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Abstract

We propose a new method for face alignment with part-based modeling. This method

is competitive in terms of precision with existing methods such as Active Appearance

Models, but is more robust and has a superior generalization ability due to its part-based

nature. A variation of the Histogram of Oriented Gradients descriptor is used to model the

appearance of each part and the shape information is represented with a set of landmark

points around the major facial features. Multiple linear regression models are learnt to

estimate the position of the landmarks from the appearance of each part. We verify our

algorithm with a set of experiments on human faces and these show the competitive

performance of our method compared to existing methods.

1 Introduction

This paper presents a new method for accurate face alignment with part-based modeling.

Although we focus on the class of human faces, this method could potentially be applied

to any type of deformable object. We aim to learn a regression function mapping a feature

representation of the appearance of the face to its shape represented by a set of connected

landmarks forming contours around the major facial features. Ideally, we want to use linear

regression functions to describe this mapping as they need less training data, have a lower

chance of over-fitting, and are fast to compute. However, the relation between the global

appearance of an object and its shape is highly nonlinear. Previously, piece-wise linear

regression has been applied [12, 15] to deal with this non-linearity. Instead, in this work, the

strategy is to learn regression functions for individual parts, see figure 1. The parts are chosen

to ensure the linearity of the regression mapping. The main advantage of this approach is

that it requires less training data, although it necessitates good part-detection.

Part-based methods, mostly used in recognition tasks, train different classifiers for each

part of the model. Assuming each part is a rigid structure, deformation is limited to the

relative transformation of each part. The optimal solution for such a multi-part based match-

ing problem can be found efficiently by simplifying the dependency of parts to form a tree

structure as is presented by Felzenszwalb et al. [8]. This method cannot be directly applied

to solve dense matching problems because it requires creating individual classifiers to detect

each landmark which is not only computationally expensive but impractical, since most of

the landmarks do not have a distinctive local appearance.

A large group of methods have been developed which rely on the global appearance

of a deformable object to tackle the alignment problem, these include Active Shape Mod-
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(a) with parts (b) without parts

Figure 1: This figure shows the benefit of using parts in the performance of a regression

function to accurately predict the location of landmark points. In both cases a linear regres-

sion model is learnt to map the appearance descriptors inside the patches to the location of

the landmarks associated with the patch. Green lines represent the ground truth shape and

the red lines are the prediction of the regression function. As can be seen greater accuracy is

achieved when (a) using a separate regression function for each localized part as opposed to

(b) one regression function from the global face patch.

els(ASM) [3], and Active Appearance Model(AAM) [4]. Some attempts have been made to

improve the robustness, and accuracy of these methods [1, 5, 9, 10, 13], but the main prob-

lem which remains unsolved in these methods is that they need a good initial estimate and

are not able to adapt the model to fit a subject when the initial error is high. As an example

in face tracking applications, AAM usually fails to converge when there is a sudden large

deformation or motion of the subject.

One main advantage of our method compared to the global methods just described is

that the regression functions directly estimate the landmark positions by-passing the need

to perform iterative non-linear optimization on a complicated cost function. As a result,

our method can be used on image sequences with fast motion, and it does not need any

initialization. Furthermore the part-based nature of our method, and also the use of HOG

descriptors [6] (in contrast to intensity vectors as in AAM), enhance the robustness and

generalization ability of our algorithm. On the minus side the performance of our method is

highly dependent on a proper part detection and this requires strong and distinctive features

in the appearance of the object. In the case of a human face which is the focus of our work,

a sensible selection of parts is a division into the nose, mouth and the eyes. For the more

general case we would need an automatic part selection method which is a an interesting and

challenging topic investigated for future work.

2 Landmark localization via regression

In this paper the localization of landmark points on the face is viewed as a regression prob-

lem. Assume we have N training image patches of the same size and that the appearance of

each patch is described by a feature vector fi ∈ R
K . Each patch contains L landmark points

whose coordinates are defined relative to an origin at the centre of the patch and are then

stacked into the vector Xi. This training data is used to learn a regression function

q : RK −→ R
2L s.t. q(f) = X (1)

mapping a feature vector f to the coordinates of the landmark points X. There are many

options to approximate q(·) such as linear regression, nearest neighbour regression and rele-
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vance vector machines. We focus on modelling q as a linear function

q(f) =W f+w (2)

where W ∈ R
2L×K and w ∈ R

2L. The question then remains which approach should be used

to estimate (W,w). The performance of several standard methods - ordinary least squares

regression, ridge regression, principal component regression - are investigated and the results

are reported upon and compared to the baseline of a nearest neighbour regression function

in the experimental section. However, to summarize ridge regression, which is fast in both

training and testing phases, was found to perform well. Ridge regression minimizes a least

squares loss function combined with a regularization term:

Wridge,wridge = arg min
W,w

(

N

∑
i=1

‖Xi −W fi −w‖2 +λ (trace(WW t)+wtw)

)

(3)

where λ is the non-negative regularization factor and defines the complexity of our model.

The approximated regression functions will be applied to arbitrary image patches Ib.

Such patches are defined by a bounding box b = (x,sw,sh), where x is the centre of the

patch, w and h are the width and height of the training patches and s is the ratio between

the width of the test patch and the training patches. We assume test patches have the same

aspect ratio as the training data. Then the coordinates of the landmark points, estimated by

our learnt regression functions, have to be rescaled and translated:

g(Ib) = sq(fIb)+x (4)

where fIb is the feature description of the image patch Ib.

2.1 Feature description of an image patch

In this subsection we introduce the feature descriptor fIb which is used to describe the ap-

pearance of an image patch. We use a variant of the PHOG [2] descriptor. Figure 2 shows

a schematic representation of this descriptor. At the first level a histogram of gradient ori-

entations of the whole patch is computed. While at the second level the patch is divided

into 8 sub-regions. Each of these regions can once again be recursively divided into 8 more

sub-regions until the required level of detail is obtained. However, our experiments show

that it is more effective to just recursively subdivide the square sub-regions at each level

of the pyramid into 8 more sub-regions. At the end, all the histograms are concatenated to

form the final descriptor. This descriptor allows us to capture the appearance of an image

patch at different scales (same as PHOG) as well as the joint appearance of adjacent regions

both horizontally and vertically. In this way we can better represent shape information while

maintaining a degree of spatial invariance.

3 Part based regression

As stated we want to use linear regression to model the mapping from the appearance of a

face to its shape. However, the relationship between the global appearance of the face and

the position of all its landmark points is non-linear. We need, therefore, to model simpler

relationships which can be better approximated with a linear function. Our strategy is to
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Level 1 Level 2

Figure 2: This figure demonstrates how an appearance descriptor is calculated from an image

patch. The main patch is divided into 8 sub-regions. For each sub-region the histogram of

gradient orientations is calculated. These histograms are then concatenated to form the final

descriptor.

split the face into P parts, see figure 4, and learn separate regression functions, mapping each

part’s appearance to its associated landmark positions. This approach, of course, introduces

a new set of problems. The first of these is - How do we define and set the number of parts?

Solving this problem automatically is non-trivial and is not tackled in this paper. The

parts and their number are set by hand, see figure 4. The parts are defined as a partition of

the landmark points and the choice of this partition was guided by an effort to ensure

• the part landmark points can be well aligned across the training images,

• the part can be detected and accurately located in novel images and

• linear regression accurately models the mapping from each part’s image feature space

to the coordinates of its landmark points.

More formally we partition the set of L landmark points into P subsets with L1, . . . ,LP points

respectively and where each set of landmark points are spatially grouped. For instance in

the face, the landmark points associated with the nose form one subset. The P regression

functions we now learn are denoted by

qp : RK −→ R
2Lp s.t. qp(f) = Xp for p = 1, . . . ,P (5)

where the learnt mapping is now from an image patch surrounding the particular subset of

landmark points to their coordinates defined relative to the centre of the patch.

This means less training data is needed to learn each qp(·) but they can cover a larger

amount of variation for all the parts over learning one global regression function. Using

parts, also, ensures that linear regression models are more likely to be a better approximation

to the true mapping. As before, if wp represents the width of the training image patches

for part p, then the mapping from an image patch extracted from the bounding defined by

b = (x,swp,shp) is:

gp(Ib) = sqp(fIb)+x. (6)

While the second problem introduced by this part based strategy is - Given a novel image,

I, how do we find the location and size of each part within I? Fortunately, for us there are

several standard approaches for achieving this and the one we will adopt is based on train-

ing part detectors and applying spatial constraints between parts in the manner of pictorial

structures [8] which is described next.
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3.1 Part detection

We model the appearance of an individual part by fitting a multivariate Gaussian distribution

to the part’s appearance descriptor. This is a very simple model and forms the basis for the

match score, more sophisticated classification scores could be used, but it is sufficient for the

face data-sets we examine. The spatial constraints between parts of the face are represented

in the form of a tree. In our case, the nose is defined as the root of the tree, and the mouth and

eyes are the leaves. The relative location of each pair of connected nodes are then modeled

with a 2D Gaussian model. To detect the location of parts in a novel image, a window

of a fixed size is slid across the image, and the Mahalanobis distance of the appearance

descriptors from the mean model is calculated for each window to create a distance map.

The method presented by Felzenszwalb et al. [8] is then used to find an optimal solution for

the matching problem.

The details are as follows let bp = (xp,swp,shp) denote the bounding box of the pth

part. The scale factor s is the same for each part and is found by finding the global scale

of the face via a frontal face detector such as the one defined by the Viola and Jones face

detector. Then the unknown parameters of the bounding boxes xp are found by solving:

min
x1,...,xP

(

P

∑
p=1

mp(xp, I)+ ∑
(i, j)∈E

di j(xi,x j)

)

(7)

where each mp(xp, I) computes a score of how well the appearance of image patch Ibp

matches the model of part p’s appearance

mp(xp, I) = (fIbp
−µ p)

t Σ−1
p (fIbp

−µ p) (8)

and the appearance is described with the same type of descriptor, fIbp
, as used in the regres-

sion functions. Each di j(xi,x j) measures the likelihood of the relative layout of the ith and

jth part:

di j(xi,x j) = (xi −x j −µi j)
t Σ−1

i j (xi −x j −µi j) (9)

and E is the list of edges in the tree structure defining the face. As the spatial deformation

scores are modelled with a Mahalanobis distance the optimization problem defined in equa-

tion (7) can be efficiently solved using distance transforms and dynamic programming as

described in [8].

3.2 Learning the part regression functions

For test images there will, in general, be small inaccuracies in the localization of each part

and estimation of its scale. Therefore during the training of the individual regression func-

tions we compensate for this fact by augmenting the training data. To do this a zero mean

Gaussian noise was added to the location of patches and we created a variety of patches

with slightly different scales and positions for every image. The regression model then can

learn the mapping between shifted appearance descriptors to the correct shape data. Figure 3

shows a benchmark of algorithm with different levels of noise. As can be seen adding about

3 to 4% noise to the position of parts in the training set, improves the final results.
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(a) with parts (b) without parts

Figure 3: This figure shows the effect of adding noise to the location of the patches used in

training on the performance of the regression functions. The Total error curve displays the

average error in the prediction of the landmark positions when the regression functions use

the output from the automatic part detection and the Regression error curve the error when

instead the ground truth location of the part is used. Observe that perturbing the training data

up to a certain noise level increases the regression functions robustness to inaccuracies in the

part detection. Note the use of parts (a) significantly increases the accuracy of the algorithm.

4 Experiments and results

In our experiments we have used the IMM face database [14] which contains 240 still images

of 40 different human faces with the resolution of 640×480 pixels with the average head size

240×320. The database includes a variety of facial expressions and head orientations, and

contains both male and female subjects. Each image comes with 58 annotated landmarks,

outlining the major facial features including eyebrows, eyes, nose, mouth, and jaw. Although

in our experiments we only use 44 landmarks (excluding the landmarks around the jaw).

Figure 4: An annotated image from the IMM dataset. Each image comes with 58 annotated

landmarks outlining the major facial features. We calculate the bounding boxes for each part

based on the location of these landmarks.

We performed 40-fold cross-validation on the IMM dataset to benchmark the perfor-

mance of our method. 40 different models were trained, for each model we excluded all of

the images from one of the test subjects. Furthermore, we have tested our algorithm on novel

image sequences and the qualitative results are presented in figure 7.

Four individual part detectors are trained for detecting the left and right eyes, nose, and

mouth. We have used 90×90 pixel patches to model each part which we found to be optimal

in our dataset. After locating the parts, we extract the appearance parameters around the
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detected point and compute the shape parameters based on the regression model.

The optimal configuration for the appearance descriptor which we found by experiment

is L = 3, and b = 5, where L is the number pyramid levels, and b is the number of histogram

bins, which will give a feature descriptor with length equal to b(1+∑
L
l=1 42l) = 845. For

part detection also we have used similar parameters except the pyramid level which was set

to L = 2.

There are many options for finding the parameters of the linear regression. Figure 5

shows a comparison of the results from nearest neighbor, ordinary regression, and princi-

pal component regression with different dimension reduction rates. The results show that

Figure 5: Comparison of performance of different regression methods. The results show that

proper regularization significantly improves the results.

regularization significantly improves the performance of the regression model. The regular-

ization factor is set to λ = 200 by inspecting its performance on a few validation images.

Using PCA with ridge regression gives the top performing results with enough components

but the results are not significantly better than ridge regression, although it can potentially

improve the speed because of the reduction of the feature dimensionality.

Table 1 shows a comparison of performance of our method with several existing methods

on the same dataset. The error measure used in benchmarking is the mean of the Euclidean

distance between detected landmarks and their ground truth location. The resolution of the

images used in these experiments is 640×480 pixels, and size of the head is approximately

240×320 pixels. The average mean error as a result of cross-validation on the whole dataset

in our method is about 4 pixels. This is better than the results of various implementations

of AAM and ASM that we found. Figure 6 shows the detected and ground truth location of

the landmarks on a different set of test images. We have compared the results with standard

AAM implementation by Stegmann et al. [14], and CCA-AAM by Donner et al. [7], in

addition to the results from [11] (ASM, DFM). The results show the superior precision of

our algorithm despite the fact that the other methods need initialization with ±10% error.

We have also tried our method on a variety of novel videos, and image sequences and an

example is demonstrated in figure 7.

5 Conclusion

In this paper we have introduced a new method for the alignment of faces which has proven

to be effective in real world applications. Given 240 images of human faces, we were able
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Figure 6: The result of our method on a test set with ground truth information. In this figure

the green lines show the ground truth landmarks and the red lines are the predictions of our

method.

Figure 7: The result of our method, trained using IMM dataset, on an unknown subject,

with unknown expressions. The results show that our model covers unseen faces with novel

expressions and lighting conditions.
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Method Input Type Mean error

Our method Gray 4.03

DFM Gray 4.80

CCA-AAM Gray 5.70

AAM Color 5.92

AAM Gray 6.03

ASM Gray 6.20

Table 1: Mean point to point error of detected landmarks in full size images. The error

measure is the mean of the Euclidean distance between the detected landmarks and their

ground truth location in pixels.

to create a model that can be used to align arbitrary faces with acceptable precision. The

experiments prove that the method has a good generalization ability and is competitive in

terms of precision with global methods such as Active Appearance Models.

As mentioned before the choice of parts is a critical factor in the performance of the algo-

rithm. Further improvement could be achieved by designing an automated method to find the

best part configuration. The parts need to be reliably detected and should be evenly spread

across the face to give a complete representation of the face’s appearance. Furthermore the

algorithm can be extended to improve the precision by doing a local search around the de-

tected landmarks to find the optimal match. Alternatively the detected landmarks could be

used as an initial estimate for an iterative matching process such as AAM; this can poten-

tially lead to better results since by providing a good initialization to AAM the chances of

converging to the global optima increases.
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