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Abstract—The vulnerabilities of face biometric authentication
systems to spoofing attacks have received a significant attention
during the recent years. Some of the proposed countermeasures
have achieved impressive results when evaluated on intra-tests
i.e. the system is trained and tested on the same database.
Unfortunately, most of these techniques fail to generalize well
to unseen attacks e.g. when the system is trained on one
database and then evaluated on another database. This is a major
concern in biometric anti-spoofing research which is mostly
overlooked. In this paper, we propose a novel solution based
on describing the facial appearance by applying Fisher Vector
encoding on Speeded-Up Robust Features (SURF) extracted from
from different color spaces. The evaluation of our countermea-
sure on three challenging benchmark face spoofing databases,
namely the CASIA Face Anti-Spoofing Database, the Replay-
Attack Database and MSU Mobile Face Spoof Database, showed
excellent and stable performance across all the three datasets.
Most importantly, in inter-database tests, our proposed approach
outperforms the state of the art and yields in very promising
generalization capabilities, even when only limited training data
is used.

I. I NTRODUCTION

It is well known nowadays that face biometric systems are
vulnerable to spoofing attacks e.g. when presenting fake faces
using printed photos, video displays and masks. In a recent
study [1], six commercial face recognition systems (Face
Unlock, Facelock Pro, Visidon, Veriface, Luxand Blinkand
FastAccess) were easily fooled with crude photo attacks
using images of the targeted person downloaded from social
networks.

To overcome the problem of spoofing attacks, many non-
intrusive software-based countermeasures have been proposed
[2], [3]. While it is possible to exploit different visual cues
for face spoofing detection such as motion [4], [5], [6], [7]
and scene context [4], [8], an approach solely based on single
images of the face region is more appealing and also more
challenging. It is appealing because the same information (i.e.
the facial region) that is used for face recognition will also be
used for spoofing detection. So, the two tasks can easily be
coupled.

The methods solely based on single images of the face
region exploit the fact that fake face images captured from
printed photos, video displays and masks usually suffer from
various quality and texture issues related to the spoofing
medium or the manufacturing process. This includes lack of
details, printing artifacts, specular reflections, or differences
in shading. Assuming that these inherent disparities between
real and fake faces can be observed in single visual spectrum
images, the proposed methods in the literature analyze the
facial appearance properties like texture [9], [10] and quality

[11], [12] for face spoofing detection from single images of
face region.

The existing face anti-spoofing techniques analyzing mo-
tion, facial texture content and image quality have already
achieved impressive results particularly when trained andeval-
uated on the same database (i.e. intra-test protocols). As all the
existing benchmark publicly available datasets lack variations
in the collected data (e.g. user demographics, application
scenarios, illumination conditions and input cameras), the
reported anti-spoofing results may unfortunately not reflect the
real uncontrolled operating conditions that the methods will be
definitely faced in real world applications such as in mobile
authentication.

To gain insight into the generalization performance of
face anti-spoofing techniques, de Freitas Pereiraet al. [13]
suggested an inter-database evaluation in which the anti-
spoofing models are trained and tuned on one database and
then tested on other databases. The experiments have revealed
that the performance of the state-of-the-art methods drastically
drops as the methods failed to cope with new spoofing
conditions that have not been seen during training and develop-
ment phases. Even the popular convolutional neural networks
(CNN) have failed to derive well-generalizing features forface
anti-spoofing [14].

It is indeed impossible to cover all possible variations
related to spoofing operating conditions in the training data.
Instead of augmenting the training data, a possible direction
towards more robust software-based solutions is to design
novel feature representations that are less sensitive to different
environmental and subject-specific factors. In order to improve
the generalization of texture based anti-spoofing methods,
we have proposed the use of color texture analysis in [15],
exploiting the fact that the color gamut of printing and display
devices is limited. In order to map the out of gamut colors into
the color gamut of different devices, color mapping algorithms
are applied. Since the human eye is more sensitive to the
luminance than the chrominance information, these mapping
algorithms give a huge importance to the preservation of the
spatially local luminance variations at the cost of the chroma
information. These inherent disparities can be captured by
analyzing the texture content of the chrominance channels.
Our preliminary investigations in [15] suggested that color
texture when extracted separately from the luminance and the
chrominance channels are more stable in many (unknown)
conditions compared to their RGB and gray-scale counterparts.

The generalization capability of our color texture analysis
method [15] was dependent on the diversity of the training
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data. The method was performing very well when trained
on the CASIA Face Anti-Spoofing Database [16] containing
different imaging qualities and then tested on the more con-
strained Replay-Attack Database [17]. However, the perfor-
mance of the method was less satisfactory when trained on
constrained data (Replay-Attack Database) and then testedon
more diverse data (CASIA Face Anti-Spoofing Database). This
can be partially explained by the fact that only the basic local
binary patterns (LBP) [18] were considered for exploring the
facial appearance. While LBP is indeed a simple and powerful
texture descriptor that has shown to be very effective in many
applications including face anti-spoofing, we argue that more
advanced feature descriptors and encoding methods are needed
to further enhance the generalization capability of face anti-
spoofing.

In this present work, we propose a novel face representation
for a well-generalizing anti-spoofing method using Speeded-
Up Robust Features (SURF) and Fisher Vector encoding
[19]. The color information is exploited for discriminating
real from fake faces by extracting dense SURF descriptions
from different color spaces. The SURF features extracted
from the different band images are concatenated and encoded
using the Fisher Vector method. The face representation is
then fed into a Softmax classifier. Our experiments on three
challenging benchmark face spoofing databases, namely the
CASIA Face Anti-Spoofing Database [16], the Replay-Attack
Database [17] and MSU Mobile Face Spoof Database [12],
showed robust and stable performance across all these datasets.
Most importantly, in the inter-database tests, our approach
outperforms all the state of the art and yields in promising
generalization capabilities, even when only limited training
data is used.

II. PROPOSEDCOUNTERMEASURE

A. The Speeded-Up Robust Features (SURF)

The Speeded-Up Robust Features (SURF) [20] is a fast and
efficient scale and rotation invariant descriptor. It was origi-
nally proposed to reduce the computational complexity of the
Scale Independent Feature Transform (SIFT) descriptor [21].
Instead of using the Difference of Gaussian (DoG) filters to
approximate the Laplacian of Gaussian, the SURF descriptor
uses the Haar box filters. A convolution with these box filters
can be computed rapidly by utilizing integral images.

The SURF descriptor is obtained using the Wavelet re-
sponses in the horizontal and vertical directions. The region
around each interest point is first divided into4 × 4 sub-
regions. Then, for each sub-regionj, the horizontal and
vertical Wavelet responses are used to form a feature vector
Vj as follows:

Vj = [
∑

dx,
∑

dy,
∑

|dx|,
∑

|dy|]. (1)

Where dx and dy are the Haar wavelet responses in the
horizontal and vertical directions, respectively. The feature
vectors extracted from each sub-region are concatenated to
from a SURF descriptor with 64 dimensions:

SURF = [V1, ..., V16]. (2)

The SURF descriptor was originally proposed for gray-
scale images. Inspired by our previous finding [15], [22]
showing the importance of the color texture in face anti-
spoofing, we propose to extract the SURF features from the
color images instead of the gray-scale representation. First,
the SURF descriptor is applied on each color band separately.
Then, the obtained features are concatenated to form a single
feature vector (referred to as CSURF). Finally, Principal
Component Analysis (PCA) [23] is applied to de-correlate the
obtained feature vector and reduce the dimensionality of the
face description.

B. Fisher Vector (FV)

Extracting dense features has shown to be an essential
component in many computer vision applications [24], [25].
In [26], Fisher Vector (FV) encoding was shown to perform
very well in many image recognition benchmarks. FV embeds
a set of feature vectors into a high dimensional space more
amenable to linear classification. The feature vectors are ob-
tained by fitting a generative parametric model, e.g. Gaussian
Mixture Model (GMM), to the features to be encoded. Let
X = {xt, t = 1, ..., T} be a D-dimensional local descriptors
extracted from a face ImageI and letλ = {µk, σk, wk, k =
1, ...,M} be the means, the covariance matrices and the
weights of the GMM modelλ trained with a large set of local
descriptors. The derivations of the modelλ with respect of
the mean and the covariance parameters (Equation 3 and 4)
capture the first and the second order differences between the
featuresX and each of the GMM components.

φ1

k =
1

T
√
wk

T∑

t=1

αt(k)(
xt − µk

σk

) (3)

φ2

k =
1

T
√
2wk

T∑

t=1

αt(k)[
(xt − µk)

2

σ2

k

− 1], (4)

where,αt(k) is the soft assignment weight of the featurext

to the GMM componentk:

αt(k) =
wkuk(xt)∑M

j=1
wjuj(xt)

(5)

Here, ui denote the probability density function of the
Gaussian componenti. The concatenation of these two or-
der differences[φ1

1
, ..., φ1

M , φ2

1
, ..., φ2

M ] represent the Fisher
Vector of the imageI described by its local descriptorsX.
The dimensionality of this vector is2MD. A Fisher vector
represents how the distribution of the local descriptorsX

differ from the distribution of the GMM model trained with all
the training images. To further improve the performance, the
Fisher vectors are normalized using a square rooting followed
by L2 normalization [27]. Figure 1 depict the general block
diagrm of our face spoofing detection method.

III. E XPERIMENTAL DATA AND SETUP

To assess the generalization capability of our proposed
countermeasure, we used three public face anti-spoofing
databases: CASIA Face Anti-Spoofing Database (CASIA FA)
[16], Replay-Attack Database [17] and MSU Mobile Face
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Fig. 1. An overview of our proposed face anti-spoofing method

Spoof Database (MSU MFS)[12]. These three datasets are
the most challenging face anti-spoofing benchmark databases
that consist of recordings of real client accesses and various
spoofing attack attempts captured with different imaging qual-
ities, including mobile phones, webcams and digital system
cameras.

To allows a fair comparison with other methods proposed in
the literature, we followed the official overall test protocols of
the three databases. For CASIA FA and MSU MFS the model
parameters are trained and tuned using a subject-disjoint cross-
validation on the training set and the results are reported in
terms of Equal Error Rate (EER) on the test set. The Replay-
Attack database provides also a separate development set for
tuning the model parameters. Thus, the results are given in
terms of EER on the development set and the Half Total Error
Rate (HTER) on the test set following the official test protocol.

In all our experiments, The denseSURF features were
extracted from64 × 64 face images with a stride of two
pixels and block size of 11 pixels. The frame images, were
taken from each video every 320 ms. The Fisher Vectors
were estimated using a GMM model with diagonal covariance
matrices computed using training set of each database. Finally,
the normalized Fisher Vector were fed into a Softmax classifier
with a cross-entropy loss function [28].

In addition to the intra-database evaluation, we have also
conducted a cross-database evaluation. Where, we used the
training set of each database to train the countermeasure model
and the testing set to estimate the thresholdτ which will be
used on the other databases to compute the Half Total Error
Rate (HTER):

IV. RESULTS AND DISCUSSION

A. Effect of the color information

We begin our experiments by first evaluating the importance
of the color SURF features (referred to as CSURF) compared
to the gray-scale SURF features (referred to as SURF). In
these experiments, we extracted the CSURF features from
three color spaces: RGB, HSV and YCbCr. To show the
effect of the color information, the extracted features were
concatenated then fed into the softmax classifier without any
feature encoding technique. The results in both intra-database
and cross-database scenarios are presented in Table I and Table
II, respectively. These results clearly indicate the importance
of CSURF descriptions compared to the original SURF de-
scriptions extracted from the gray-scale images. Comparing

the results obtained using the different color spaces, we
observe that using HSV and YCbCr color spaces yields in
better performance compared to the RGB color space. This
confirms the importance of using separated luminance and
chrominance color spaces. As the color (luminance and the
chrominance) information in the HSV and YCbCr color spaces
are different, we propose to fuse the features extracted from
these two color spaces in order to benefit from their potential
complementarity. As shown in tables I and II, this fusion
improves the performance in both intra-database (except on
MSU database where the use of the HSV color space gives
the best performance) and inter-database scenarios compared
to the performance obtained using each color space separately.
Even the dimension of the concatenated CSURF features is
very high (393216) the obtained results are competitive to
the state-of-the-art methods. To boost these performances, We
applied the FV encoding methods on these features before
the classification step. The next part shows the effect of this
encoding method on the performances of CSURF features
extracted from HSV-YCbCr color space combination.

TABLE I
PERFORMANCE OFSURFVERSUSCSURFIN INTRA -DATABASE TESTS

Replay-Attack CASIA MSU
Method EER HTER EER EER

SURF(Gray) 19.5 21.2 17.8 18.8
CSURF (RGB) 11.3 13.5 14.1 17.3
CSURF (HSV) 6.2 11.5 7.1 7.0

CSURF (YCbCr) 5.2 8.9 7.8 9.2
CSURF (HSV+YCbCr) 3.3 8.2 5.7 7.1

TABLE II
PERFORMANCE OFSURFVERSUSCSURFIN INTER-DATABASE TESTS

Train on: CASIA Replay MSU
Average

Test on: ReplayMSU CASIA MSU CASIA Replay
SURF 52.3 35.1 52.6 43.8 43.1 48.2 45.8

CSURF(RGB) 50.7 32.2 49.4 44.1 44.6 47.8 44,8
CSURF(HSV) 50.5 26.1 44.5 44.3 38.9 54.6 43.1

CSURF(YCbCr) 40.0 26.2 36.9 31.8 31.7 53.8 36.7
CSURF(HSV+YCbCr) 37.9 20.5 36.2 33.0 34.8 50.6 35.5

B. Effect of the Fisher Vector encoding method

The FV encoding capture the first and the second order
differences between the image features and the center of the
GMM components. Applying the PCA method before the
encoding step was found to improve the performances and
decrease the dimension of the final descriptors. Tables III and
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IV show the effect of using different principal components
on both the intra-database and inter-database scenarios. The
results in these tables are obtained using 128 GMM compo-
nents. From these tables, we can see that applying the PCA
method before the FV encoding improves the performances in
the two scenarios. In the intra-database scenario, the use of 100
principle components gives the best performances. However,
on the cross-database scenario, the best results are obtained
using 300 principal components. Since we are focusing more
on the generalization capability, the CSURF features were
projected into 300 principle components. In addition to the
number of the principal components, the number of the GMM
components has also an effect on the FV performances. Tables
V and VI show that using 256 Gaussian components gives
the best performance on both intra-database and inter-database
tests.

TABLE III
EFFECT OF DIMENSIONALITY REDUCTION ON INTRA-DATABASE

PERFORMANCE

Replay-Attack CASIA MSU
Method EER HTER EER EER

Without 0.1 3.9 3.8 3.1
350 0.1 1.9 3.3 2.6
300 0.1 1.7 2.9 2.8
200 0.1 1.7 2.9 2.2
100 0.9 1.4 2.9 1.9

TABLE IV
EFFECT OF DIMENSIONALITY REDUCTION ON INTER-DATABASE

PERFORMANCE

Train on: CASIA Replay MSU
Average

Test on: Replay MSU CASIA MSU CASIA Replay
Without 33.1 18.9 33.4 29.6 25.5 46.5 31.2

350 33.1 21.2 28.4 33.4 33.1 29.8 28.8
300 27.3 20.8 27.7 33.1 26.7 28.4 27.4
200 34.1 19.1 29.1 32.3 26.7 32.1 28.9
100 42.6 19.8 33.4 29.6 25.5 46.5 34.1

TABLE V
EFFECT OF THE NUMBER OFGMM COMPONENTS ON THE

INTRA-DATABASE PERFORMANCE

Replay-Attack CASIA MSU
Method EER HTER EER EER

64 0.2 2.0 3.2 2.8
128 0.2 2.3 2.9 2.8
256 0.1 1.8 2.8 2.2
512 0.3 2.0 3.0 2.5

TABLE VI
EFFECT OF THE NUMBER OFGMM COMPONENTS ON THE

CROSS-DATABASE PERFORMANCE

Train on: CASIA Replay MSU
Average

Test on: Replay MSU CASIA MSU CASIA Replay
64 28.1 22.8 18.8 36.9 28.4 31.3 27.7
128 27.3 20.8 27.7 33.1 26.7 28.4 27.4
256 26.9 19.1 23.2 31.7 24.2 29.7 25.8
512 25.3 24.3 25.3 32.1 26.4 32.1 27.6

C. Comparison with the state of the art

Tables VII and VIII provide a comparison between the
results of our proposed approach and those of the state-of-the-
art methods in both intra-database and cross-database evalu-
ation. In intra-database evaluation (Table VII), our proposed
approach achieves the best performance on two databases: CA-
SIA FASD and MSU MFSD. On the Replay-Attack Database,

our obtained results are very competitive compared to the
state-of-the-art methods. Note that the best performing method
on the Replay-Attack Database (i.e. Motion mag+LBP [6])
gives low performance on the CASIA FASD whereas our
proposed methods is able to perform equally well across all
the three datasets.

Most importantly, the inter-database evaluation (Table VIII)
demonstrates that our proposed CSURF approach outperforms
all the state-of-the-art methods. The CSURF based face de-
scription yields in very promising generalization capabilities,
even when only limited training data is used. Hence, our
new features and encoding methods seems to better describe
the inherent disparities in color information across various
conditions.

TABLE VII
COMPARISON BETWEEN OUR PROPOSED COUNTERMEASURE AND

STATE-OF-THE-ART METHODS IN INTRA-DATABASE TESTS

Replay-Attack CASIA MSU
Method EER HTER EER EER

Motion [4] 11.6 11.7 26.6 -
LBP [17] 13.9 13.8 18.2

LBP-TOP [5] 7.9 7.6 10.0 -
Motion mag+LBP [6] 0.2 0.0 14.4 -

IQA[11] - 15.2 32.4 -
CNN [14] 6.1 2.1 7.4 -
DMD [7] 5.3 3.8 21.8 -
IDA [12] - 7.4 - 8.5

Motion+LBP [29] 4.5 5.1 - -
Color texture [15] 0.4 2.9 6.2 -
Color texture [22] 0.0 3.5 3.2 3.5
Proposed method 0.1 2.2 2.8 2.2

TABLE VIII
COMPARISON BETWEEN OUR PROPOSED COUNTERMEASURE AND

STATE-OF-THE-ART METHODS IN CROSS-DATABASE TESTS

Train on video: CASIA Replay MSU
Average

Test on: Replay MSU CASIA MSU CASIA Replay
Motion [13] 45.2 - 47.9 - - - 46.5
LBP [13] 45.9 - 57.6 - - - 51.7

LBP-TOP [13] 49.7 - 60.6 - - - 55.1
Motion-Mag [6] 50.1 - 47.0 - - - 48.5

CNN [14] 48.5 - 45.5 - - - 47.0
Color texture [15]∗ 37.9 21.0 35.4 32.9 45.7 44.8 36.3
Color texture [22] 30.3 20.4 37.7 34.1 46.0 33.9 33.7

Our method 26.9 19.1 23.2 31.8 24.3 29.7 25.8

* the results are re-computed using the frame based scenario
instead of the video based scenario.

V. CONCLUSION

We proposed a face anti-spoofing scheme based on color
SURF (CSURF) features and Fisher Vector encoding. We
extracted the SURF features from two different color spaces
(HSV and YCbCr). Then, we applied PCA and Fisher Vector
encoding on the concatenated features. The proposed approach
based on fusing the features extracted from the HSV and
YCbCr was able to perform very well on three most chal-
lenging face spoofing datasets, outperforming state of the
art results. More importantly, our proposed approach yielded
in very interesting generalization performance in the inter-
database experiments even when only limited training data was
used. As a future work, we plan to investigate other strategies
for creating more robust feature spaces for spoofing detection,
including person-specific adaptation of anti-spoofing models
[30].
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[27] F. Perronnin, J. Śanchez, and T. Mensink,Computer Vision – ECCV
2010: 11th European Conference on Computer Vision, Heraklion,
Crete, Greece, September 5-11, 2010, Proceedings, Part IV. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2010, ch. Improving the Fisher
Kernel for Large-Scale Image Classification, pp. 143–156. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-15561-1 11

[28] C. M. Bishop, “Pattern recognition,”Machine Learning, vol. 128, 2006.
[29] J. Komulainen, A. Anjos, A. Hadid, S. Marcel, and M. Pietikäinen,
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