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Abstract

In this paper, we propose a face alignment method

that uses cascade Gaussian process regression trees (cG-

PRT) constructed by combining Gaussian process regres-

sion trees (GPRT) in a cascade stage-wise manner. Here,

GPRT is a Gaussian process with a kernel defined by a set

of trees. The kernel measures the similarity between two in-

puts as the number of trees where the two inputs fall in the

same leaves. Without increasing prediction time, the pre-

diction of cGPRT can be performed in the same framework

as the cascade regression trees (CRT) but with better gen-

eralization. Features for GPRT are designed using shape-

indexed difference of Gaussian (DoG) filter responses sam-

pled from local retinal patterns to increase stability and to

attain robustness against geometric variances. Compared

with the previous CRT-based face alignment methods that

have shown state-of-the-art performances, cGPRT using

shape-indexed DoG features performed best on the HELEN

and 300-W datasets which are the most challenging dataset

today.

1. Introduction

Face alignment is a task to locate fiducial facial land-

mark points, such as eye corners, nose tip, mouth corners,

and chin, in a face image. Accurate and robust face align-

ment is conducive in achieving the goals of various appli-

cations involving a face, such as face recognition [3, 21],

facial expression recognition [7], face synthesis [22], and

age estimation [11].

Shape regression has become an accurate, robust, and

fast framework for face alignment [4, 5, 9, 13, 17]. In

shape regression, face shape s = (x1, y1, · · · , xp, yp)
⊤,

that is a concatenation of p facial landmark coordinates

{(xi, yi)}
p
i=1, is initialized and iteratively updated through

a cascade regression trees (CRT) as shown in Figure 1. Each

tree estimates the shape increment from the current shape

estimate, and the final shape estimate is given by a cumu-

lated sum of the outputs of the trees to the initial estimate.

The two key elements of shape regression that impact to the

prediction performance are gradient boosting [10] for learn-

ing the CRT and the shape-indexed features [5] which the

trees are based.

The CRT learned through gradient boosting generally

exhibits overfitting [10, 13]. In gradient boosting, each

stage iteratively fits training data in a greedy stage-wise

manner by reducing the regression residuals that are de-

fined as the differences between the ground truth shapes

and shape estimates. Overfitting occurs when there is a dis-

crepancy between the fitting rates during learning and pre-

diction. Fitting the training data too quickly within a few

stages, which often happened without regularization, can

lead to poor generalization and inaccurate shape estimations

during prediction.

Overfitting is even more critical when using the shape-

indexed features [5, 13, 17] which are closely coupled with

the shape estimate: the shape estimate is determined by the

shape-indexed features, and the shape-indexed features are

extracted from the pixel coordinates referenced by the shape

estimate. A discrepancy between the fitting rates lead to ir-

relevant shape-indexed features to be extracted during pre-

diction which in turn leads even more irrelevant features to

be extracted.

Various regularization methods have been considered in

shape regression to reduce overfitting and to attain better

generalization. Cao et al. [5] augmented training data by

generating multiple initial shape estimates for one face im-

age, and this data augmentation method has been adopted in

subsequent studies [13, 17]. Kazemi and Sullivan [13] con-

sidered shrinkage and averaging as regularization methods:

in the gradient boosting learning procedure, a learning rate

parameter 0 < ν < 1 is multiplied to each regression tree

(shrinkage) or multiple trees are individually learned and

averaged (averaging). Ren et al. [17] split up the learning

procedure into two steps: (1) learning binary mapping func-

tion and (2) learning linear regression matrix. The binary

mapping function consists of a set of local binary mapping

functions that are induced from independently learned trees

using a single facial landmark point. The linear regression
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Figure 1. A selected prediction result on the 300-W dataset using cGPRT. The shape estimate is initialized and iteratively updated through

a cascade of regression trees: (a) initial shape estimate, (b)–(f) shape estimates at different stages of cGPRT.

matrix is then learned by minimizing the squared loss func-

tion with l2 regularization, known as Ridge regression [12].

Instead of using gradient boosting, we propose cas-

cade Gaussian process regression trees (cGPRT) that can

be incorporated as a learning method for a CRT prediction

framework. Gaussian process regression (GPR) is known to

give good generalization [16] but high computational com-

plexity. By using a special kernel leading to low computa-

tional complexity in prediction, cGPRT provides good gen-

eralization compared with the CRT within the same pre-

diction time. The proposed cGPRT is formed by a cas-

cade of Gaussian process regression trees (GPRT), and each

GPRT considers a kernel function that is defined by a set

of trees. The kernel measures the similarity between two

inputs based on the number of trees where the two inputs

fall in the same leaves. The predictive mean of cGPRT can

be computed as the summation of outputs of trees, and this

provides the same computation time in prediction but with

better generalization. Here, the predictive mean of cGPRT

is designed to be proportional to the product of predictive

variables from a set of GPRTs, and this explicitly leads to a

greedy stage-wise learning method for cGPRT.

Input features to cGPRT are designed through shape-

indexed difference of Gaussian (DoG) features computed on

local retinal patterns [1] referenced by shape estimates. The

shape-indexed DoG features are extracted in three steps:

(1) smoothing face images with Gaussian filters at various

scales to reduce noise sensitivity, (2) extracting pixel val-

ues from Gaussian-smoothed face images indexed by lo-

cal retinal sampling patterns, shape estimates, and smooth-

ing scales, and (3) computing the differences of extracted

pixel values. Smoothing scale of each local retinal sam-

pling point is determined to be proportional to the distance

between the sampling point and the center point. Thus, dis-

tant sampling points cover larger regions than nearby sam-

pling points, and this leads to increasing stability of the dis-

tant sampling points against to shape estimate errors, while

the nearby sampling points are more discriminative with an

accurate shape estimate. In a learning procedure of cGPRT,

this trade-off allows for each stage to select reliable features

based on the current shape estimate errors.

The remainder of the paper is organized as follows: Sec-

tion 2 briefly reviews the CRT and describes the details of

the proposed method. The experimental and comparative

results are reported in Section 3. The conclusions are pre-

sented in Section 4.

2. Method

In Section 2.1, the CRT for shape regression is briefly

reviewed to make the paper self-contained. Then, the details

of the proposed cGPRT and the shape-indexed DoG features

are described in Section 2.2 and 2.3, respectively.

2.1. Cascade regression trees

The CRT considers a set of T trees and formulates the

shape regression as an additive cascade form of trees as fol-

lows:

ŝT = ŝ0 +

T
∑

t=1

f t(xt;θt), (1)

where t is an index that denotes the stage, ŝt is a shape

estimate, xt is a feature vector that is extracted from an

input image I , and f t(·; ·) is a tree that is parameterized

by θ
t. Starting from the rough initial shape estimate ŝ0,

each stage iteratively updates the shape estimate by ŝt =
ŝt−1 + f t(xt;θt).

Given training samples S = (s1, · · · , sN )⊤ and Xt =
(xt

1, · · · ,x
t
N )⊤, the trees are learned in a greedy stage-wise

manner to minimize the squared loss using regression resid-

uals as follows:

θ
t = argmin

θ∗

N
∑

i=1

||rti − f t(xt;θ∗)||22. (2)

Here, the regression residual is given by rti = si − ŝt−1
i .

The tree parameter θt consists of a split function τ t(xt)
and regression outputs {r̄t,b}B1 . The split function takes an

input xt and computes the leaf index b ∈ {1, · · · , B}, and

each regression output is associated with the corresponding

leaf index b. The optimal regression outputs are obtained

by averaging the regression residuals over all training data



points falling in the corresponding leaf:

r̄t,b =
1

N t,b

∑

i:τt(xt
i
)=b

rti, (3)

where N t,b is the number of training data points that fall in

leaf b. Now, Equation (1) can be re-written using the split

function and regression outputs by ŝt = ŝt−1 + r̄t,τ
t(xt).

2.2. Cascade GPRT

The proposed cGPRT is formed by a cascade of GPRTs,

and each GPRT considers a kernel function that is defined

by a set of trees. In the following, the details of GPRT and

cGPRT are described with a brief review on GPR. For the

details of GPR, we refer to readers to [16].

Gaussian process regression trees In GPR, the relation-

ship between inputs and outputs is modeled by a regression

function f(x) drawn from a Gaussian process with inde-

pendent additive noise εi,

si = f(xi) + εi, i = 1, · · · , N, (4)

f(x) ∼ GP(0, k(x,x′)), (5)

εi ∼ N (0, σ2
n). (6)

Given a test input x∗, distribution over its predictive vari-

able f∗ is given as

p(f∗|x∗,X,S) = N (f∗|f̄∗, σ
2
∗
), (7)

f̄∗ = k⊤

∗
K−1

s S, (8)

σ2
∗

= k∗ − k⊤

∗
K−1

s k∗, (9)

where k∗ and k∗ are k(x∗,x∗) and covariance vector be-

tween x∗ and X, respectively. Here, Ks is given by

K + σ2
nIN , and K is a covariance matrix of which K(i, j)

is computed from the i-th and j-th row vector of X. The

predictive mean can also be written as a liner combination

of N kernels as

f̄∗ =
N
∑

i=1

αik(xi,x∗), (10)

where α = (α1, · · · , αN )⊤ is given by K−1
s S.

A kernel k(x,x′) in GPRT is defined by a set of M num-

ber of trees in a similar manner in [8]:

k(x,x′) = σ2
k

M
∑

m=1

κm(x,x′), (11)

κm(x,x′) =

{

1 if τm(x) = τm(x′)
0 otherwise,

(12)

where σ2
k is the scaling parameter that represents the kernel

power. This kernel computes the similarity of two inputs

based on counting the number of trees in which the two

inputs fall into the same leaf over trees.

Note that the method to learn split functions τ(·) and the

method to extract features x will be described in Section

2.3.

Optimization of GPRT Hyper-parameters of GPRT, σ2
k

and σ2
n, can be estimated by a gradient-based optimization

method on log marginal likelihood:

log p(S|X, σ2
k, σ

2
n)=−

1

2
S⊤K−1

s S−
1

2
log |Ks|−

n

2
log 2π.

(13)

Without loss of generality, the hyper-parameters σ2
k and σ2

n

can be replaced by σ2
k and σ2

r =
σ2

n

σ2

k

. To set the σ2
r by

maximizing the log marginal likelihood, we seek the partial

derivatives with respect to σr:

∂

∂σr

log p(S|X,σ2
k,σ

2
r) =

1

2
tr
(

(αα
⊤ −K−1

s )
∂Ks

∂σr

)

. (14)

The computational burden in Equations (13) and (14) is to

compute K−1
s and log |Ks| which is in O(N3). However,

the inverse can be computed efficiently because the rank of

K is in maximumly the number of leaves over trees BM .

Let qi = (q1
i , · · · ,q

M
i )⊤ and let qm

i be the one-of-B cod-

ing vector that indexes the leaf node of the m-th tree that the

i-th training data point falls in. Then K = σ2
kQQ⊤, where

Q = (qi, · · · ,qN )⊤. From this, we obtain

K−1
s =σ−2

k

(

σ−2
r IN − σ−2

r QK−1
r Q⊤

)

, (15)

log |Ks|=N log σ2
k+(N−BM) log σ2

r+log |Kr|,(16)

in which the computation of inverse is in O
(

(BM)3
)

. Here,

Kr = Q⊤Q+ σ2
rIBM is BM ×BM matrix.

When σ2
r is estimated, σ2

k can be estimated in a closed

form as follows:

σ2
k =

S⊤(σ−2
r IN − σ−2

r QK−1
r Q⊤)S

N
. (17)

Prediction of GPRT In GPRT, predictive variable f∗ of

the input x∗ is a Gaussian random variable with the predic-

tive mean and variance given in Equations (10) and (9), re-

spectively. Computation of Equation (10) is in O(N); how-

ever, this can be more efficient as follows:

f̄∗ =
N
∑

i=1

αik(xi,x∗) (18)

=

M
∑

m=1

N
∑

i=1

αiσ
2
kκ

m(xi,x∗) (19)

=

M
∑

m=1

ᾱm,τm(x∗), (20)



Algorithm 1 Greedy stage-wise learning of cGPRT.

Input: training data {si, Ii}
N
i=1

Output: cGPRT parameters for prediction {ᾱt, τ t}Tt=1

Procedure:

1: Initialize ŝ01, · · · , ŝ
0
N

2: for t = 1 to T do

3: Set regression residuals for i = 1, · · · , N
rti ← sti − ŝt−1

i

4: Extract features {xt
i}

N
i=1

5: Learning tree split functions {τ t,m}Mm=1

6: Optimize t-th stage GPRT

(a) GPRT model:

rti = f t(xt
i) + rt+1

i ,

f t ∼ GP(0, kt(x,x′)),
rt+1
i ∼ N (0, σ2

n))
(b) Optimize σ2

n, σ
2
k using Equations (14), (17)

(c) Compute {ᾱt,m, σ̄t,m}Mm=1

7: Re-weighting {ᾱt,m}Mm=1 for b = 1, · · · , B

ᾱt,m,b ←
(σ̄t,m,b

k
)−2

(σ̄t,m,b

k
)−2+σ

−2

n

ᾱt,m,b

8: Update estimates for i = 1, · · · , N
ŝti ← ŝt−1

i +
∑M

m=1 ᾱ
t,m,τt,m(xt

i)

9: end for

where ᾱm,b = σ2
k

∑

i:τm(xi)=b αi is a summation of all αi

that the corresponding xi falls into the leaf b. More intu-

itively, ᾱm,b can be interpreted as a predictive mean of the

pseudo input that falls on leaf b of the m-th tree and does

not fall on the other trees.

Also, to measure the uncertainty of predictions of each

leaf of trees, we consider (σ̄m,b)2 that is a predictive vari-

ance of the pseudo input that falls on leaf b of the m-th tree

and does not fall on the other trees.

Using Equations (20), the predictive mean can be com-

puted in O(M logB), and the computation of the predictive

mean to be performed in the same framework with predic-

tion in the CRT.

Cascade GPRT The cGPRT consists of T number of

GPRTs and combines GPRTs based on the following

product-based rule [6]:

p(f∗|x∗,M) ∝
T
∏

t=1

p(f∗|x
t
∗
,Mt), (21)

whereM, andM1, · · · ,MT are cGPRT model and the T

number of GPRT models, respectively. Because each pre-

dictive variable from GPRTs are Gaussian random variables

with means {f̄ t
∗
}Tt=1 and variances {(σt

∗
)2}Tt=1, the predic-

tive variable from cGPRT f∗ is still a Gaussian random vari-

Algorithm 2 Prediction of cGPRT.

Input: test input I∗
Output: shape estimate ŝT

∗

Procedure:

1: Initialize ŝ0
∗

2: for t = 1 to T do

3: Extract feature xt
∗

4: Update estimates ŝt
∗
← ŝt−1

∗
+
∑M

m=1 ᾱ
t,m,τt,m(xt

∗
)

5: end for

able with predictive mean and variance defined by

f̄∗ = σ−2
∗

T
∑

t=1

(σt
∗
)−2f̄ t

∗
, (22)

σ2
∗

=

( T
∑

t=1

(σt
∗
)−2

)−1

. (23)

In Equation (22), f̄∗ is defined by a weighted summation of

{f̄ t
∗
}Tt=1 with the weights that represent the uncertainty of

predictions of each GPRT.

The additive form of the predictive mean in Equation

(22) explicitly induces a greedy stage-wise learning of cG-

PRT using regression residuals as described in Algorithm

1. Each GPRT is optimized through line 6–(a) to 6–(c),

and re-weighted through line 7. The intuition behind this

re-weighting process is to model the current residual rt as

a summation of the regression function f t and the subse-

quence residual rt+1
i that is assumed to be a Gaussian ran-

dom variable with zero mean and variance σ2
n. Then, Equa-

tion (22) explicitly induces the re-weighting process. Note

that the computation of predictive mean of test input can be

utilized in the CRT prediction framework as described in

Algorithm 2.

2.3. Features & learning split functions

The shape-indexed difference of Gaussian (DoG) fea-

tures are extracted as follows: (1) smoothing images with

Gaussian filters at various scales as depicted in Figure 2–

(a), (2) computing the similarity transform that maps a mean

shape to the shape estimate, (3) applying similarity trans-

form into local retinal sampling patterns [1] as depicted in

Figure 2–(b), (4) computing global coordinates using trans-

formed local retinal sampling patterns and the reference

shape estimate, and (5) extracting Gaussian filter responses

by taking pixel values at the global coordinates on Gaussian

smoothed images corresponds to scale parameter of each

sampling point.

Here, the difference of extracted two Gaussian filter re-

sponses is a shape-indexed DoG feature which eventually

computes the response of predefined DoG filter as depicted

in Figure 2–(c). Note that by applying similarity trans-

form into the local retinal sampling patterns, computation



(a) (b) (c)

Figure 2. A extraction procedure of the shape-indexed DoG features: (a) Smoothed images using Gaussian filters at various scales, (b) Local

retinal sampling pattern, where green dots and red circles represent sampling points and standard deviations for corresponding Gaussian

filters, respectively (each sampling point is assigned to particular smoothing scale which is determined to be proportional to the distance

between the local sampling point and the center point), and (c) DoG filters that are computed in practice during the feature extraction

procedure.

Figure 3. Counts of smoothing scale selections for split functions

at different stages. Only two smoothing scales, the outermost and

innermost except the center, are illustrated for better visualization.

of shape-indexed DoG features does not involve to trans-

form whole image but transforms only sparse coordinates

[5]. Also, computational complexity to obtain Gaussian-

smooth images is not too high because smoothing process

is performed only once: prior to the learning procedure.

The tree of cGPRT is learned with a single facial land-

mark [17]: the split functions of the tree are learned by

randomly sampling thresholds and the DoG features refer-

enced by l-th facial landmark. In order to obtain more dis-

criminative split function, several split functions are tested

and the best performing split function is selected. The per-

formances of the split functions are measured in terms of

squared loss on l-th facial landmark. Note that this proce-

dure only learns split functions of the trees, and regression

outputs are learned using cGPRT.

The learned trees at earlier stages tend to use the shape-

indexed DoG features computed from distant sampling

points while the trees at later stages tend to use the fea-

tures computed from nearby sampling points as depicted in

Figure 3. This is due to that the distant sampling points are

more stable against shape estimate errors than the nearby

sampling points because it cover larger regions. The nearby

points are less stable than the distant sampling points, but

much more discriminative when the shape estimate is ac-

curate. Thus, in the learning procedure, the shape-indexed

DoG features allows for each tree to adoptively select more

reliable features respect to the current shape estimate error.

3. Experiments

The objectives of our experiments are two-folds: (1) to

compare cGPRT using shape-indexed features with state-

of-the-art methods, and (2) to verity two key elements of

the proposed method: cGPRT and the shape-indexed DoG

features.

3.1. Experimental settings

Implementation details To obtain the training data, face

images are firstly cropped using the bounding boxes from

Viola & Jones face detector [19] as [13]. Then, shape es-

timates are initialized into randomly sampled ground truth

shapes from the other training data points. This initializa-

tion process is repeated twenty times for each face image

in the training procedure. In prediction, we used the mean

shape obtained from the training data points for the initial-

ization.

We consider two configurations: (1) “cGPRT” config-

uration which is configured to give lower mean error but

slower prediction and (2) “cGPRTfast” configuration which

is configured to give faster prediction time but higher mean

error. In cGPRT configuration, the number of trees for each

GPRT and the number of GPRTs are set to M = 10 and

T = 500, respectively. The cGPRT is formed by a two-

level cascading of GPRTs likes [4, 5, 13, 17], and the num-



Dataset ESR [5] RCPR [4] SDM [20] EST [13] LBF [17] cGPRT

LFPW (29 landmarks) 3.47 3.50 3.49 3.80 3.35 3.51

HELEN (194 landmarks) 5.70 6.50 5.85 4.90 5.41 4.63

300-W (68 landmarks) 7.58 - 7.52 6.40 6.32 5.71

Table 1. Comparison of accuracy between the cGPRT and state-of-the-art methods on LFPW, HELEN and 300-W datasets.

Method Error std fps

ESR [5] 7.58 - 120

SDM [20] 7.52 - 70

EST [13] 6.40 - 1000

LBF [17] 6.32 - 320

LBFfast [17] 7.37 - 3100

cGPRT 5.71 0.06 93

cGPRTfast 6.32 0.07 871
Table 2. Detailed comparison of prediction time and accuracy be-

tween cGPRT and state-of-the-art methods on 300-W dataset.

ber of first level cascade stages and the number of second

level cascade stages are set to 100 and 5, respectively. Note

that the total number of trees is same with the numbers used

in [4, 5, 13]. In cGPRTfast configuration, the number of

trees for each GPRT and the number of GPRTs are set to

M = 10 and T = 100, respectively. And the number of first

level cascade stages and the number of second level cascade

stages are set to 10 and 10, respectively. For both configu-

rations, the depth of trees is set to 5 that is also same value

used in [4, 5, 13]. Each split function is learned through

200 trials, and the number of smoothing scales is set to 8.

The number of retinal sampling points per smoothing scale

is set to 6, and the resulting number of sampling points is

6 × 7 + 1 = 43 for each facial landmark. All experiments

are performed on single core on i5-3570 3.40GHz CPU.

Datasets Most of the experimental results are reported on

the 300-W [18] dataset that is considered as the most chal-

lenging dataset. We also provide the comparison results

with state-of-the-art methods on the LFPW [2] and HELEN

[14].

• LFPW (29 landmarks): The LFPW [2] dataset con-

sists of 1, 132 images for training and 300 images for

testing. The LFPW dataset provides the URLs that link

to images, and the some URLs are broken. We are only

possible to collect 778 training images and 216 test im-

ages which make the direct comparison with the previ-

ously proposed methods are not possible.

• HELEN (194 landmarks): The HELEN [14] dataset

consists of 2, 330 high-resolution images with dense

194 facial landmark annotations. The HELEN dataset

provides a data division: 2, 000 for training and 330
for testing.

• 300-W (68 landmarks): The 300-W [18] is extremely

challenging due to the large variations in pose, expres-

sion, illumination, background, occlusion, and image

quality. It is created from existing popular datasets,

including the LFPW [2], AFW [23], HELEN [14],

XM2VTS [15], and the new dataset IBUG [18]. In

our experiments, the whole dataset is split into train-

ing and test images, following the previous work [17].

The training images consist of the AFW dataset and

the training sets of the LFPW and HELEN datasets.

The test images consist of the IBUG dataset and the

test images of the LFPW and HELEN datasets. The

number of images in the training and testing sets are

3,148 and 689, respectively.

Evaluation metric We measured the shape estimation er-

ror as a fraction of inter-ocular distance defined as the dis-

tance between ground truth shape and shape estimate nor-

malized by the distance between two pupils. For all experi-

ments, we reported averaged performances over 10 trials to

reduce the effect of the randomness.

3.2. Comparison with stateoftheart methods

We compared cGPRT using shape-indexed DoG features

with the following state-of-the-art methods: explicit shape

regression (ESR) [5], robust cascade pose regression [4], su-

pervised descent method (SDM) [20], ensemble of regres-

sion trees (ESR) [13], and regression local binary features

(LBF) [17].

The comparison results are summarized in Table 1 and

2. The experimental results on HELEN and 300-W datasets

showed that cGPRT outperformed all other methods includ-

ing EST and LBF which are the two leading methods on

face alignment. The performance improvement was much

larger on the 300-W dataset which is the most challenging

dataset, and this demonstrated the better generalization of

cGPRT than the others. The example results are depicted in

Figure 6. The cGRPTfast, configured to give faster predic-

tion time but higher mean error, provided faster prediction

and same mean error compared with LBF [17].

The cGPRT performed comparatively compared to other

state-of-the-art methods on the LFPW dataset. However,

the LFPW dataset only provides links to the faces images,

and the number of broken links vary year to year. It was

not possible to make direct comparison to the previously

proposed methods.



Figure 4. Comparison results on the 300-W dataset between the

various regularization methods: the proposed cGPRT, shrinkage,

averaging, and Ridge regression based method.

3.3. Comparison with regularization methods

To verify the effectiveness of cGPRT, we compared cG-

PRT with the three base-line regularization methods used in

ERT [13] and LBF [17]. The first and second methods are

shrinkage and averaging, respectively, used in ERT. Third

method is Ridge regression based regularization method

used in LBF. We fixed the features to be the shape-indexed

DoG features, and the parameters for each method are set to

the same values with the original paper except the number

of trees and the depth of trees. These parameters are not

changed for the fair comparison, and the cGPRT configura-

tion is used for the experiment.

The comparison results are depicted in Figure 4. The

proposed cGPRT outperformed all the base-line regulariza-

tion methods. We obtained similar performance for shrink-

age and averaging methods as reported in [13]. Note that

with the same feature extraction method, all methods have

same computational complexity for prediction.

3.4. Comparison with features

To verify the effectiveness of the proposed shape-

indexed DoG features, we compared with the two base-

line shape-indexed features used in ERT and LBF. The first

method samples the local pixel coordinates in randomly

(RND) and selects relevant features using the exponential

priors [13] (RND+EXP). The second method also samples

the local pixel locations in randomly and learns the split

functions to fit the single facial landmark errors using the lo-

cal regions around the landmark (RND+LOCAL). We fixed

the regression method and the number of sampling points to

cGPRT and 68 × 43 = 2924, respectively, and the cGPRT

configuration is used for the experiment.

Figure 5. Comparison results on the 300-W dataset between the

various feature extraction methods: the proposed shape-indexed

DoG features (proposed), the randomly sampled shape-indexed

pixel difference features with the exponential prior based feature

selection method (RND+EXP) [13] and the local tree learning

method (RND+LOCAL) [17].

The comparison results are depicted in Figure 5. The

proposed shape-indexed DoG features performed best with

large amount of error reduction. All feature extrac-

tion methods consider the locality to obtain discriminative

trees, however, the difference is come from the correla-

tion among the trees. The shape-indexed DoG features and

RND+LOCAL method learn trees using a single facial land-

mark, and this reduces the correlation among the trees that

can lead to performance improvement.

4. Conclusion

For the face alignment, cGPRT using shape-indexed

DoG features has been proposed. The cGPRT is constructed

by combining a set of GPRTs and learned in a greedy stage-

wise manner. We have described the predictive mean of

cGPRT can be computed in the CRT framework with bet-

ter generalization. Further more, we have described the

shape-indexed DoG features that are designed through dif-

ference of Gaussian filter responses computed on local reti-

nal patterns referenced by shape estimates. The cGPRT us-

ing the shape-indexed DoG features has shown the best per-

formances on the HELEN and 300-W datasets.
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Figure 6. Shape estimation results using cGPRT with the shape-indexed DoG features on three datasets: (a) LFPW (29 landmarks), (b)

HELEN (194 landmarks), and (c) 300-W datasets (68 landmarks).
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