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Abstract

This paper presents an approach to face alignment under

variable illumination, an obstacle largely ignored in previ-

ous 2D alignment work. To account for illumination vari-

ation, our method employs two forms of relatively lighting-

invariant information. Edge phase congruency is adopted

to coarsely localize facial features, since prominent feature

edges can be robustly located in the presence of shading

and shadows. To accurately deal with features with less

pronounced edges, final alignment is then computed from

intrinsic gray-level information recovered using a proposed

form of local intensity normalization. With this approach,

our face alignment system works efficiently and effectively

under a wide range of illumination conditions, as evidenced

by extensive experimentation.

1. Introduction

The appearance of a face can change dramatically as the

light condition changes, and sometimes variability due to il-

lumination changes is greater than that owing to differences

between individual faces [1]. To deal with this problem,

several works have addressed the issue of lighting variation

in face recognition, such as the Illumination Cone method

proposed by Belhumeur and Kriegman [2] and the Quotient

Image method proposed by Shashua et al. [3]. These meth-

ods assume that faces are already aligned, but there exists

little work on how to perform this alignment automatically

under variable illumination.

Lighting conditions can have a substantial effect on

the robustness and accuracy of face alignment algorithms.

Current alignment methods such as Active Shape Models

(ASM)[4], Active Appearance Models (AAM)[5] and their

extensions [6] attempt to model the appearance of important

facial features, but feature search based on these models can

become unstable when there exists significant shading and

shadowing which can effectively mask subtle features and

introduce misleading features as well. These illumination

effects can confound the search process and lead the algo-

rithm to local minima, even for relatively uniform lighting.

To reduce the misleading effects of shading, shadows

and noise, we propose to use information on prominent

edges in the initial stages of search. Generally a model point

corresponds to an edge in its locality, and features having

prominent edges, such as the eye boundaries, can in general

be easily identified in the presence of shading and shad-

ows. Since search based on prominent edge information

can effectively locate some subset of the features even un-

der variable illumination, it decreases the likelihood of poor

convergence by robustly providing a rough face alignment.

Although previous alignment methods require a good ini-

tialization to prevent poor shape convergence, we show that

an edge-based approach can be robust to bad initializations.

Some edge features such as nose and lip boundaries,

however, tend to exhibit gradual or low frequency edges

that are sometimes not pronounced enough to be localized

in an edge-based search, especially in the presence of shad-

ing and shadow variations. For such features, more de-

tailed information is needed, so gray-level data is used. The

gray-level information of features lying in deep shading or

shadow, however, can become very subtle and difficult to

distinguish from surrounding areas, which can lead to in-

correct convergence. To deal with this problem, a patch

filtering technique is proposed to perform a type of local in-

tensity normalization to better recover intrinsic information

from local regions. While dependence on only gray-level

information throughout the entire search process can lead

the alignment process astray, search using gray-level mod-

els gives good accuracy for a good initialization, given by

the edge-based search.

Many methods for shape model fitting employ a hi-

erarchical approach for efficiency and robustness of the

search algorithm: at the coarsest level a rough alignment

result is computed as a good initialization for a second

level in which an accurate face contour is gradually lo-

cated. Our method takes a similar approach using relatively

illumination-invariant features. Our proposed technique ini-

tially uses features containing less information, specifically

edge phase congruency, for coarse alignment because locat-

ing prominent edges is robust even when shading and shad-

ows are present. After coarse alignment, our method utilizes

features containing more detailed local information that is

emphasized by patch filtering to obtain the final result. With
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this proposed bi-stage approach, our face alignment sys-

tem yields accurate, stable and efficient performance under

a wide range of illumination conditions, as evidenced in ex-

tensive experimentation.

2 Feature Descriptors

In this section, we describe the two relatively illumination-

invariant feature descriptors used in our alignment tech-

nique. The first one for coarse alignment is based on con-

sistency in edge phases, and the second involves a filter for

local intensity normalization.

2.1 Edge Filtering

Gradient-based edge detection methods are sensitive to

edge magnitude and smoothness, which can be significantly

affected by illumination conditions. In our algorithm, we

instead employ phase congruency information in the fre-

quency domain [7] to detect prominent edge features.

Edge phase information at each point is computed lo-

cally over multiple frequencies of logarithmic Gabor filters

[8]. The amplitude and phase of the transform at a given

Gabor wavelet scale is computed as

An(x) =
√

en(x)2 + on(x)2

φn(x) = atan2(en(x), on(x))
(1)

[en(x), on(x)] = [S(x) ∗ Me

n
, S(x) ∗ Mo

n
] (2)

where Me
n

and Mo
n

are the even-symmetric and odd-

symmetric wavelets at scale n.

In [7], phase congruency in 1-D is computed as

PC(x) =

∑

n
W (x)⌊An(x)∆Φn(x) − T ⌋

∑

n
An(x) + ε

. (3)

The value T of estimated energy due to noise is subtracted

from the local energy to reduce the influence of noise, and a

small constant ε is included in the denominator to avoid ill-

conditioned calculation when all the Fourier amplitudes are

small. W (x) is a weighting function to devalue the phase

congruency at locations where the spread of filter responses

is narrow, because a point of phase congruency should be

significant only if it occurs over a wide range of frequen-

cies. A phase deviation function ∆Φn(x) increases the sen-

sitivity of the phase congruency measure.

For two-dimensional images, phase congruency is com-

puted over several orientations in the frequency plane to de-

tect all possible 2-D features:

PC2d(x) =

∑

o

∑

n
Wo(x)⌊Ano(x)∆Φno(x) − To⌋

∑

o

∑

n
Ano(x) + ε

(4)

where o denotes the index over orientations sampled uni-

formly over the frequency plane.

(a) (b) (c)

Figure 1: The log-intensity face image, its phase congruency image, and

its patch-filtered image.

Because phase congruency identifies points in an image

where the Gabor components are maximally in phase, it is

relatively robust to noise and local variations caused by il-

lumination. In Fig. 1(a,b), a log intensity face image and its

normalized phase congruency image is displayed.

2.2 Patch Filtering

Since shading and shadows often diminish the appearance

of features, they decrease the likelihood of correct conver-

gence. To reduce the diminishing effects of shading and

shadows, patch filtering is proposed for local intensity nor-

malization, which makes the feature more distinguishable

from its surrounding area, as demonstrated in Fig 1(c).

Our formulation of the patch filter begins with the Lam-

bertian lighting model, which describes a gray-level image

I(x, y) as

I(x, y) = ρ(x, y)nT (x, y)s (5)

or more generally, the Lambertian model with shadows can

be represented as

I = min(ρn
T

∑

l

sl, 0) = min(ρn
T S, 0) (6)

where ρ(x, y) is the reflectance (albedo) associated with

point (x, y) in the image, n(x, y) denotes the surface normal

of the object at (x, y), and S is the light source direction

and intensity, which can be represented as a linear combi-

nation of multiple point light sources. This equation can

be seen as a product of a reflectance component (ρ) and an

illumination component (nT S) as observed by Barrow and

Tennenbaum [9].

From Retinex theory [10], the illumination image com-

ponent can be approximated as the low frequency compo-

nent of I , determined by convolution of the image with a

low-pass Gaussian filter, which we denote as F1. Divid-

ing image intensities by this illumination component then

yields an illumination-invariant descriptor:

R =
I

I ∗ F1

. (7)

This descriptor normalizes a local patch with respect to

illumination intensity, under the assumption that it is fairly
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(a) (b) (c)

Figure 2: (a) Initialization #1: scale variation. (b) Results using gray-

level feature. (c)Results using edge feature.

even over the local patch. This division by the illumination

component, however, can emphasize noise in the patch. To

reduce this side effect, we filter out the high-frequency com-

ponents in the numerator by convolving it with a low-pass

filter F2 with a larger passband than F1:

R1 =
I ∗ F2

I ∗ F1

(8)

where the division is pixel-wise.

Since the Retinex model assumes smooth variation of re-

flectance in a scene, sharp reflectance changes within the

smoothing kernel of F1 can distort the Retinex model of

the illumination component. To exclude reflectance varia-

tions from the illumination component, Gross [9] employed

an anisotropic filter instead of simple Gaussian smoothing.

As a fast approximation to anisotropic filtering, our method

uses a weighted Gaussian filter for F2:

F2 =
1

N
WG (9)

where G is the Gaussian kernel and N is a normalization

factor such that
1

N

∑

Ω

WG = 1

where Ω is the kernel size. W is the weight function, mod-

elled simply as a boolean function:

W (i, j) =

{

1 if I(i, j) ∈ M1

0 if I(i, j) ∈ M2

(10)

where the convolution window is divided into two sub-

regions M1 and M2 by a threshold τ = Mean(IΩ), and

M1 is the sub-region containing more pixels. In a smooth

local region, the effect of this filter is similar to that a stan-

dard Gaussian filter. However, in an edge region, the filter

kernel will convolve only with the primary local region M1.

The overall result of patch filtering is shown in Fig. 1(c).

Although image noise is still amplified, the features become

much more apparent than before patch filtering.

2.3 Feature Comparison

To distinguish the relative merits of the two relatively

illumination-invariant features, their performance is mea-

(a) (b) (c)

Figure 3: (a) Initialization #2: rotation variation. (b) Results using gray-

level feature. (c)Results using edge feature.

(a) (b) (c)

Figure 4: (a) Initialization #3: displacement variation. (b) Results using

gray-level feature. (c) Results using edge feature.

sured with respect to initialization sensitivity and alignment

accuracy.

To fit these features into the ASM search framework,

we use as feature models the principal components of the

phase congruency values or the filtered gray-level values in

local windows centered on each feature point. The princi-

pal components analysis is computed from 200 images of

size 200x200 under various non-extreme illumination con-

ditions.

In an experiment performed on a different set of 200

images, three different poor initializations illustrated in

Figs. 2-4 are used to test the sensitivity of these two fea-

tures to initialization. Fig. 5 gives the statistical results of

this experiment and Figs. 2-4 illustrate the difference in per-

formance between the two methods. It is clear that the edge

filtering method is more robust to poor initialization.
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Figure 5: Comparison of different search features. The blue bar is for

the edge-based method, the green bar is for the gray-level method, and the

red bar is for the original ASM method. The y-axis represents the number

of images out of 200 on which shape points converge to relatively correct

positions, as opposed to images on which shape points converge to totally

wrong positions.
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Figure 6: Statistical comparison with ASM. Top row compares accuracy, and bottom row compares stability. Method 1: ASM. Method 2: Edge-based

alignment. Method 3: Gray-level method. Method 4: Bi-stage alignment.

From the experimental results presented in Sec. 4, it is

also apparent that the patch filtering method provides higher

accuracy for final alignment, since it improves upon the re-

sults given by edge filtering. The different merits of these

two methods motivates us to employ them at different stages

of the alignment process. The search process switches from

edge filtering to patch filtering when edge filtering has con-

verged, as determined for each point if after an iteration its

change in position falls below a specified threshold. Ter-

mination of the patch filtering method is determined in the

same manner.

3 Implementation

The multi-resolution implementation of our bi-stage align-

ment method is summarized in the following steps. As in

many ASM implementations, the number of resolutions we

use is L = 4 and the size of the search window is 5 × 1.

1. For each training and test image, a Gaussian image

pyramid is built. The base image is denoted as level

0, and the roughest image is taken as level L. Similar

to the original ASM method, a statistical shape model

is built from the training images using PCA. For each

level of the pyramid, the PCA models of the edge fea-

tures and the patch features are each computed from

the training images.

2. An initialization for each test image is determined.

For images under non-extreme illumination, the initial

shape can be given by a face detection algorithm. For

images under extreme illumination, the initial shape

is provided manually or could be provided by color-

based detection methods.

3. In the search phase,

(a) Set l = L.

(b) If l = L, use the edge feature. Otherwise, use the

patch feature.

(c) Search the positions of all points until 90% of the

points converge, and then project the shape into

the PCA shape subspace.

(d) If l > 0, then decrement l by one and return to

(b).

4 Results

To test the performance of our alignment system, we do

substantial experimentation on two groups of images, under

general illuminations without significant facial shadows and

under extreme illuminations, which consist of a single point

light source at a large angle from the viewing direction. Be-

cause the bi-stage alignment algorithm requires some addi-

tional time to compute the edge and patch features in the

image, it is slightly slower than the original ASM search

scheme, but it nevertheless takes only about 0.5 to 0.8 sec-

onds to align a face in a 200 × 200 image on a P-4 1.4G

computer with 256M memory.
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Figure 7: Comparison under good illumination. Top row: ASM. Bottom row: Bi-stage method.

Figure 8: Comparison under illumination that causes significant shading variation. Top row: ASM. Bottom row: Bi-stage method

4.1 Results under General Illumination

We manually labelled 400 images under general illumina-

tion, each of size 200×200. Of these images, 200 were used

for training and the remaining 200 for testing. Even though

the faces are fairly well illuminated, some of these images

present problems to ASM. In this section, we compare the

accuracy and stability of our algorithm to the original ASM

method on the 200 test images.

To measure accuracy, the distance between the searched

feature positions (xk1, yk1) and the manually annotated fea-

ture points (xk2, yk2) is taken as the estimated alignment

error:

D =
∑

k

√

(xk1 − xk2)2 + (yk1 − yk2)2 (11)

For each of the 200 test images, indexed by j, the top row

of Fig. 6 plots the error of ASM (green) and the error of our

algorithm (red).

As a rough measure of stability, we input the manually

aligned shape to the alignment algorithms as the initializa-

tion, and then observe the variation between this initializa-

tion and the resulting shapes after search. The bottom row

of Fig. 6 exemplifies the greater stability of our method in

comparison to the original ASM method.

Although the edge-based method is more robust than the

gray-level method to poor initialization as illustrated in Fig.

5, it has lower accuracy and stability than bi-stage align-

ment. The gray-level method has lower accuracy than the

bi-stage method but it gives good stability when given a

good initialization.

Additional comparisons with ASM under good illumina-

tion are given in Fig. 7 for examples with exaggerated ex-

pressions, facial hair, or unusually-shaped features. Fig. 8

displays results under illumination that causes much shad-

ing variation on the faces.
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Figure 9: Alignment results for one person under varying illumination.

Figure 10: Alignment results for different people under extreme illumination.

4.2 Results under Extreme Illumination

We selected images from the CMU PIE database [10] and

YALE FACE DATABASE B [13] to test our method on ex-

treme illuminations. Since ASM collapses entirely on ex-

treme images, a statistical comparison between ASM and

our algorithm is not meaningful. Experiments on these im-

ages show that our system can give reasonable results un-

der various shadings and shadows, as exemplified in Fig. 9.

Even for images that are heavily shadowed and require great

care to align manually, our algorithm can often work effec-

tively, as shown in Fig. 10. For some images with signifi-

cant shadowing, although our algorithm may not accurately

locate some of the feature points, it rarely collapses to a

totally wrong result.

5 Conclusion

This paper addresses the problem of face alignment un-

der variable illumination using two relatively illumination-

invariant features at different levels of an alignment algo-

rithm. This approach allows our system to handle not only

illumination variations, but also poor initializations. Exper-

iments have demonstrated the robustness and accuracy of

this method, even for a fair number of images under ex-

treme illumination conditions.
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