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Abstract

Deformable model fitting has been actively pursued in

the computer vision community for over a decade. As a re-

sult, numerous approaches have been proposed with vary-

ing degrees of success. A class of approaches that has

shown substantial promise is one that makes independent

predictions regarding locations of the model’s landmarks,

which are combined by enforcing a prior over their joint

motion. A common theme in innovations to this approach

is the replacement of the distribution of probable landmark

locations, obtained from each local detector, with simpler

parametric forms. This simplification substitutes the true

objective with a smoothed version of itself, reducing sensi-

tivity to local minima and outlying detections. In this work,

a principled optimization strategy is proposed where a non-

parametric representation of the landmark distributions is

maximized within a hierarchy of smoothed estimates. The

resulting update equations are reminiscent of mean-shift but

with a subspace constraint placed on the shape’s variabil-

ity. This approach is shown to outperform other existing

methods on the task of generic face fitting.

1. Introduction

Deformable model fitting is the problem of registering a

parametrized shape model to an image such that its land-

marks correspond to consistent locations on the object of

interest. It is a difficult problem as it involves an optimiza-

tion in high dimensions, where appearance can vary greatly

between instances of the object due to lighting conditions,

image noise, resolution and intrinsic sources of variability.

Many approaches have been proposed for this with varying

degrees of success. Of these, one of the most promising is

one that uses a patch-based representation and assumes im-

age observations made for each landmark are conditionally

independent [2, 3, 4, 5, 16]. This leads to better general-

ization with limited data compared to holistic representa-

tions [10, 11, 14, 15], since it needs only account for local

correlations between pixel values. However, it suffers from

detection ambiguities as a direct result of its local represen-

tation. As such, care should be taken in combining detec-

tion results from the various local detectors in order to steer

optimization towards the desired solution.

Our key contribution in this paper lies in the realization

that a number of popular optimization strategies are all, in

some way, simplifying the distribution of landmark loca-

tions obtained from each local detector using a parametric

representation. The motivation of this simplification is to

ensure that the approximate objective function: (i) exhibits

properties that make optimization efficient and numerically

stable, and (ii) still approximately preserve the true cer-

tainty/uncertainty associated with each local detector. The

question then remains: how should one simplify these local

distributions in order to satisfy (i) and (ii)? We address this

by using a nonparametric representation that leads to an op-

timization in the form of subspace constrained mean-shifts.

2. Background

2.1. Constrained Local Models

Most fitting methods employ a linear approximation to

how the shape of a non-rigid object deforms, coined the

point distribution model (PDM) [2]. It models non-rigid

shape variations linearly and composes it with a global rigid

transformation, placing the shape in the image frame:

xi = sR(x̄i + Φiq) + t, (1)

where xi denotes the 2D-location of the PDM’s ith land-

mark and p = {s,R, t,q} denotes the parameters of the

PDM, which consist of a global scaling s, a rotation R, a

translation t and a set of non-rigid parameters q.

In recent years, an approach to that utilizes an ensemble

of local detectors (see [2, 3, 4, 5, 16]) has attracted some

interest as it circumvents many of the drawbacks of holistic

approaches, such as modeling complexity and sensitivity to

lighting changes. In this work, we will refer to these meth-

ods collectively as constrained local models (CLM)1.

1This term should not be confused with the work in [5] which is a

particular instance of CLM in our nomenclature.



Figure 1. Illustration of CLM fitting and its two components: (i)

an exhaustive local search for feature locations to get the response

maps {p(li = aligned|I,x)}n

i=1, and (ii) an optimization strategy

to maximize the responses of the PDM constrained landmarks.

All instantiations of CLMs can be considered to be pur-

suing the same two goals: (i) perform an exhaustive local

search for each PDM landmark around their current esti-

mate using some kind of feature detector, and (ii) optimize

the PDM parameters such that the detection responses over

all of its landmarks are jointly maximized. Figure 1 illus-

trates the components of CLM fitting.

Exhaustive Local Search: In the first step of CLM fitting, a

likelihood map is generated for each landmark position by

applying local detectors to constrained regions around the

current estimate. A number of feature detectors have been

proposed for this purpose. One of the simplest, proposed

in [16], is the linear logistic regressor which gives the fol-

lowing response map for the ith landmark2:

p(li = aligned | I,x) =
1

1 + exp{α Ci(I;x) + β}
, (2)

where li is a discrete random variable denoting whether the

ith landmark is correctly aligned or not, I is the image, x is

a 2D location in the image, and Ci is a linear classifier:

Ci(I;x) = wT
i

[

I(y1) ; . . . ; I(ym)
]

+ bi, (3)

with {yi}m
i=1 ∈ Ωx (i.e. an image patch). An advantage

of using this classifier is that the map can be computed us-

ing efficient convolution operations. Other feature detectors

have also been used to great effect, such as the Gaussian

likelihood [2] and the Haar-based boosted classifier [3].

Optimization: Once the response maps for each landmark

have been found, by assuming conditional independence,

2Not all CLM instances require a probabilistic output from the local

detectors. Some, for example [2, 5], only require a similarity measure or

a match score. However, these matching scores can be interpreted as the

result of applying a monotonic function to the generating probability. For

example, the Mahalanobis distance used in [2] is the negative log of the

Gaussian likelihood. In the interest of clarity and succinctness, discussions

in this work assume that responses are probabilities.

optimization proceeds by maximizing:

p({li = aligned}n
i=1 | p) =

n
∏

i=1

p(li = aligned | xi) (4)

with respect to the PDM parameters p, where xi is param-

eterized as in Equation (1) and dependence on the image I

is dropped for succinctness. It should be noted that some

forms of CLMs pose Equation (4) as minimizing the sum-

mation of local energy responses (see §2.2).

The main difficulty in this optimization is how to avoid

local optima whilst affording an efficient evaluation. Treat-

ing Equation (4) as a generic optimization problem, one

may be tempted to utilize general purpose optimization

strategies here. However, as the responses are typically

noisy, these optimization strategies have a tendency to

be unstable. The simplex based method used in [4] has

been shown to perform reasonably for this task since it is

a gradient-free based generic optimizer, which renders it

somewhat insensitive to measurement noise. However, con-

vergence may be slow when using this method, especially

for a complex PDM with a large number of parameters.

2.2. Optimization Strategies

In this section, a review of current methods for CLM op-

timization is presented. These methods entail replacing the

true response maps, {p(li|x)}n
i=1, with simpler paramet-

ric forms and performing optimization over these instead

of the original response maps. As these parametric density

estimates are a kind of smoothed version of the original re-

sponses, sensitivity to local minima is generally reduced.

Active Shape Models: The simplest optimization strategy

for CLM fitting is that used in the Active Shape Model

(ASM) [2]. The method entails first finding the location

within each response map for which the maximum was

attained: µ =
[

µ1; . . . ; µn

]

. The objective of the opti-

mization procedure is then to minimize the weighted least

squares difference between the PDM and the coordinates of

the peak responses:

Q(p) =

n
∑

i=1

wi‖xi − µi‖
2, (5)

where the weights {wi}n
i=1 reflect the confidence over peak

response coordinates and are typically set to some func-

tion of the responses at {µi}
n
i=1, making it more resistant

towards such things as partial occlusion, where occluded

landmarks will be more weakly weighted.

Equation (5) is iteratively minimized by taking a first or-

der Taylor expansion of the PDM’s landmarks:

xi ≈ xc
i + Ji∆p, (6)



and solving for the parameter update:

∆p =

(

n
∑

i=1

wiJ
T
i Ji

)−1 n
∑

i=1

wiJ
T
i (µi − xc

i ) , (7)

which is then applied additively to the current parameters:

p ← p + ∆p. Here, J = [J1; . . . ;Jn] is the Jacobian and

xc =
[

xc
1; . . . ;x

c
n

]

is the current shape estimate.

From the probabilistic perspective introduced in §2.1, the

ASM’s optimization procedure is equivalent to approximat-

ing the response maps with an isotropic Gaussian estimator:

p(li = aligned | x) ≈ N (x; µi, σ
2
i I), (8)

where wi = σ−2
i . With this approximation, taking the neg-

ative log of the likelihood in Equation (4) results in the ob-

jective in Equation (5).

Convex Quadratic Fitting: Although the approximation

described above is simple and efficient, in some cases it

may be a poor estimate of the true response map. Firstly, the

landmark detectors, such as the linear classifier described in

§2.1, are usually imperfect in the sense that the maximum of

the response may not always coincide with the correct land-

mark location. Secondly, as the features used in detection

consist of small image patches they often contain limited

structure, leading to detection ambiguities. The simplest

example of this is the aperture problem, where detection

confidence across the edge is better than along it (see exam-

ple response maps for the nose bridge and chin in Figure 2).

To account for these problems, a method coined con-

vex quadratic fitting (CQF) has been proposed recently [16].

The method fits a convex quadratic function to the negative

log of the response map. This is equivalent to approximat-

ing the response map with a full covariance Gaussian:

p(li = aligned | x) ≈ N (x; µi,Σi). (9)

The mean and covariance are maximum likelihood esti-

mates given the response map:

Σi =
∑

x∈Ψ
x

c
i

αi
x

(x − µi) (x − µi)
T ; µi =

∑

x∈Ψ
x

c
i

αi
x

x,

(10)

where Ψx
c

i
is a 2D-rectangular grid centered at the current

landmark estimate xc
i (i.e. the search window), and:

αi
x

=
p(li = aligned | x)

∑

y∈Ψ
x

c
i

p(li = aligned | y)
. (11)

With this approximation, the objective can be written as the

minimization of:

Q(∆p) =

n
∑

i=1

‖xc
i + Ji∆p − µi‖

2
Σ
−1

i

, (12)

Figure 2. Response maps, p(li = aligned|x), and their approxi-

mations used in various methods, for the outer left eye corner, the

nose bridge and chin. Red crosses on the response maps denote the

true landmark locations. The GMM approximation has five cluster

centers. The KDE approximations are shown for σ
2
∈ {20, 5, 1}.

the solution of which is given by:

∆p =

(

n
∑

i=1

JT
i Σ

−1
i Ji

)−1 n
∑

i=1

JT
i Σ

−1
i (µi − xc

i ) . (13)

A Gaussian Mixture Model Estimate: Although the re-

sponse map approximation in CQF may overcome some

of the drawbacks of ASM, its process of estimation can be

poor in some cases. In particular, when the response map is

strongly multimodal, such an approximation smoothes over

the various modes (see the example response map for the

eye corner in Figure 2).

To account for this, in [8] a Gaussian mixture model

(GMM) was used to approximate the response maps:

p(li = aligned | x) ≈
K

∑

k=1

πik N (x; µik,Σik), (14)

where K denotes the number of modes and {πik}K
k=1 are

the mixing coefficients for the GMM of the ith PDM land-

mark. Treating the mode membership for each landmark,

{zi}n
i=1, as hidden variables, the maximum likelihood solu-

tion can be found using the expectation-maximization (EM)

algorithm, which maximizes:

p({li}
n
i=1|p) =

n
∏

i=1

K
∑

k=1

pi(zi = k, li|xi). (15)

The E-step of the EM algorithm involves computing the

posterior distribution over the latent variables {zi}
n
i=1:

p(zi = k | li,xi) =
p(zi = k) p(li|zi = k,xi)

∑K

j=1 p(zi = j) p(li|zi = j,xi)
,

(16)

where p(zi = k) = πik and:

p(li = aligned | zi = k,xi) = N (xi ; µik,Σik). (17)



In the M-step, the expectation of the negative log of the

complete data is minimized:

Q(p) = Eq(z)

[

− log

{

n
∏

i=1

p(li = aligned, zi|xi)

}]

,

(18)

where q(z) =
∏n

i=1 pi(zi|li = aligned,xi). Linearizing

the shape model as in Equation (6), this Q-function takes

the form:

Q(∆p) ∝

n
∑

i=1

K
∑

k=1

wik‖Ji∆p − yik‖
2
Σ
−1

ik

+ const, (19)

where wik = pi(zi = k|li = aligned,xi) and yik = µik −
xc

i , the solution of which is given by:

∆p =

(

n
∑

i=1

K
∑

k=1

wikJ
T
i Σ

−1
ik Ji

)−1
n

∑

i=1

K
∑

k=1

wikJ
T
i Σ

−1
ik yik.

(20)

Although the GMM is a better approximation of the re-

sponse map compared to the Gaussian approximation in

CQF, it exhibits two major drawbacks. Firstly, the pro-

cess of estimating the GMM parameters from the response

maps is a nonlinear optimization in itself. It is only locally

convergent and requires the number of modes to be cho-

sen a-priori. As GMM fitting is required for each PDM

landmark, it constitutes a large computation overhead. Al-

though some approximations can be made, they are gener-

ally suboptimal. For example, in [8], the modes are chosen

as the K-largest responses in the map. The covariances are

parametrized isotropically, with their variance heuristically

set as the scaled distance to the closest mode in the previous

iteration of the CLM fitting algorithm. Such an approxima-

tion allows an efficient estimate of the GMM parameters

without the need for a costly EM procedure at the cost of a

poorer approximation of the true response map.

The second drawback of the GMM response map ap-

proximation is that the approximated objective in Equa-

tion (15) is multimodal. As such, CLM fitting with the

GMM simplification is prone to terminating in local optima.

Although good results were reported in [8], in that work the

PDM was parameterized using a mixture model as opposed

to the more typical Gaussian parameterization, which places

a stronger prior on the way the shape can vary.

3. Subspace Constrained Mean-Shifts

Rather than approximating the response maps for each

PDM landmark using parametric models, we consider here

the use of a nonparametric representation. In particular, we

propose the use of a homoscedastic kernel density estimate

(KDE) with an isotropic Gaussian kernel:

p(li = aligned|x) ≈
∑

µi∈Ψ
x

c
i

αi
µi

N (x; µi, σ
2I), (21)

where αi
µi

is the normalized true detector response defined

in Equation (11). With this representation the kernel centers

are fixed as defined through Ψx
c

i
(i.e. the grid nodes of the

search window). The mixing weights, αi
µi

, can be obtained

directly from the true response map. Since the response is

an estimate of the probability that a particular location in the

image is the aligned landmark location, such a choice for the

mixing coefficients is reasonable. Compared to parametric

representations, KDE has the advantage that no nonlinear

optimization is required to learn the parameters of its repre-

sentation. The only remaining free parameter is the variance

of the Gaussian kernel, σ2, which regulates the smoothness

of the approximation. Since one of the main problems with

a GMM based representation is the computational complex-

ity and suboptimal nature of fitting a mixture model to the

response maps, if σ2 is set a-priori, then optimizing over

the KDE can be expected to be more stable and efficient.

Maximizing the objective in Equation (4) with a KDE

representations is nontrivial as the objective is nonlinear

and typically multimodal. However, in the case where no

shape prior is placed on the way the PDM’s landmarks can

vary, the problem reverts to independent maximizations of

the KDE for each landmark location separately. This is be-

cause the landmark detections are assumed to be indepen-

dent, conditioned on the PDM’s parameterization. A com-

mon approach for maximization over a KDE is to use the

well known mean-shift algorithm [1]. It consists of fixed

point iterations of the form:

x
(τ+1)
i ←

∑

µi∈Ψ
x

c
i

αi
µi
N

(

x
(τ)
i ; µi, σ

2I

)

∑

y∈Ψ
x

c
i

αi
y
N

(

x
(τ)
i ;y, σ2I

)µi,

(22)

where τ denotes the time-step in the iterative process. This

fixed point iteration scheme finds a mode of the KDE, where

an improvement is guaranteed at each step by virtue of its

interpretation as a lower bound maximization [6]. Com-

pared to other optimization strategies, mean-shift is an at-

tractive choice as it does not use a step size parameter or a

line search. Equation (22) is simply applied iteratively until

some convergence criterion is met.

To incorporate the shape model constraint into the opti-

mization procedure, one might consider a two step strategy:

(i) compute the mean-shift update for each landmark, and

(ii) constrain the mean-shifted landmarks to adhere to the

PDM’s parameterization using a least-squares fit:

Q(p) =
n

∑

i=1

∥

∥

∥
xi − x

(τ+1)
i

∥

∥

∥

2

. (23)

This is reminiscent of the ASM optimization strategy, where

the location of the response map’s peak is replaced with the

mean-shifted estimate. Although such a strategy is attrac-

tive in its simplicity, it is unclear how it relates to the global



Algorithm 1 Subspace Constrained Mean-Shifts

Require: I and p.

1: while not converged(p) do

2: Compute responses {Eqn. (2)}
3: Linearize shape model {Eqn. (6)}
4: Precompute pseudo-inverse of Jacobian (J†)

5: Initialize parameter updates: ∆p ← 0

6: while not converged(∆p) do

7: Compute mean-shifted landmarks {Eqn. (22)}
8: Apply subspace constraint {Eqn. (24)}
9: end while

10: Update parameters: p ← p + ∆p

11: end while

12: return p

objective in Equation (4).

Given the form of the KDE representation in Equa-

tion (21), one can treat it simply as a GMM. As such, the

discussions in §2.2 on GMMs are directly applicable here,

replacing the number of candidates K with the number of

grid nodes in the search window Ψx
c

i
, the mixture weights

πik with αi
µi

, and the covariances Σik with the scaled iden-

tity σ2I. When using the linearized shape model in Equa-

tion (6) and maximizing the global objective in Equation (4)

using the EM algorithm, the solution for the so called Q-

function of the M-step takes the form:

∆p = J†
[

x
(τ+1)
1 − xc

1 ; . . . ; x(τ+1)
n − xc

n

]

, (24)

where J† denotes the pseudo-inverse of J, and x
(τ+1)
i is

the mean shifted update for the ith landmark given in Equa-

tion (22). This is simply the Gauss Newton update for the

least squares PDM constraint in Equation (23). As such, un-

der a linearized shape model, the two step strategy for max-

imizing the objective in Equation (4) with a KDE represen-

tation shares the properties of a general EM optimization,

namely: provably improving and convergent. The complete

fitting procedure, which we will refer to as subspace con-

strained mean-shifts (SCMS), is outlined in Algorithm 1. In

the following, two further innovations are proposed, which

address difficulties regarding local optima and the compu-

tational expense of kernel evaluations.

Kernel Width Relaxation: The response map approxi-

mations discussed in §2.2 can be though of as a form of

smoothing. This explains the relative performance of the

various methods. The Gaussian approximations smooth the

most but approximate the true response map the poorest,

whereas smoothing effected by the GMM is not as aggres-

sive but exhibits of a degree of sensitivity towards local op-

tima. One might consider using the Gaussian and GMM

approximations in tandem, where the Gaussian approxima-

Figure 3. Illustration of a the use of a precomputed grid for effi-

cient mean-shift. Kernel evaluations are precomputed between c

and all other nodes in the grid. To approximate the true kernel

evaluation, xi is assumed to coincide with c and the likelihood of

any response map grid location can be attained by a table lookup.

tion is used to get within the convergence basin of the GMM

approximation. However, such an approach is inelegant and

affords no guarantee that the mode of the Gaussian approx-

imation lies within the convergence basin of the GMM’s.

With the KDE approximation in SCMS a more elegant

approach can be devised, whereby the complexity of the

response map estimate is directly controlled by the variance

of the Gaussian kernel (see Figure 2). The guiding principle

here is similar to that of optimizing on a Gaussian pyramid.

It can be shown that when using Gaussian kernels, there

exists a σ2 < ∞ such that the KDE is unimodal, regardless

of the distribution of samples [13]. As σ2 is reduced, modes

divide and smoothness of the objective’s terrain decreases.

However, it is likely that the optimum of the objective at

a larger σ2 is closest to the desired mode of the objective

with a smaller σ2, promoting its convergence to the correct

mode. As such, the policy under which σ2 is reduced acts to

guide optimization towards the global optimum of the true

objective.

Drawing parallels with existing methods, as σ2 → ∞
the SCMS update approaches the solution of a homoscedas-

tic Gaussian approximated objective function. As σ2 is re-

duced, the KDE approximation resembles a GMM approx-

imation, where the approximation for smaller σ2 settings is

similar to a GMM approximation with more modes.

Precomputed Grid: In the KDE representation of the re-

sponse maps, the kernel centers are placed at the grid nodes

defined by the search window. From the perspective of

GMM fitting, these kernels represent candidates for the true

landmark locations. Although no optimization is required

for determining the number of modes, their centers and

mixing coefficients, the number of candidates used here is

much larger than what would typically be used in a general

GMM estimate (i.e. GMM based representations typically

use K < 10, whereas the search window size typically has

> 100 nodes). As such, the computation of the posterior

in Equation (16) will be more costly. However, if the vari-
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Figure 4. Fitting Curves for the ASM, CQF, GMM and KDE optimization strategies on the MultiPie and XM2VTS databases.

ance σ2 is known a-priori, then some approximations can

be made to significantly reduce computational complexity.

The main overhead when computing the mean-shift up-

date is in evaluating the Gaussian kernel between the current

landmark estimate and every grid node in the response map.

Since the grid locations are fixed and σ2 is assumed to be

known, one might choose to precompute the kernel for var-

ious settings of xi. In particular, a simple choice would be

to precompute these values along a grid sampled at or above

the resolution of the response map grid Ψx
c

i
. During fitting

one simply finds the location in this grid closest to the cur-

rent estimate of a PDM landmark and estimate the kernel

evaluations by assuming the landmark is actually placed at

that node (see Figure 3). This only involves a table lookup

and can be performed efficiently. The higher the granularity

of the grid the better the approximation will be, at the cost

of greater storage requirements but without a significant in-

crease in computational complexity.

Although such an approximation ruins the strictly im-

proving properties of EM, we empirically show in §4 that

accurate fitting can still be achieved with this approxima-

tion. In our implementation, we found that such an approx-

imation reduced the average fitting time by one half.

4. Experiments

Database Specific Experiments: We compared the various

CLM optimizations strategies discussed above on the prob-

lem of generic frontal face fitting on two databases: (i) the

CMU Pose, Illumination and Expression Database (Multi-

Pie) [7], and (ii) the XM2VTS database [12]. The Mul-

tiPie database is annotated with a 68-point markup used

as ground truth landmarks. We used 762 frontal face im-

ages of 339 subjects. The XM2VTS database consists of

2360 frontal face images of 295 subjects for which ground

truth annotations are publicly available but different from

the 68-point markup we have for MultiPie. XM2VTS con-

tains neutral expression only whereas MultiPie contains sig-

nificant expression variations. A 4-fold cross validation

was performed on both MultiPie and XM2VTS, separately,

where the images were partitioned into three sets of non-

overlapping subject identities. In each trial, three partitions

were used for training and the remainder for testing.

On these databases we compared four types of optimiza-

tion strategies: (i) ASM [2], (ii) CQF [16], (iii) GMM [8],

and (iv) the KDE method proposed in §3. For GMM, we

empirically set K = 5 and used the EM algorithm to es-

timate the parameters of the mixture model. For KDE, we

used a variance relaxation policy of σ2 = {20, 10, 5, 1} and

a grid spacing of 0.1-pixels in its efficient approximation. In

all cases the linear logistic regressor described in §2.1 was

used. The local experts were (11 × 11)-pixels in size and

the exhaustive local search was performed over a (15×15)-
pixel window. As such, the only difference between the var-

ious methods compared here is their optimization strategy.

In all cases, the scale and location of the model was initial-

ized by an off-the-shelf face detector, the rotation and non-

rigid parameters in Equation (1) set to zero (i.e. the mean

shape), and the model fit until the optimization converged.

Results of these experiments can be found in Figure 4,

where the graphs (fitting curves) show the proportion of im-

ages at which various levels of maximum perturbation was

exhibited, measured as the root-mean-squared (RMS) er-

ror between the ground truth landmarks and the resulting

fit. The average fitting times for the various methods on a

2.5GHz Intel Core 2 Duo processor are shown in the legend.

The results show a consistent trend in the relative per-

formance of the four methods. Firstly, CQF has the capac-
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Figure 5. Top row: Tracking results on the FGNet Talking Face database for frames {0, 1230, 4200}. Clockwise from top left are fitting

results for ASM, CQF, KDE and GMM. Bottom: Plot of shape RMS error from ground truth annotations throughout the sequence.

ity to significantly outperform ASM. As discussed in §2.2

this is due to CQF’s ability to account for directional un-

certainty in the response maps as well as being more ro-

bust towards outlying responses. However, CQF has a ten-

dency to over-smooth the response maps, leading to limited

convergence accuracy. GMM shows an improvement in ac-

curacy over CQF as shown by the larger number of sam-

ples that converged to smaller shape RMS errors. However,

it has the tendency to terminate in local optima due to its

multimodal objective. This can be seen by its poorer per-

formance than CQF for reconstructions errors above 4.2-

pixels RMS in MultiPie and 5-pixels RMS in XM2VTS.

In contrast, KDE is capable of attaining even better accu-

racies than GMM but still retains a degree of robustness

towards local optima, where its performance over grossly

misplaced initializations is comparable to CQF. Finally, de-

spite the significant improvement in performance, KDE ex-

hibits only a modest increase in computational complexity

compared to ASM and CQF. This is in contrast to GMM

that requires much longer fitting times, mainly due to the

complexity of fitting a mixture model to the response maps.

Out-of-Database Experiments: Testing the performance

of fitting algorithms on images outside of a particular

database is more meaningful as it gives a better indication

on how well the method generalizes. However, this is rarely

conducted as it requires the tedious process of annotating

new images with the PDM configuration of the training set.

Here, we utilize the freely available FGNet talking face se-

quence3. Quantitative analysis on this sequence is possible

since ground truth annotations are available in the same for-

mat as that in XM2VTS. We initialize the model using a

face detector in the first frame and fit consecutive frames us-

ing the PDM’s configuration in the previous frame as an ini-

tial estimate. The same model used in the database-specific

experiments was used here, except that it was trained on

all images in XM2VTS. In Figure 5, the shape RMS error

for each frame is plotted for the four optimization strate-

gies being compared. The relative performance of the var-

ious strategies is similar to that in the database-specific ex-

periments, with KDE yielding the best performance. ASM

and GMM are particularly unstable on this sequence, with

GMM loosing track at around frame 4200, and fails to re-

cover until the end of the sequence.

Finally, we performed a qualitative analysis of KDE’s

performance on the Faces in the Wild database [9]. It con-

tains images taken under varying lighting, resolution, im-

age noise and partial occlusion. As before, the model was

initialized using a face detector and fit using the XM2VTS

3http://www-prima.inrialpes.fr/FGnet/data/

01-TalkingFace/talking_face.html



Figure 6. Example fitting results on the Faces in the Wild database using a model trained using the XM2VTS database. Top row: Male

subjects. Middle row: female subjects. Bottom row: partially occluded faces.

trained model. Some fitting results are shown in Figure 6.

Results suggest that KDE exhibits a degree of robustness

towards variations typically encountered in real images.

5. Conclusion

The optimization strategy for deformable model fitting

was investigated in this work. Various existing methods

were posed within a consistent probabilistic framework

where they were shown to make different parametric ap-

proximations to the true likelihood maps of landmark loca-

tions. A new approximation was then proposed that uses

a nonparametric representation. Two further innovations

were proposed in order to reduce computational complexity

and avoid local optima. The proposed method was shown to

outperform three other optimization strategies on the task of

generic face fitting. Future work will involve investigations

into the effects of different local detectors types and shape

priors on the optimization strategies.
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