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Abstract. We 1 present a method for face detection which uses a new
SVM structure trained in an expert manner in the eigenface space. This
robust method has been introduced as a post processing step in a real-
time face detection system. The principle is to train several parallel SVMs
on subsets of some initial training set and then train a second layer SVM
on the margins of the first layer of SVMs. This approach presents a
number of advantages over the classical SVM: firstly the training time is
considerably reduced and secondly the classification performance is im-
proved, we will present some comparisions with the single SVM approach
for the case of human face class modeling.

1 Introduction

Human face detection is one of the most important tasks of the face analysis and
can be viewed as a pre-processing step for face recognition systems. It is always
important to find a precise localization of faces in order to be able to later
recognize them. The difficulty resides in the fact that the face object is highly
deformable and its aspect is also influenced by the environmental conditions.
On the other hand, the class of objects which do not belong to the face class
is large and can not be modeled. Thus finding a model for the face class is a
challenging task. In the last years, many methods have been proposed, we give
a brief overview of the most significant of them.

A fast face detection alorithm has been proposed by Viola and Jones[1] , it
uses simple rectangular Haar-Like features boosted in a cascade structure. We
have used this fast approach as a pre-processing step in order to obtain a fast
and robust face detection system.

Then, one of the most representative approaches for the class of neural
networks–based face detectors is the work reported by Rowley et. al. in [2].
Their system has two major components: a face detector made of a scanning
window at each scale and position, and a final decision module whose role is to
arbitrate multiple detections.

Sung and Poggio have developed a clustering and distri-bution-based system
for face detection [3]. There are two main components in their system: a model
1 The authors thank the Swiss National Science Foundation for supporting this work
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of the face/non–face patterns distribution and a decision making module. The
two class distributions are each approximated by six Gaussian clusters.

A naive Bayes classifier based on local appearance and position of the face
pattern at different resolutions is described by Schneiderman and Kanade in [4].
The face samples are decomposed in four rectangular subregions which are then
projected to a lower dimensional space using PCA and quantized into a finite
set of patterns.

Osuna et. al. developed a face detector based on SVM that worked directly
on the intensity patterns [5]. A brief description of the SVM is given in this
paper also. The large scale tests they performed showed a slightly lower error
rate than the system of Sung and Poggio, while running approximately 30 times
faster.

In [6], Popovici and Thiran proposed to model the face class using a SVM
trained in eigenfaces space. They showed that even a very low dimensional space
(compared with the original input space) suffices to capture the relevant infor-
mation when used in conjunction with a powerful classifier, like a non linear
SVM. We propose here an extension of these ideas that employs a mixture of
SVMs (MSVM in the following) for better capturing the face class variability.
We use the analysis from [6] for choosing the input space of our classifier, but we
will also extend the feature vector by adding a new term that accounts for the
information lost through the PCA process. The idea of using mixture of experts
(in our case SVMs) is not new, but we will use a slightly different approach: the
final decision is taken by a SVM that is trained using the margins output by
the first layer of SVMs. In training this final SVM we penalize more the false
negative type of errors (missed faces) to favor the detection of faces. Other ways
of combining the experts can be used: for example, in [7] the EM algorithm was
used to train the experts. Later [8] replaced neural network experts by SVMs but
still trained each expert on the whole dataset. The use of parallel SVMs trained
on subsets of large scale problem has been studied in 2002 in [9]. However, the
second layer remained a neural network.

We will introduce the MSVM and we will justify its use both from a theoret-
ical perspective and a more practical one. In section 2 we will briefly review the
SVM theory and then we will describe the MSVM approach. The MSVM will
be trained on face and non face examples pre-processed by PCA, as described
on section 2.3. Finally, in sections 3 and 4 we present some experiments and
comparisons with classical SVM and we draw some conclusions.

2 Mixtures of SVMs

2.1 An overview of Classical SVM

Let us begin with a brief overview of the classical SVM algorithm. More infor-
mation about SVM can be found in [10], [11].

Let {(xi, yi)|i = 1, . . . , l} ⊂ Rn × {−1, +1} be a set of examples. From a
practical point of view, the problem to be solved is to find that hyperplane that
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correctly separates the data while maximizing the sum of distances to the closest
positive and negative points (i.e. the margin). The hyperplane is given by2:

hw,b(x) = 〈w,x〉+ b = 0 (1)

and the decision function is

f(x) = sgn(hw,b(x)) = sgn (〈w,x〉+ b) (2)

In the case of linearly separable data, maximizing the margins means to
maximize 2

‖w‖ or, equivalently, to minimize ‖w‖2, subject to yi(〈w,x〉+ b) ≥ 1.

Suppose now that the two classes overlap in feature space. One way to find the
optimal plane is to relax the above constraints by introducing the slack variables
ξi and solving the following problem (using 2-norm for the slack variables):

min
ξ,w,b

‖w‖2 + C

l∑

i=1

ξ2
i (3)

subject to yi(〈w,xi〉+ b) ≥ 1− ξi ∀i = 1, . . . , l (4)

where C controls the weight of the classification errors (C = ∞ in the separable
case).

This problem is solved by means of Lagrange multipliers method. Let αi ≥
0 be the Lagrange multipliers solving the problem above, then the separating
hyperplane, as a function of αi, is given by

hαi,b(x) =
∑

i,αi>0

yiαi〈xi,x〉+ b (5)

Note that usually only a small proportion of αi are non-zero. The training vectors
xi corresponding to αi > 0 are called support vectors and are the only training
vectors influencing the separating boundary.

In practice however, a linear separating plane is seldom sufficient. To gener-
alize the linear case one can project the input space into a higher–dimensional
space in the hope of a better training–class separation. In the case of SVM this
is achieved by using the so–called ”kernel trick”. Basically, it replaces the inner
product 〈xi,xj〉 with a kernel function K(xi,xj). As the data vectors are in-
volved only in this inner products, the optimization process can be carried out
in the feature space directly. Some of the most used kernel functions are:

the polynomial kernel K(x, z) = (〈x, z〉+ 1)d (6)

the RBF kernel K(x, z) = exp(−γ‖x− z‖2) (7)

2.2 Mixture of SVMs (MSVM)

SVM techniques are well known since a few years for many reasons, among
them their generalization capabilities. However, as explained in the previous
2 We use 〈·, ·〉 to denote the inner product operator
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subsection, training a SVM usually requires solving a quadratic optimization
problem, which means it also varies quadratically with the number of training
examples. We know by experience that because of the large variability of both
face and non face classes, building a face detection system requires a large amount
of examples. So in order to make easier the training of the SVM (in term of
training time) we use a parallel structure of SVMs similar to the one introduced
in [9]. A first part of the dataset is splitted and clustered and each cluster is
used to train each SVM of the first layer. And then the remaining example are
used to train a second layer SVM, based on the margins of the first layer SVMs.
Basically, the input space for the 2nd layer SVM is the space of margins generated
by the 1st layer SVMs. We can represent the output of such a mixture of M + 1
experts as follows:

hαi,b(x) =
∑

i,αi>0

yiαiK(mi(xi),m(x)) + b (8)

where m(x) is the vector of margins output by the M SVMs in the first layer
given the input x.

Assuming that we want to train M SVMs in the first layer, we will need
M + 1 training sets (an additional one is used to train the second layer SVM) -
see figures 1. We use two different approaches for generating the M + 1 subsets.
One consists of a random partitioning of the original training set. The second
one is more elaborated: we first randomly draw a sample that will be used for
training the second layer and then we use a clustering algorithm, like k-Means[12]
, for building the M subsets needed for training the first layer SVM.

In both cases we train each SVM-L1-i using a cross-validation process to
select the best parameters then we use the M + 1-th dataset for training the
second layer SVM (SVM-L2): we let each of SVM-L1-i to classify the examples
from this dataset and we take the margins output by the SVM-L1-i as input for
SVM-L2. The margin can be seen as a measure of confidence in classifying an
example, so, in some sense, the second layer SVM learns a non linear function
that depends on the input vector and which assembles the confidences of each
individual expert.

From a practical point of view, we have decomposed a problem of O(N2)
complexity in M + 1 problems of O(d N

M+1e2) complexity. As N >> M this de-
composition is clearly advantageous, and has the potential of being implemented
in parallel, reducing even more the training time. Another issue that should be
mentionned here is related to the robustness of the final classifier. In the case
of a single SVM, if the training set contains outliers or some examples heav-
ily affected by noise, its performance can be degraded. However, the chances of
suffering from such examples are less important in the case of MSVM.

2.3 Construction of the Eigenfaces

As we use a large number of examples, we use Principal Component Analy-
sis(PCA) to decrease the dimensionality of the image space. We first recall the
definition of PCA and then we will discuss some possible improvements.
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Fig. 1. Training of the SVMs of the first ans second layer.

Principal Component Analysis (PCA) and Eigenfaces Let x1, . . . ,xl ∈
Rn be a set of n−dimensional vectors and consider the following linear model
for representing them

x = W(k)z + µ (9)

where W(k) is a n × k matrix, z ∈ Rk and µ ∈ Rn. For a given k < n, the
PCA can be defined ([13]) as the transformation W(k) whose column vectors
wj , called principal axes, are those orthonormal axes onto which the retained
variance under projection is maximal. It can be shown that the vectors wj are
given by the dominant k eigenvectors of the sample covariance matrix3 S =
1
l

∑
l(xi − µ)(xi − µ)′ such that Swj = λwj and where µ is the sample mean.

The vector zi = W ′
(k)(xi−µ) is the k−dimensional representation of the observed

vector xi. The projection defined by PCA is optimal in the sense that amongst
the k−dimensional subspaces, the one defined by the columns of W(k) minimizes
the reconstruction error

∑
i ‖xi − x̂i‖2 where x̂i = W(k)zi + µ.

Now let us view an image as a vector in Rn space by considering its pixels in
lexicographic order. Then the PCA method can be applied to images as well, and
in the case of face images the principal directions are called eigenfaces [14],[15].
Some details about the estimation of the eigenfaces space dimensionality such
as classification in eigenfaces space using SVMs are shown in [6].

Distance From Feature Space (DFFS) Traditionally, the distance between
a given image and the class of faces has been decomposed in two orthogonal
components: the distance in feature space (corresponding to the projection onto
the lower dimensional space) and the distance from feature space (DFFS) (ac-
counting for the reconstruction error).

DFFS =
√
‖x− µ‖2 − ‖z‖2 (10)

Given this and considering that the DFFS still contains some useful information
for classification, we can improve the discrimination power by adding the value
3 We denote with a prime symbol the transpose of a matrix or a vector.
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of the DFFS to the projection vector. Thus considering that we keep 85% of total
variance with the k first eigenvectors, we use the following vectors to perform
the classification.

X = (x1, . . . , xk, xk+1), (11)

where x1, . . . , xk represent the projection onto the k− dimensional eigenfaces
space and xk+1 the DFFS.

3 Experiments and results

Our experiments have been based on images from the BANCA [16] and the
XM2VTS[17] databases for the faces whereas the non faces examples were chosen
by bootstrapping on randomly selected images. In order to test the accuracy and
the validity of the method, we have used a dataset as follows: A training set made
of 8256 faces and 14000 non face examples, all images with the fixed size 20×15
pixels. The validation set had 7822 faces and 900000 non faces of the same size.
We first tried to find a coherent PCA decomposition before training the SVMs.
The PCA reduces the dimensionality of the input space but also the eigenfaces
proved to be more robust features in real-world applications than the raw pixel
values.

We first estimated the dimensionality of the eigenfaces space that we need to
keep 85% of total variation. For this we have estimated the number of examples
from which the eigenfaces space has a stable dimensionality for keeping 85% of
total variation. So we performed the PCA decomposition on a randomly selected
part of the training set and from the 300-dimensional input space we kept only
17 eigenfaces. As explained earlier, the vector used for the classification task is
made by adding the DFFS value to the projection onto the eigenfaces space.

Then, the face training set has been splitted into 2 subsets. The first part,
containing 5000 examples, has been splitted into 5 subsets, either by clustering or
by random sampling. We trained the SVM-L1-i on these 5 subsets, each combined
with 2000 negative examples and the remaining subset (3000 faces and 4000 non
faces) was passed through all the trained SVM-L1-i.The output margins were
used to train the second layer SVM. Table 1 shows the classification results on
the validation set for each SVM.

Using the random sampling for generating the training sets for the first layer
has the advantage of reducing the importance of outliers or unusual examples,
but leads to SVMs that need more support vectors for good performances. On
the other hand, using k-Means clustering leads to SVMs that perform like experts
on their own domain, but whose common expertise should cover the full domain.

It is interesting to see that the MSVM has better generalization capabilities
than a single SVM trained on the initial dataset. This result shows that as ex-
plained in section 2, MSVM does not only give improvements in term of training
time but also in term of classification performances. We can also notice the im-
portance of the SVM-L2: The TER (Total error rate) has been improved from
a single SVM but it is really more interesting for face detection as it improves
the true positive rate (even if the false positive rate is degraded). Just recall
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Faces(%) NonFaces(%)Classifier
r.s. k-m r.s. k-m

SVM-L1-1 86.23 76.47 99.00 98.86

SVM-L1-2 84.91 82.32 99.00 97.68

SVM-L1-3 85.13 81.23 99.02 98.77

SVM-L1-4 84.64 77.12 99.13 99.12

SVM-L1-4 85.66 74.29 99.12 99.12

SVM-L2 93.60 95.37 98.14 96.43

Table 1. Performances on the validation set for both random sampling (r.s.) and
k-Means clustering (k-m).

Classifier Faces(%) Non Faces(%) Total No SV

MSVM,r.s 93.60 98.14 1673

MSVM,k-m 95.37 96.43 1420

Single SVM 92.8 99.52 2504

Table 2. Comparison between MSVM with random sampling (MSVM,r.s), MSVM
with k-Means clustering (MSVM,k-m) and a single SVM trained on the complete train-
ing set.

that in the face detection world, we often want to detect a maximum number
of faces even if some non face examples are misclassified. Another advantage
of this method compadred to the single SVM trained on the complete dataset
is that the total number of support vectors (last column in table2) is radically
inferior in the case of MSVM. This emphasizes the gain of time and computation
complexity given by the MSVM.

4 Conclusions

In this paper we presented a method for face class modeling using mixtures
of SVMs. This approach presents an extension to the SVM technique which
allows a better use of particularly large datasets. We have used this mixture of
experts approach in the context of face detection using a PCA decomposition
and then adding the DFFS to the features in order to decrease the information
loss through the PCA process. We have proposed here a mixture of SVMs made
of several SVMs in a first layer trained on independent subsets of the initial
dataset and a second layer trained on the margins predicted by the first layer
SVMs given another independent subset. It has been shown that this structure
allowed a significant improvement from the single SVM trained on the complete
database. On the first hand, the training time is largely reduced because of the
parallel structure and the splitting of the original subset, and on the other hand,
the discrimination capabilities are improved because of the possible presence of
noise and outliers in the dataset. In order to have a structure more adapted to
the datasets, we are now working on more specialized experts, for example by
using a clustering in eigenfaces space based on a more appropriated metrics.



8

References

1. Paul Viola and Michael Jones, “Rapid object detection using a boosted cascade
of simple features,” in Proceedings IEEE Conf. on Computer Vision and Pattern
Recognition, 2001.

2. Henry A. Rowley, Shumeet Baluja, and Takeo Kanade, “Human face detection in
visual scenes,” in Advances in Neural Information Processing Systems, David S.
Touretzky, Michael C. Mozer, and Michael E. Hasselmo, Eds. 1996, vol. 8, pp.
875–881, The MIT Press.

3. Kah-Kay Sung and Tomaso Poggio, “Example-based learning for view-based hu-
man face detection,” IEEE Transaction on Pattern Analysis and Machine Intelli-
gence, vol. 20, no. 1, pp. 39–51, 1998.

4. H. Schneiderman and T. Kanade, “Probabilistic modeling of local appearance and
spatial relationship for object recognition,” in Proceedings of Computer Vision and
Pattern Recognition, 1998, pp. 45–51.

5. Edgar Osuna, Robert Freund, and Federico Girosi, “Training support vector ma-
chines: an application to face detection,” in Proceedings of Computer Vision and
Pattern Recognition, 1997.

6. V. Popovici and J.-P. Thiran, “Face Detection using SVM Trained in Eigenfaces
space,” in Proceedings of the 4th International Conference on Audio- and Video-
Based Biometric Person Authentication, 2003, pp. 925–928.

7. Robert A. Jacobs Michael I. Jordan Steven J. Nowlan and Geo rey E. Hinton,
“Adaptive mixtures of local experts,” in Neural Computation 3(1), 1991, 1991,
pp. 79–87.

8. J. T. Kwok, “Support vector mixture for classification and regression problems,” in
Proceedings of the International Conference on Pattern Recognition (ICPR), 1998,
pp. 255–258.

9. R. Collobert, S. Bengio, and Y. Bengio, “A parallel mixture of svms for very large
scale problems,” 2002.

10. Vladimir Vapnik, The Nature of Statistical Learning Theory, Springer Verlag,
1995.

11. Nello Cristianini and John Shawe-Taylor, An Introduction to Support Vector Ma-
chines and Other Kernel-Based Learning Methods, Cambridge University Press,
2000.

12. Darken, C., and Moody, J., “Fast adaptive k-means clustering: Some empirical
results,” 1990.

13. H. Hotteling, “Analysis of a complex of statistical variables into principal compo-
nents,” Journal of Educational Psychology, , no. 24, pp. 417–441, 498–520, 1933.

14. L. Sirovich and M. Kirby, “Low-dimensional procedure for the characterization of
human faces,” Journal of the Optical Society of America A, vol. 4, pp. 519–524,
1987.

15. Matthew Turk and Alex Pentland, “Eigenfaces for recognition,” Journal of Cog-
nitive Neuroscience, vol. 3, no. 1, pp. 71–86, 1991.
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