versa. In the test, we run the regressor

several times (5 in our implementation) and take the medi-

an result4 as the final estimation. Each time the initial shape

is randomly sampled from the training shapes. This further

improves the accuracy.

Running time performance Table 1 summarizes the

computational time of training (with 2, 000 training images)

and testing for different number of landmarks. Our training

is very efficient due to the fast feature selection method.

It takes minutes with 40, 000 training samples (20 initial

shapes per image), The shape regression in the test is ex-

tremely efficient because most computation is pixel com-

parison, table look up and vector addition. It takes only 15
ms for 87 landmarks (3 ms × 5 initializations).

Landmarks 5 29 87

Training (mins) 5 10 21

Testing (ms) 0.32 0.91 2.9

Table 1. Training and testing times of our approach, measured on

an Intel Core i7 2.93GHz CPU with C++ implementation.

Parameter settings The number of features in a fern F
and the shrinkage parameter β adjust the trade off between

fitting power in training and generalization ability in testing.

They are set as F = 5, β = 1000 by cross validation.

Algorithm accuracy consistently increases as the num-

ber of stages in the two-level boosted regression (T ,K) and

number of candidate features P 2 increases. Such parame-

ters are empirically chosen as T = 10,K = 500, P = 400

4The median operation is performed on x and y coordinates of all land-

marks individually. Although this may violate the shape constraint men-

tioned before, the resulting median shape is mostly correct as in most cases

the multiple results are tightly clustered. We found such a simple median

based fusion is comparable to more sophisticated strategies such as weight-

ed combination of input shapes.

for a good tradeoff between computational cost and accura-

cy.

4. Experiments

The experiments are performed in two parts. The first

part compares our approach with previous works. The sec-

ond part validates the proposed approach and presents some

interesting discussions.

We briefly introduce the three datasets used in the exper-

iments. They present different challenges, due to different

numbers of annotated landmarks and image variations.

BioID[11] dataset is widely used by previous methods. It

consists of 1,521 near frontal face images captured in a lab

environment, and is therefore less challenging. We report

our result on it for completeness.

LFPW (Labeled Face Parts in the Wild) was created

in [1]. Its images are downloaded from internet and con-

tain large variations in pose, illumination, expression and

occlusion. It is intended to test the face alignment method-

s in unconstraint conditions. This dataset shares only web

image URLs, but some URLs are no longer valid. We on-

ly downloaded 812 of the 1,100 training images and 249 of

the 300 test images. To acquire enough training data, we

augment the training images to 2,000 in the same way as in

[1] and use the available test images.

LFW87 was created in [12]. The images mainly come

from the LFW(Labeled Face in the Wild) dataset[10], which

is acquired from wild conditions and is widely used in face

recognition. In addition, it has 87 annotated landmarks,

much more than that in BioID and LFPW, therefore, the

performance of an algorithm relies more on its shape con-

straint. We use the same 4,002 training and 1,716 testing

images as in [12].

4.1. Comparison with previous work

For comparisons, we use the alignment error in Eq.(1) as

the evaluation metric. To make it invariant to face size, the

error is not in pixels but normalized by the distance between

the two pupils, similar to most previous works.

The following comparison shows that our approach out-

performs the state of the art methods in both accuracy and

efficiency, especially on the challenging LFPW and LFW87

datasets. Figure 7, 8, and 9 show our results on challenging

examples with large variations in pose, expression, illumi-

nation and occlusion from the three datasets.

Comparison to [1] on LFPW The consensus exemplar

approach [1] is one of the state of the art methods. It was the

best on BioID when published, and obtained good results on

LFPW.

Comparison in Figure 4 shows that most landmarks es-

timated by our approach are more than 10% accurate5

5The relative improvement is the ratio between the error reduction by
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Figure 4. Results on the LFPW dataset. Left: 29 facial landmark-

s. The circle radius is the average error of our approach. Point

color represents relative accuracy improvement over [1]. Green:

more than 10% more accurate. Cyan: 0% to 10% more accurate.

Red: less accurate. Right top: relative accuracy improvement of

all landmarks over [1]. Right bottom: average error of all land-

marks.

than [1] and our overall error is smaller.

In addition, our method is thousands of times faster. It

takes around 5ms per image (0.91× 5 initializations for 29

landmarks). The method in [1] uses expensive local land-

mark detectors (SIFT+SVM) and it takes more than 10 sec-

onds6 to run 29 detectors over the entire image.

Comparison to [12] on LFW87 Liang et al.[12] train a

set of direction classifiers for pre-defined facial components

to guide the ASM search direction. Their algorithm out-

perform previous ASM and AAM based works by a large

margin.

We use the same RMSE (Root Mean Square Error)

in [12] as the evaluation metric. Table 2 shows our method

is significantly better. For the strict error threshold (5 pix-

els), the error rate is reduced nearly by half, from 25.3%
to 13.9%. The superior performance on a large number

of landmarks verifies the effectiveness of proposed holistic

shape regression and the encoded adaptive shape constraint.

RMSE < 5 pixels < 7.5 pixels < 10 pixels

Method in [12] 74.7% 93.5% 97.8%

Our Method 86.1% 95.2% 98.2%

Table 2. Percentages of test images with RMSE(Root Mean Square

Error) less than given thresholds on the LFW87 dataset.

Comparison to previous methods on BioID Our model

is trained on augmented LPFW training set and tested on the

entire BioID dataset.

Figure 5 compares our method with previous method-

s [20, 5, 14, 19, 1]. Our result is the best but the improve-

our method and the original error.
6It is discussed in [1] as: ”The localizer requires less than one second

per fiducial on an Intel Core i7 3.06GHz machine”. We conjecture that it

takes more than 10 seconds to locate 29 landmarks.
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Figure 5. Cumulative error curves on the BioID dataset. For com-

parison with previous results, only 17 landmarks are used [5]. As

our model is trained on LFPW images, for those landmarks with

different definitions between the two datasets, a fixed offset is ap-

plied in the same way as in [1].

ment is marginal. We believe this is because the perfor-

mance on BioID is nearly maximized due to its simplicity.

Note that our method is thousands of times faster than the

second best method in [1].

4.2. Algorithm validation and discussions

We verify the effectiveness of different components of

the proposed approach. Such experiments are performed on

the augmented LPFW dataset, using 1,500 images for train-

ing and 500 for testing. Parameters are fixed as in Section 3,

unless otherwise noted.

Two-level cascaded regression As discussed in Sec-

tion 2, the first level regression exploits shape indexed fea-

tures to obtain geometric invariance and decompose the o-

riginal difficult problem into easier sub-tasks. The second

level regression inhibits such features to avoid instability.

Different tradeoffs between two-level cascaded regres-

sion are presented in Table 3, using the same number of

primitive regressors. On one extreme, not using shape in-

dexed features (T = 1,K = 5000) is clearly the worst. On

the other extreme, using such features for every primitive

regressor (T = 5000,K = 1) also has poor generalization

ability in the test. The optimal tradeoff (T = 10,K = 500)

is found in between via cross validation.

#stages in level 1 (T) 1 5 10 100 5000

#stages in level 2 (K) 5000 1000 500 50 1

Mean Error (×10−2) 15 6.2 3.3 4.5 5.2

Table 3. Tradeoffs between two levels cascaded regression.

Shape indexed feature We compare the global and local

methods of shape indexed features. The mean error of local

index method is 0.033, which is much smaller than the mean

error of global index method 0.059. The superior accuracy

supports the proposed local index method.
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Feature selection The proposed correlation based fea-

ture selection method (CBFS) is compared with the com-

monly used n-best method [15, 7] in Table 4. CBFS can

select good features rapidly and this is crucial to learn good

models from large training data.

1-Best 32-Best 1024-Best CBFS

Error (×10−2) 5.01 4.92 4.83 3.32

Time (s) 0.1 3.0 100.3 0.12

Table 4. Comparison between correlation based feature selec-

tion(CBFS) method and n-Best feature selection methods. The

training time is for one primitive regressor.

Feature range The range of a feature is the distance be-

tween the pair of pixels normalized by the distance between

the two pupils. Figure 6 shows the average ranges of se-

lected features in the 10 stages of the first level regressors.

As observed, the selected features are adaptive to the dif-

ferent regression tasks. At first, long range features (e.g.,

one pixel on the mouth and the other on the nose) are often

selected for rough shape adjustment. Later, short range fea-

tures (e.g., pixels around the eye center) are often selected

for fine tuning.
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In stage 1, 5 and 10, an exemplar feature (a pixel pair) is displayed

on an image.

5. Discussion and Conclusion

We have presented the explicit shape regression method

for face alignment. By jointly regressing the entire shape

and minimizing the alignment error, the shape constraint is

automatically encoded. The resulting method is highly ac-

curate, efficient, and can be used in real time applications

such as face tracking. The explicit shape regression frame-

work can also be applied to other problems like articulated

object pose estimation and anatomic structure segmentation

in medical images.
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Figure 7. Selected results from LFPW.

Figure 8. Selected results from LFW87.

Figure 9. Selected results from BioID.
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