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Abstract We present a very efficient, highly accurate,

“Explicit Shape Regression” approach for face alignment.

Unlike previous regression-based approaches, we directly

learn a vectorial regression function to infer the whole facial

shape (a set of facial landmarks) from the image and explic-

itly minimize the alignment errors over the training data. The

inherent shape constraint is naturally encoded into the regres-

sor in a cascaded learning framework and applied from coarse

to fine during the test, without using a fixed parametric shape

model as in most previous methods. To make the regression

more effective and efficient, we design a two-level boosted

regression, shape indexed features and a correlation-based

feature selection method. This combination enables us to

learn accurate models from large training data in a short

time (20 min for 2,000 training images), and run regres-

sion extremely fast in test (15 ms for a 87 landmarks shape).

Experiments on challenging data show that our approach sig-

nificantly outperforms the state-of-the-art in terms of both

accuracy and efficiency.
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1 Introduction

Face alignment or locating semantic facial landmarks such

as eyes, nose, mouth and chin, is essential for tasks like face

recognition, face tracking, face animation and 3D face mod-

eling. With the explosive increase in personal and web photos

nowadays, a fully automatic, highly efficient and robust face

alignment method is in demand. Such requirements are still

challenging for current approaches in unconstrained environ-

ments, due to large variations on facial appearance, illumi-

nation, and partial occlusions.

A face shape S = [x1, y1, ..., xNfp , yNfp ]
T consists of Nfp

facial landmarks. Given a face image, the goal of face align-

ment is to estimate a shape S that is as close as possible to

the true shape Ŝ, i.e., minimizing

||S − Ŝ||2. (1)

The alignment error in Eq. (1) is usually used to guide the

training and evaluate the performance. However, during test-

ing, we cannot directly minimize it as Ŝ is unknown. Accord-

ing to how S is estimated, most alignment approaches can

be classified into two categories: optimization-based and

regression-based.

Optimization-based methods minimize another error

function that is correlated to (1) instead. Such methods

depend on the goodness of the error function and whether

it can be optimized well. For example, the AAM approach

(Matthews and Baker 2004; Sauer and Cootes 2011; Saragih

and Goecke 2007; Cootes et al. 2001) reconstructs the entire

face using an appearance model and estimates the shape by

minimizing the texture residual. Because the learned appear-

ance models have limited expressive power to capture com-

plex and subtle face image variations in pose, expression, and

illumination, it may not work well on unseen faces. It is also

123



Int J Comput Vis

well known that AAM is sensitive to the initialization due to

the gradient descent optimization.

Regression-based methods learn a regression function that

directly maps image appearance to the target output. The

complex variations are learnt from large training data and

testing is usually efficient. However, previous such methods

(Cristinacce and Cootes 2007; Valstar et al. 2010; Dollar et

al. 2010; Sauer and Cootes 2011; Saragih and Goecke 2007)

have certain drawbacks in attaining the goal of minimizing

Eq. (1). Approaches in (Dollar et al. 2010; Sauer and Cootes

2011; Saragih and Goecke 2007) rely on a parametric model

(e.g., AAM) and minimize model parameter errors in the

training. This is indirect and sub-optimal because smaller

parameter errors are not necessarily equivalent to smaller

alignment errors. Approaches in (Cristinacce and Cootes

2007; Valstar et al. 2010) learn regressors for individual land-

marks, effectively using (1) as their loss functions. However,

because only local image patches are used in training and

appearance correlation between landmarks is not exploited,

such learned regressors are usually weak and cannot handle

large pose variation and partial occlusion.

We notice that the shape constraint is essential in all meth-

ods. Only a few salient landmarks (e.g., eye centers, mouth

corners) can be reliably characterized by their image appear-

ances. Many other non-salient landmarks (e.g., points along

face contour) need help from the shape constraint—the cor-

relation between landmarks. Most previous works use a para-

metric shape model to enforce such a constraint, such as PCA

model in AAM (Cootes et al. 2001; Matthews and Baker

2004) and ASM (Cootes et al. 1995; Cristinacce and Cootes

2007).

Despite of the success of parametric shape models, the

model flexibility (e.g., PCA dimension) is often heuristically

determined. Furthermore, using a fixed shape model in an

iterative alignment process (as most methods do) may also

be suboptimal. For example, in initial stages (the shape is far

from the true target), it is favorable to use a restricted model

for fast convergence and better regularization; in late stages

(the shape has been roughly aligned), we may want to use

a more flexible shape model with more subtle variations for

refinement. To our knowledge, adapting such shape model

flexibility is rarely exploited in the literature.

In this paper, we present a novel regression-based

approach without using any parametric shape models. The

regressor is trained by explicitly minimizing the alignment

error over training data in a holistic manner—all facial land-

marks are regressed jointly. The general idea of regressing

non-parametric shape has also been explored by Zhou and

Comaniciu (2007).

Our regressor realizes the shape constraint in an non-

parametric manner: the regressed shape is always a lin-

ear combination of all training shapes. Also, using fea-

tures across the image for all landmarks is more discrimina-

(a)

(b)

(c) (d)

Fig. 1 Shape constraint is preserved and adaptively learned in a coarse

to fine manner in our boosted regressor. a The shape is progressively

refined by the shape increments learnt by the boosted regressors in

different stages. b Intrinsic dimensions of learnt shape increments in

a 10-stage boosted regressor, using 87 facial landmarks. c, d The first

three principal components (PCs) of shape increments in the first and

final stage, respectively

tive than using only local patches for individual landmarks.

These properties enable us to learn a flexible model with

strong expressive power from large training data. We call

our approach “Explicit Shape Regression”.

Jointly regressing the entire shape is challenging in the

presence of large image appearance variations. We design

a boosted regressor to progressively infer the shape—the

early regressors handle large shape variations and guaran-

tee robustness, while the later regressors handle small shape

variations and ensure accuracy. Thus, the shape constraint is

adaptively enforced from coarse to fine, in an automatic man-

ner. This is illustrated in Fig. 1 and elaborated in Sect. 2.3.

Our explicit shape regression framework is inspired by the

cascaded pose regression proposed by Dollar et al. (2010).

In their work, a sequence of random fern regressors are

learnt to predict the object pose parameters progressively. In

each iteration, image features not only depend on the image

content, but also depend on the predicted pose parameter

from last iteration. Such pose-indexed features provide bet-

ter geometric invariance and greatly enhance the regressor’s
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performance. In their experiment, this method has also been

used to estimate face shape which is modeled by a simple

parametric ellipse (Dollar et al. 2010).

Our method improves the cascaded pose regression frame-

work in several important aspects and works better for face

alignment problem. We adopt a non-parametric representa-

tion, directly estimate the facial landmarks by minimizing

the alignment error instead of parameter error. Consequently,

the underlying shape constraint is preserved automatically.

To address the very challenging high-dimensional regres-

sion problem, we further propose several improvements: a

two-level boosted regression, effective shape indexed fea-

tures, a fast correlation-based feature selection method and

sparse coding based model compression so that: (1) we can

quickly learn accurate models from large training data (20

min on 2,000 training samples); (2) the resulting regressor is

extremely efficient in the test (15 ms for 87 facial landmarks);

(3) the model size is reasonably small (a few megabytes) and

applicable in many scenarios. We show superior results on

several challenging datasets.

2 Face Alignment by Shape Regression

2.1 The Shape Regression Framework

In this section, we describe our shape regression framework

and discuss how it fit to the face alignment task.

We cast our solution to shape regression task into the gra-

dient boosting regression (Friedman 2001; Duffy and Helm-

bold 2002) framework, which is a representative approach of

ensemble learning. In training, it sequentially learns a series

of weak learners to greedily minimize the regression loss

function. In testing, it simply combine the pre-learnt weak

learners in an additive manner to give the final prediction.

Before specifying how to resolve face alignment task in

gradient boosting framework, we first clarify a simple and

basic term, i.e. the normalized shape. Provided the predefined

mean shape S̄, the normalized shape of an input shape S is

obtained by a similarity transform which aligns the input

shape to the mean shape1 to minimizes their L2 distance,

MS = argmin
M

||S̄ − M ◦ S||2, (2)

where MS ◦ S is the normalized shape. Now we are ready to

describe our shape regression framework.

In training, given N training samples {Ii , Ŝi , S0
i }N

i=1,

the stage regressors (R1, ..., RT ) are sequentially learnt to

1 It is also interesting to know that the mean shape is defined as the

average of the normalized training shapes. Although it sounds like a

circular definition, we still can compute the mean shape in an iterative

way. Readers are recommended to Active Shape Model (Cootes et al.

1995) method for details.

reduce the alignment errors on training set. In stage each t ,

the stage regressor Rt is formally learnt as follows,

Rt = argmin
R

N
∑

i=1

||yi − R(Ii , St−1
i )||2 (3)

yi = M
St−1

i
◦ (Ŝi − St−1

i ),

where St−1
i is the estimated shape in previous stage t − 1,

M
St−1

i
◦(Ŝi −St−1

i ) is the normalized regression target which

will be discussed later. Please note herein we only apply the

scale and rotation transformation to normalize the regression

target.

In testing, given a facial image I and an initial shape S0,

the stage regressor computes a normalized shape increment

from image features and then updates the face shape, in a

cascaded manner:

St
i = St−1

i + M−1

St−1
i

◦ Rt (Ii , St−1
i ), (4)

where the stage regressor Rt updates the previous shape

St−1 to the new shape St in stage t . Note we only scale and

rotate (without translating) the output of the stage regression

according to the angle and the scale of the previous shape.

2.1.1 Discussion

Although our basic face alignment framework follows gradi-

ent boosting framework, there are three components specifi-

cally designed for the shape regression tasks. As these com-

ponents are generic, regardless of the specific forms of the

weak learner and the feature used for learning, it is worth

clarifying and discussing them here.

Shape Indexed Feature The feature for learning the weak

learner Rt depends on both image I and previous estimated

shape St−1. It improves the performance by achieving geo-

metric invariance. In other words, the feature is extracted

relative to St−1 to eliminate two kinds of variations: the vari-

ations due to scale, rotation and translation and the variations

due to identity, pose and expression (i.e. the similarity trans-

form M−1

St−1 and the normalized shape MSt−1 ◦ St−1). It is

worth mentioning that although shape indexed feature sounds

more complex, our designed feature is extremely cheap to be

computed and does not require image warping. The details

of our feature will be described in Sect. 2.4.

Regressing the Normalized Target Instead of learning the

mapping from shape indexed feature to Ŝi − St−1
i , we argue

the regression task will be simplified if we regress the normal-

ized target M
St−1

i
◦ (Ŝi − St−1

i ). Because the normalized tar-

get is invariant to similarity transform. To better understand

its advantage, imagine two identical facial images with the

estimated shape. One of them is changed by similarity trans-

form while the other is kept unchanged. Due to the transform,

the regression target (shape increments) of the transformed
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image are different from that of the unchanged one. Hence

the regression task is complicated. In contrast, the regression

task will keep simple if we regress the normalized targets,

which are still the same for both samples.

Data Augmentation and Multiple Initialization Unlike

typical regression task, the sample of our shape regression

task is a triple which is defined by the facial image, the

groundtruth shape and the initial shape i.e. {Ii , Ŝi , S0
i }. So

we can augment the samples by generating multiple initial

shapes for one image. In fact, it turns out such simple oper-

ation not only effectively improves generalization of train-

ing, but also reduces the variation of the final prediction by

bagging the results obtained by multiple initializations. See

Sect. 3 for experimental validations and further discussions.

To make the training and testing our framework clear, we

format them in the pseudo codes style.

Algorithm 1 Explicit Shape Regression (ESR)

Variables: Training images and labeled shapes {Il , Ŝl }
L
l=1; ESR model

{Rt }T
t=1; Testing image I ; Predicted shape S; TrainParams{times of

data augment Naug, number of stages T };

TestParams{number of multiple initializations Nint};

InitSet which contains exemplar shapes for initialization

ESRTraining({Il , Ŝl }
L
l=1, TrainParams, InitSet)

// augment training data

{Ii , Ŝi , S0
i }N

i=1 ← Initialization ({Il , Ŝl }
L
l=1, Naug, InitSet)

for t from 1 to T

Y ← {M
St−1

i
◦ (Ŝi − St−1

i )}N
i=1 // compute normalized targets

Rt ← LearnStageRegressor(Y, {Ii , St−1
i }N

i=1) // using Eq. (3)

for i from 1 to N

St
i ← St−1

i + M−1

St−1
i

◦ Rt (Ii , St−1
i )

return {Rt }T
t=1

ESRTesting(I, {Rt }T
t=1, TestParams, InitSet)

// multiple initializations

{Ii , ∗, S0
i }

Nint

i=1 ← Initialization ({I, ∗}, Nint, InitSet)

for t from 1 to T

for i from 1 to Nint

St
i ← St−1

i + M−1

St−1
i

◦ Rt (Ii , St−1
i )

S ← CombineMultipleResutls({ST
i }

Nint

i=1)

return S

Initialization({Ic, Ŝc}
C
c=1, D, InitSet)

i ← 1

for c from 1 to C

for d from 1 to D

So
i ← sampling an exemplar shape from InitSet

{I o
i , Ŝo

i } ← {Ic, Ŝc}

i ← i + 1

return {I o
i , Ŝo

i , So
i }C D

i=1

The details about combining multiple results and initial-

ization (including constructing InitSet and sampling from

InitSet) will be discussed later in Sect. 3.

As the stage regressor plays a vital role in our shape regres-

sion framework, we will focus on it next. We will discuss

what kinds of regressors are suitable for our framework and

present a series of methods for effectively learning the stage

regressor.

2.2 Two-Level Boosted Regression

Conventionally, the stage regressor Rt , is a quite weak regres-

sor such as a decision stump (Cristinacce and Cootes

2007) or a fern (Dollar et al. 2010). However, in our

early experiments, we found that such regressors result in

slow convergence in training and poor performance in the

testing.

We conjecture this is due to two reasons: first, regressing

the entire shape (as large as dozens of landmarks) is too diffi-

cult to be handled by a weak regressor in each stage; second,

the shape indexed feature will be unreliable if the previous

regressors are too weak to provide fairly reliable shape esti-

mation, so will the regressor based on the shape indexed

feature. Therefore it is crucial to learn a strong regressor that

can rapidly reduce the alignment error of all training samples

in each stage.

Generally speaking, any kinds of regressors with strong

fitting capacity will be desirable. In our case, we again inves-

tigate boosted regression as the stage regressor Rt . Therefore

threre are two-levels boosted regression in our method, i.e.

the basic face alignment framework (external-level) and the

stage regressor Rt (internal-level). To avoid terminology con-

fusion, we term the weak learner of the internal-level boosted

regression, as primitive regressor.

It is worth mentioning that other strong regressors have

also been investigated by two notable works. Sun et al.

(2013) investigated the regressor based on convolutional

neural network. Xiong and De la Torre (2013) investi-

gated the linear regression with strong hand-craft feature i.e.

SIFT.

Although the external- and internal- level boosted regres-

sion bear some similarities, there is a key differences. The

difference is that the shape indexed image features are fixed

in the internal-level, i.e., they are indexed only relative to the

previous estimated shape St−1 and no longer change when

those primitive regressor are being learnt.2 This is impor-

tant, as each primitive regressor is rather weak, allowing fea-

ture indexing will frequently change the features, leading to

unstable consequences. Also the fixed features can lead to

much faster training, as will be described later. In our exper-

iments, we found using two-level boosted regression is more

accurate than one level under the same training effort, e.g.,

T = 10, K = 500 is better than one level of T =5,000, as

shown in Table 4.

2 Otherwise this degenerates to a one level boosted regression.
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2.3 Primitive Regressor

We use a fern as our primitive regressor. The fern was firstly

introduced for classification by Ozuysal et al. (2010) and later

used for regression by Dollar et al. (2010).

A fern is a composition of F (5 in our implementation)

features and thresholds that divide the feature space and all

training samples into 2F bins. Each bin b is associated with

a regression output yb. Learning a fern involves a simple

task and a hard task. The simple task refers to learning the

outputs in bins. The hard task refers to learning the structure

(the features and the splitting thresholds). We will handle the

simple task first, and resolve the hard task in the Sect. 2.5

later.

Let the targets of all training samples be {ŷi }
N
i=1. The pre-

diction/output of a bin should minimize its mean square dis-

tance from the targets for all training samples falling into this

bin.

yb = argmin
y

∑

i∈Ωb

||ŷi − y||2, (5)

where the set Ωb indicates the samples in the bth bin. It is

easy to see that the optimal solution is the average over all

targets in this bin.

yb =

∑

i∈Ωb
ŷi

|Ωb|
. (6)

To overcome over-fitting in the case of insufficient training

data in the bin, a shrinkage is performed (Friedman 2001;

Ozuysal et al. 2010) as

yb =
1

1 + β/|Ωb|

∑

i∈Ωb
ŷi

|Ωb|
, (7)

where β is a free shrinkage parameter. When the bin has

sufficient training samples, β makes little effect; otherwise,

it adaptively reduces the magnitude of the estimation.

2.3.1 Non-parametric Shape Constraint

By directly regressing the entire shape and explicitly mini-

mizing the shape alignment error in Eq. (1), the correlation

between the shape coordinates is preserved. Because each

shape update is additive as in Eqs. (4), (6) and (7), it can be

shown that the final regressed shape S is the sum of initial

shape S0 and the linear combination of all training shapes:

S = S0 +

N
∑

i=1

wi Ŝi . (8)

Therefore, as long as the initial shape S0 satisfies the

shape constraint, the regressed shape is always constrained

to reside in the linear subspace constructed by all train-

ing shapes. In fact, any intermediate shape in the regression

also satisfies the constraint. Compare to the pre-fixed PCA

shape model, the non-parametric shape constraint is adap-

tively determined during the learning.

To illustrate the adaptive shape constraint, we perform

PCA on all the shape increments stored in K ferns (2F × K

in total) in each stage t . As shown in Fig. 1, the intrinsic

dimension (by retaining 95 % energy) of such shape spaces

increases during the learning. Therefore, the shape constraint

is automatically encoded in the regressors in a coarse to fine

manner. Figure 1 also shows the first three principal com-

ponents of the learnt shape increments (plus a mean shape)

in first and final stage. As shown in Fig. 1c, d, the shape

updates learned by the first stage regressor are dominated by

global rough shape changes such as yaw, roll and scaling.

In contrast, the shape updates of the final stage regressor are

dominated by the subtle variations such as face contour, and

motions in the mouth, nose and eyes.

2.4 Shape Indexed (Image) Features

For efficient regression, we use simple pixel-difference

features, i.e., the intensity difference of two pixels in the

image. Such features are extremely cheap to compute and

powerful enough given sufficient training data (Ozuysal et

al. 2010; Shotton et al. 2011; Dollar et al. 2010).

To let the pixel-difference achieve geometric invariance,

we need to make the extracted raw pixel invariant to two

kinds of variations: the variations due to similarity transform

(scale, rotation and translation) and the variations due to the

normalized shape (3D-poses, expressions and identities).

In this work, we propose to index a pixel by the esti-

mated shape. Specifically, we index a pixel by the local

coordinate �l = (�x l ,�yl) with respect to a landmark in

the normalized face. The superscript l indicates which land-

mark this pixel is relative to. As Fig. 2 shows, such index-

ing holds invariance against the variations mentioned above

and make the algorithm robust. In addition, it also enable us

sampling more useful candidate features distributed around

salient landmarks (e.g., a good pixel difference feature could

be “eye center is darker than nose tip” or “two eye centers

are similar”).

(a) (b)

Fig. 2 Pixels indexed by the same local coordinates have the same

semantic meaning (a), but pixels indexed by the same global coordinates

have different semantic meanings due to the face shape variation (b)
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In practical implementation, unlike previous works

(Cristinacce and Cootes 2007; Valstar et al. 2010; Sauer

and Cootes 2011) which requires image warping, we instead

transform the local coordinate back to the global coordinates

on the original image to extract the shape indexed pixels

and then compute the pixel-difference features. This leads to

much faster testing speed.

Let the estimated shape of a sample be S. The location of

the mth landmark is obtained by πl ◦ S, where the operator πl

gets the x and y coordinates of mth landmark from the shape

vector. Provided the local coordinate �l , the corresponding

global coordinates on the original image can formally repre-

sented as follows.3

πl ◦ S + M−1
S ◦ �l (9)

Note that although the �l is identical for different samples,

the global coordinates for extracting raw pixels are adaptively

adjusted for different samples to ensure geometric invariance.

Herein we only scale and rotate (without translating) the local

coordinates according to the angle and the scale of the shape.

For each stage regressor Rt in the external-level, we ran-

domly generate P local coordinates {�
lα
α }P

α=1 which define

P shape indexed pixels. Each local coordinate is generated

by first randomly selecting a landmark (e.g. lαth landmark)

and then draw random x- and y-offset from uniform distri-

bution. The P pixels result in P2 pixel-difference features.

Now, the new challenge is how to quickly select effective

features from such a large pool.

2.5 Correlation-Based Feature Selection

To form a good fern regressor, F out of P2 features are

selected. Usually, this is done by randomly generating a pool

of ferns and selecting the one with minimum regression error

as in (5) (Ozuysal et al. 2010; Dollar et al. 2010). We denote

this method as best-of-n, where n is the size of the pool. Due

to the combinatorial explosion, it is unfeasible to evaluate (5)

for all of the compositional features. As illustrated in Table 5,

the error is only slightly reduced by increasing n from 1 to

1024, but the training time is significantly longer.

To better explore the huge feature space in a short time

and generate good candidate ferns, we exploit the correlation

between features and the regression target. We expect that a

good fern should satisfy two properties: (1) each feature in

the fern should be highly correlated to the regression target;

(2) correlation between features should be low so they are

complementary when composed.

To find features satisfying such properties, we propose

a correlation-based feature selection method. Let Y be the

3 According to aforementioned definition, the global coordinates are

computed via M−1
S ◦ (πl ◦ M−1

S ◦ S +�l ). By simplifying this formula,

we get Eq. (9)

Algorithm 2 Shape indexed features

Variables: images and corresponding estimated shapes {Ii , Si }
N
i=1;

number of shape indexed pixel features P; number of facial points Nfp;

the range of local coordinate κ; local coordinates {�
lα
α }P

α=1;

shape indexed pixel features ρ ∈ ℜN×P ;

shape indexed pixel-difference features X ∈ ℜN×P2
;

GenerateShapeIndexedFeatures({Ii , Si }
N
i=1, Nfp, P, κ)

{�
lα
α }P

α=1 ← GenerateLocalCoordinates(FeatureParams)

ρ ← ExtractShapeIndexedPixels({Ii , Si }
N
i=1, {�

lα
α }P

α=1)

X ← pairwise difference of all columns of ρ

return {�
lα
α }P

α=1, ρ, X

GenerateLocalCoordinates(Nfp, P, κ)

for α from 1 to P

lα ← randomly drawn a integer in [1, Nfp]

�
lα
α ← randomly drawn two floats in [−κ, κ]

return {�
lα
α }P

α=1

ExtractShapeIndexedPixels({Ii , Si }
N
i=1, {�

lα
α }P

α=1)

for i from 1 to N

for α from 1 to P

µα ← πlα ◦ Si + M−1
Si

◦ �lα

ρiα ← Ii (µα)

return ρ

regression target with N (the number of samples) rows and

2Nfp columns. Let X be pixel-difference features matrix with

N rows and P2 columns. Each column X j of the feature

matrix represents a pixel-difference feature. We want to select

F columns of X which are highly correlated with Y . Since Y

is a matrix, we use a projection v, which is a column vector

drawn from unit Gaussian, to project Y into a column vector

Yprob = Yv. The feature which maximizes its correlation

(Pearson Correlation) with the projected target is selected.

jopt = argmin
j

corr(Yprob, X j ) (10)

By repeating this procedure F times, with different random

projections, we obtain F desirable features.

The random projection serves two purposes: it can pre-

serve proximity (Bingham and Mannila 2001) such that the

features correlated to the projection are also discriminative

to delta shape; the multiple projections have low correlations

with a high probability and the selected features are likely to

be complementary. As shown in Table 5, the proposed corre-

lation based method can select good features in a short time

and is much better than the best-of-n method.

2.6 Fast Correlation Computation

At first glance, we need to compute the correlation for all can-

didate features to select a feature. The complexity is linear

to the number of training samples and the number of pixel-

difference features, i.e. O(N P2). As the size of feature pool

scales square to the number of sampled pixels, the computa-
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tion will be very expensive, even with moderate number of

pixels (e.g. 400 pixels leads to 160,000 candidate features!).

Fortunately the computational complexity can be reduced

from O(N P2) to O(N P) by the following facts: The cor-

relation between the regression target and a pixel-difference

feature (ρm − ρn) can be represented as follows.

corr(Yproj, ρm − ρn) =
cov(Yproj, ρm) − cov(Yproj, ρn)

√

σ(Yproj)σ (ρm − ρn)

σ (ρm − ρn) = cov(ρm, ρm)

+cov(ρn, ρn)−2cov(ρm, ρn) (11)

We can see that the correlation is composed by two cat-

egories of covariances: the target-pixel covariance and the

pixel–pixel covariance. The target-pixel covariance refers to

the covariance between the projected target and pixel fea-

ture, e.g., cov(Yproj, ρm) and cov(Yproj, ρn). The pixel–pixel

covariance refers to the covariance among different pixel fea-

tures, e.g., cov(ρm, ρm), cov(ρn, ρn) and cov(ρm, ρn). As the

shape indexed pixels are fixed in the internal-level boosted

regression, the pixel–pixel covariances can be pre-computed

and reused within each internal-level boosted regression. For

each primitive regressor, we only need to compute all target-

pixel covariances to compose the correlations, which scales

linear to the number of pixel features. Therefore the com-

plexity is reduced from O(N P2) to O(N P).

Algorithm 3 Correlation-based feature selection

Input: regression targets Y ∈ ℜN×2Nfp ; shape indexed pixel features

ρ ∈ ℜN×P ; pixel-pixel covariance cov(ρ) ∈ ℜP×P ; number of

features of a fern F ;

Output: The selected pixel-difference features {ρmf − ρnf }
F
f=1 and the

corresponding indices {mf, nf}
F
f=1;

CorrelationBasedFeatureSelection(Y, cov(ρ), F)

for f from 1 to F

v ← randn(2Nfp, 1) // draw a random projection from unit Gaussian

Yprob ← Yv // random projection

cov(Yprob, ρ) ∈ ℜ1×P ← compute target-pixel covariance

σ(Yprob) ← compute sample variance of Yprob

mf = 1; nf = 1;

for m from 1 to P

for n from 1 to P

corr(Yprob, ρm − ρn) ← compute correlation using Eq. (11)

if corr(Yprob, ρm − ρn) > corr(Yprob, ρmf − ρnf )

mf = m; nf = n;

return {ρmf − ρnf }
F
f=1, {mf, nf}

F
f=1

2.7 Internal-Level Boosted Regression

As aforementioned, at each stage t , we need to learn to a

stage regressor to predict the normalized shape increments

from the shape indexed features. Since strong fitting capacity

is vital to the final performance, we again exploit the boosted

regression to form the stage regressor. To distinguish it from

the external-level shape regression framework, we term it as

internal-level boosted regression. With the prepared ingredi-

ents in previous three sections, we are ready to describe how

to learn the internal-level boosted regression.

The internal-boosted regression consists of K primitive

regressors {r1, ..., rK }, which are in fact ferns. In testing, we

combine them in an additive manner to predict the output.

In training, the primitive regressors are sequentially learnt to

greedily fit the regression targets, in other words, each primi-

tive regressor handles the residues left by previous regressors.

In each iteration, the residues are used as the new targets for

learning a new primitive regressor. The learning procedure

are essentially identical for all primitive regressors, which

can be describe as follows.

– Features Selecting F pixel-difference features using cor-

relation based feature selection method.

– Thresholds Randomly sampling F i.i.d. thresholds from

an uniform distribution.4

– Outputs Partitioning all training samples into different

bins using the learnt features and thresholds. Then, learn-

ing the outputs of the bins using Eq. (7).

Algorithm 4 Internal-level boosted regression

Variables: regression targets Y ∈ ℜN×2Nfp ; training images and

corresponding estimated shapes {Ii , Si }
N
i=1; training parameters

TrainParams{Nfp, P, κ, F, K }; the stage regressor R; testing image

and corresponding estimated shape {I, S};

LearnStageRegressor(Y, {Ii , Si }
N
i=1, TrainParams)

{�
lα
α }P

α=1 ← GenerateLocalCoordinates(Nfp, P, κ)

ρ ← ExtractShapeIndexedPixels({Ii , Si }
N
i=1, {�

lα
α }P

α=1)

cov(ρ) ← pre-compute pixel-pixel covariance

Y 0 ← Y // initialization

for k from 1 to K

{ρmf − ρnf }
F
f=1, {mf, nf}

F
f=1 ←

CorrelationBasedFeatureSelection(Y k−1, cov(ρ), F)

{θf}
F
f=1 ← sample F thresholds from an uniform distribution

{Ωb}
2F

b=1 ← partition training samples into 2F bins

{yb}
2F

b=1 ← compute the outputs of all bins using Eq. (7)

rk ← {{mf, nf}
F
f=1, {θf}

F
f=1, {yb}

2F

b=1} // construct a fern

Y k ← Y k−1 − rk({ρmf − ρnf }
F
f=1) // update the targets

R ← {{rk}K
k=1, {�

lα
α }P

α=1} // construct stage regressor

return R

ApplyStageRegressor(I, S, R) // i.e. R(I, S)

ρ ← ExtractShapeIndexedPixels({I, S}, {�
lα
α }P

α=1)

δS ← 0

for k from 1 to K

δS ← δS + rk({ρmf − ρnf }
F
f=1)

return δS

4 Provided the range of pixel difference feature is [−c, c], the range of

the uniform distribution is [−0.2c, 0.2c].
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2.8 Model Compression

By memorizing the fitting procedures in the regression

model, our method gains very efficient testing speed. How-

ever, comparing with optimization based approaches, our

regression based method leads higher storage cost. The stored

delta shapes in the ferns’ leaves contributes to the main

cost in the total storage, which can be quantitatively com-

puted via 8NfpT K 2F , where T K 2F gives the number of all

leaves of T K random ferns in T stages, 8Nfp is the stor-

age of a delta shape in a single leaf. For example, provided

T = 10, K = 500, F = 5 and Nfp = 194, the storage is

around 240mb, which is unaffordable in many real scenarios

such as mobile phones and embedded devices.

A straight forward way to compress model size is via

principal component analysis (Jolliffe 2005). However, since

PCA only exploits orthogonal undercompleted basis in cod-

ing, its compression capability is limited. To further com-

press the model size, we adopt sparse coding which not only

takes the advantage of overcompleted basis but also enforces

sparse regularization in its objective.

Formally, the objective of sparse coding in a certain leave

of fern can be expressed as follows:

min
x

∑

i∈Ωb

‖ŷi − Bx‖2
2, s.t.‖x‖0 ≤ Q, (12)

where the ŷi is the regression target; B is the basis for sparse

coding; Q the is the upper bound of the number of non-zero

codes (Q = 5 in our implementation).

The learning procedure of our model compression method

consists of two steps in each stage. In the first step, the basis

B of this stage is constructed. To learn the basis, we first run

the non-sparse version of our method to obtain K ferns of this

stage as well as the outputs stored in their leaves. Then the

basis is constructed by random sampling5 from the outputs

in the leaves.

In the second step, we use the same method in Sect. 2.5

to learn the structure of a fern. For each leaf, sparse codes

are computed by optimizing the objective in Eq. (12) using

the orthogonal matching pursuit method (Tropp and Gilbert

2007). Comparing with the shape increment, sparse codes

require much less storage in leaves, especially when the

dimension of the shape is high.

In testing, for K ferns in one stage, their non-zero codes

in the leaves which are visited by the testing sample are lin-

early summed up to form the final coefficient x , then the

output is computed via Bx , which contributes to the main

computation. It is worth noting although the training of the

5 We use random sampling for basis construction due to its simplicity

and effectiveness. We also tried more sophisticated K-SVD method

(Elad and Aharon 2006) for learning basis. It yields similar performance

comparing with random sampling.

compressed version is more time-consuming, the testing is

still as efficient as the original version.

3 Implementation Details

We discuss more implementation details, including the shape

initialization in training and testing, parameter setting and

running performance.

3.1 Initialization

As aforementioned, we generate a initial shape by sampling

from an InitSet which contains exemplar shapes. The exem-

plar shapes could be representative shapes selected from the

training data, or the groundtruth shapes of the training data

{Ŝi }
N
i=1. In training, we choose the later as the InitSet. While,

in testing, we use the first for its storage efficiency. For one

image, we draw the initial shapes without replacement to

avoid duplicated samples. The scale and translation of the

sampled shape should be adjusted to ensure that the corre-

sponding face rectangle is the same with the face rectangle

of the input facial image.

3.2 Training Data Augmentation

Each training sample consists of a training image, an initial

shape and a ground truth shape. To achieve better general-

ization ability, we augment the training data by sampling

multiple initializations (20 in our implementation) for each

training image. This is found to be very effective in obtain-

ing robustness against large pose variation and rough initial

shapes during the testing.

3.3 Multiple Initializations in Testing

The regressor can give reasonable results with different initial

shapes for a test image and the distribution of multiple results

indicates the confidence of estimation. As shown in Fig. 3,

Fig. 3 Left results of 5 facial landmarks from multiple runs with differ-

ent initial shapes. The distribution indicates the estimation confidence:

left eye and left mouth corner estimations are widely scattered and less

stable, due to the local appearance noises. Right the average alignment

error increases as the standard deviation of multiple results increases
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Table 1 Training and testing times of our approach, measured on an

Intel Core i7 2.93GHz CPU with C++ implementation

Landmarks 5 29 87

Training (min) 5 10 21

Testing (ms) 0.32 0.91 2.9

when multiple landmark estimations are tightly clustered,

the result is accurate, and vice versa. In the test, we run the

regressor several times (5 in our implementation) and take the

median result6 as the final estimation. Each time the initial

shape is randomly sampled from the training shapes. This

further improves the accuracy.

3.4 Running Time Performance

Table 1 summarizes the computational time of training (with

2,000 training images) and testing for different number of

landmarks. Our training is very efficient due to the fast fea-

ture selection method. It takes minutes with 40,000 training

samples (20 initial shapes per image), The shape regression

in the test is extremely efficient because most computation is

pixel comparison, table look up and vector addition. It takes

only 15 ms for predicting a shape with 87 landmarks (3 ms

× 5 initializations).

3.5 Parameter Settings

The number of features in a fern F and the shrinkage para-

meter β adjust the trade off between fitting power in training

and generalization ability in testing. They are set as F = 5,

β =1,000 by cross validation.

Algorithm accuracy consistently increases as the number

of stages in the two-level boosted regression (T, K ) and num-

ber of candidate features P2 increases. Such parameters are

empirically chosen as T = 10, K = 500, P = 400 for a

good tradeoff between computational cost and accuracy.

The parameter κ is used for generating the local coordi-

nates relative to landmarks. We set κ equal to 0.3 times of

the distance between two pupils on the mean shape.

4 Experiments

The experiments are performed in two parts. The first part

compares our approach with previous works. The second part

6 The median operation is performed on x and y coordinates of all

landmarks individually. Although this may violate the shape constraint

mentioned before, the resulting median shape is mostly correct as in

most cases the multiple results are tightly clustered. We found such a

simple median based fusion is comparable to more sophisticated strate-

gies such as weighted combination of input shapes.

validates the proposed approach and presents some interest-

ing discussions.

We briefly introduce the datasets used in the experiments.

They present different challenges, due to different numbers

of annotated landmarks and image variations.

BioID The dataset was proposed by Jesorsky et al. (2001)

and widely used by previous methods. It consists of 1,521

near frontal face images captured in a lab environment, and

is therefore less challenging. We report our result on it for

completeness.

LFPW The dataset was created by Belhumeur et al. (2011).

Its full name is Labeled Face Parts in the Wild. The images

are downloaded from internet and contain large variations in

pose, illumination, expression and occlusion. It is intended

to test the face alignment methods in unconstraint condi-

tions. This dataset shares only web image URLs, but some

URLs are no longer valid. We only downloaded 812 of the

1,100 training images and 249 of the 300 test images. To

acquire enough training data, we augment the training images

to 2,000 in the same way as Belhumeur et al. (2011) did and

use the available testing images.

LFW87 The dataset was created by Liang et al. (2008). The

images mainly come from the Labeled Face in the Wild

(LFW) dataset (Huang et al. 2008), which is acquired from

uncontrolled conditions and is widely used in face recog-

nition. In addition, it has 87 annotated landmarks, much

more than that in BioID and LFPW, therefore, the perfor-

mance of an algorithm relies more on its shape constraint.

We use the same setting in Liang et al. (2008)’s work: the

training set contains 4,002 images mainly from LFW, and

the testing set contains 1,716 images which are all from

LFW.

Helen The dataset was proposed by Le et al. (2012). It

consists of 2,330 high resolution web images with 194

annotated landmarks. The average size of face is 550 pix-

els. Even the smallest face in the dataset is larger than

150 pixels. It serves as a new benchmark which provides

richer and more detailed information for accurate face

alignment.

4.1 Comparison with previous works

For comparisons, we use the alignment error in Eq. (1) as the

evaluation metric. To make it invariant to face size, the error

is not in pixels but normalized by the distance between the

two pupils, similar to most previous works.

The following comparison shows that our approach out-

performs the state of the art methods in both accuracy and

efficiency, especially on the challenging LFPW and LFW87

datasets. Figures 4, 5, 6 and 7 show our results on challenging

examples with large variations in pose, expression, illumina-

tion and occlusion from the four datasets.
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Fig. 4 Selected results from LFPW

Fig. 5 Selected results from LFW87

4.1.1 Comparison on LFPW

The consensus exemplar approach proposed by Belhumeur

et al. (2011) is one of the state of the art methods. It was the

best on BioID when published, and obtained good results on

LFPW.

Comparison in Fig. 8 shows that most landmarks esti-

mated by our approach are more than 10 % accurate7 than

7 The relative improvement is the ratio between the error reduction and

the original error.
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Fig. 6 Selected results from BioID

Fig. 7 Selected results from Helen dataset

Fig. 8 Results on the LFPW dataset. Left 29 facial landmarks. The

circle radius is the average error of our approach. Point color repre-

sents relative accuracy improvement over the results of the consensus

exemplars(CE) method proposed by Belhumeur et al. (2011). Green

more than 10 % more accurate. Cyan 0 to 10 % more accurate. Red less

accurate. Right top relative accuracy improvement of all landmarks over

the results of CE method. Right bottom average error of all landmarks

(Color figure online)

the method proposed by Belhumeur et al. (2011) and our

overall error is smaller.

In addition, our method is thousands of times faster. It

takes around 5ms per image (0.91 × 5 initializations for 29

landmarks). The method proposed by Belhumeur et al. (2011)

uses expensive local landmark detectors (SIFT+SVM) and it

takes more than 10 s8 to run 29 detectors over the entire

image.

4.1.2 Comparison on LFW87

Liang et al. (2008) proposed a component-based discrimina-

tive search (CDS) method which trains a set of direction clas-

sifiers for pre-defined facial components to guide the ASM

search direction. Their algorithm outperform previous ASM

and AAM based works by a large margin.

We use the same root mean square error (RMSE) used in

CDS (Liang et al. 2008) as the evaluation metric. Table 2

shows our method is significantly better. For the strict error

threshold (5 pixels), the error rate is reduced nearly by half,

from 25.3 to 13.9 %. The superior performance on a large

number of landmarks verifies the effectiveness of proposed

holistic shape regression and the encoded adaptive shape con-

straint.

8 Belhumeur et al. (2011) discussed in their work: “The localizer

requires less than 1 s per fiducial on an Intel Core i7 3.06GHz machine”.

We conjecture that it takes more than 10 s to locate 29 landmarks.
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Table 2 Percentages of test images with root mean square error

(RMSE) less than given thresholds on the LFW87 dataset

RMSE <5 Pixels <7.5 Pixels <10 Pixels

CDS (%) 74.7 93.5 97.8

Our method (%) 86.1 95.2 98.2

Bold values represent the best results under certain settings

Table 3 Comparison on Helen dataset

Method Mean Median Min Max

STASM 0.111 0.094 0.037 0.411

CompASM 0.091 0.073 0.035 0.402

Our method 0.057 0.048 0.024 0.16

The error of each sample is first individually computed by averaging

the errors of 194 landmarks, and then the mean error across all testing

samples is computed

Bold values represent the best results under certain settings

4.1.3 Comparison on Helen

We adopt the same training and testing protocol as well as

the same error metric used by Le et al. (2012). Specifically,

we divide the Helen dataset into training set of 2,000 images

and testing set of 330 images. As the pupils are not labeled in

the Helen dataset, the distance between the centroids of two

eyes are used to normalize the deviations from groundtruth.

We compare our method with STASM (Milborrow and

Nicolls 2008) and recently proposed CompASM (Le et al.

2012). As shown in Table 3, our method outperforms them by

a large margin. Comparing with STASM and CompASM, our

method reduces the mean error by 50 and 40 % respectively,

meanwhile, the testing speed is even faster.

4.1.4 Comparison to Previous Methods on BioID

Our model is trained on augmented LFPW training set and

tested on the entire BioID dataset.

Figure 9 compares our method with previous methods

(Vukadinovic and Pantic 2005; Cristinacce and Cootes 2006;

Milborrow and Nicolls 2008; Valstar et al. 2010; Belhumeur

et al. 2011). Our result is the best but the improvement is mar-

ginal. We believe this is because the performance on BioID is

nearly maximized due to its simplicity. Note that our method

is thousands of times faster than the second best method (Bel-

humeur et al. 2011).

4.2 Algorithm Validation and Discussions

We verify the effectiveness of different components of the

proposed approach. Such experiments are performed on the

our augmented LFPW dataset. The dataset is split into two
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Fig. 9 Cumulative error curves on the BioID dataset. For compari-

son with previous results, only 17 landmarks are used (Cristinacce and

Cootes 2006). As our model is trained on LFPW images, for those land-

marks with different definitions between the two datasets, a fixed offset

is applied in the same way in Belhumeur et al. (2011)

Table 4 Tradeoffs between two levels boosted regression

♯ Stage regressors (T ) 1 5 10 100 5000

♯ Primitive regressors (K) 5000 1000 500 50 1

Mean error (×10−2) 15 6.2 3.3 4.5 5.2

Bold value represents the best results under certain settings

parts for training and testing. The training set contains 1,500

images and the testing set contains 500 images. Parameters

are fixed as in Sect. 3, unless otherwise noted.

4.2.1 Two-Level Boosted Regression

As discussed in Sect. 2, the stage regressor exploits shape

indexed features to obtain geometric invariance and decom-

pose the original difficult problem into easier sub-tasks. The

shape indexed features are fixed within the internal-level

boosted regression to avoid instability.

Different tradeoffs between two-level boosted regression

are presented in Table 4, using the same number of ferns.

On one extreme, regressing the whole shape in a single

stage (T = 1, K = 5000) is clearly the worst. On the

other extreme, using a single fern as the stage regressor

(T = 5000, K = 1) also has poor generalization ability in

the test. The optimal tradeoff (T = 10, K = 500) is found

in between via cross validation.

4.2.2 Shape Indexed Feature

We compare the global and local methods of shape indexed

features. The mean error of local index method is 0.033,

which is much smaller than the mean error of global index

method 0.059. The superior accuracy supports the proposed

local index method.
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Table 5 Comparison between correlation based feature selection

(CBFS) method and best-of-n feature selection methods

Best-of-n n = 1 n = 32 n = 1024 CBFS

Error (×10−2) 5.01 4.92 4.83 3.32

Time (s) 0.1 3.0 100.3 0.12

The training time is for one primitive regressor

Bold value represents the best results under certain settings

Fig. 10 Average ranges of selected features in different stages. In stage

1, 5 and 10, an exemplar feature (a pixel pair) is displayed on an image

4.2.3 Feature Selection

The proposed correlation based feature selection method

(CBFS) is compared with the commonly used best-of-

n method (Ozuysal et al. 2010; Dollar et al. 2010) in

Table 5. CBFS can select good features rapidly and this is

crucial to learn good models from large training data.

4.2.4 Feature Range

The range of a feature is the distance between the pair of

pixels normalized by the distance between the two pupils.

Figure 10 shows the average ranges of selected features in

the 10 stages. As observed, the selected features are adaptive

to the different regression tasks. At first, long range features

(e.g., one pixel on the mouth and the other on the nose) are

often selected for rough shape adjustment. Later, short range

features (e.g., pixels around the eye center) are often selected

for fine tuning.

4.2.5 Model Compression

We conduct experiments on both LFW87 and Helen datasets

to compare the sparse coding(SC) based compression method

with PCA based compression method.

For sparse coding based method, the number of non-zero

codes is 5 and the number of basis is 512. For PCA based

method, The principle components are computed by preserv-

ing 95 % energy.

Table 6 Model compression experiment

Dataset Raw PCA SC

Mean error (×10−2) LFW87 4.23 4.35 4.34

Model size (mb) LFW87 118 30 8

Comp. ratio LFW87 – 4 15

Mean error (×10−2) Helen194 5.70 5.83 5.79

Model size (mb) Helen194 240 42 12

Comp. ratio Helen194 – 6 20

The suffix of the name of the dataset means the number of annotated

landmarks

As shown in Table 6, the sparse coding based method

outperforms the PCA based method both in the sense of

compression ratio and accruacy. For example, on Helen

dataset, the sparse coding based method archives 20 times

compression. In contrast, the PCA based method achieves

only 6 times compression at the cost of even lager mean

error.

5 Discussion and Conclusion

We have presented the explicit shape regression method for

face alignment. By jointly regressing the entire shape and

minimizing the alignment error, the shape constraint is auto-

matically encoded. The resulting method is highly accurate,

efficient, and can be used in real time applications such as

face tracking. The explicit shape regression framework can

also be applied to other problems like articulated object pose

estimation and anatomic structure segmentation in medical

images.
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