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Abstract With the emergence of new applications centered around the sharing of

image data, questions concerning the protection of the privacy of people visible in

the scene arise. In most of these applications knowledge of the identity of people in

the image is not required. This makes the case for image de-identification, the re-

moval of identifying information from images, prior to sharing of the data. Privacy

protection methods are well established for field-structured data, however, work on

images is still limited. In this chapter we review previously proposed naı̈ve and for-

mal face de-identification methods. We then describe a novel framework for the de-

identification of face images using multi-factor models which unify linear, bilinear,

and quadratic data models. We show in experiments on a large expression-variant

face database that the new algorithm is able to protect privacy while preserving data

utility. The new model extends directly to image sequences, which we demonstrate

on examples from a medical face database.

1 Introduction

Recent advances in both camera technology as well as supporting computing hard-

ware have made it significantly easier to deal with large amounts of visual data.
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This enables a wide range of new usage scenarios involving the acquisition, pro-

cessing and sharing of images. However, many of these applications are plagued by

privacy problems concerning the people visible in the scene. Examples include the

Google Streetview service, surveillance systems to help monitor patients in nursing

homes [3], and the collection and distribution of medical face databases (studying

e.g. pain [1]).

In most of these applications knowledge of the identity of people in the image is

not required. This makes the case for image de-identification, the removal of iden-

tifying information from images, prior to sharing of the data. Privacy protection

methods are well established for field-structured data [30], however, work on im-

ages is still limited. The implicit goal of these methods is to protect privacy and

preserve data utility, e.g. the ability to recognize gender or facial expressions from

de-identified images. While initial methods discussed in the literature were limited

to applying naı̈ve image obfuscation methods such as blurring [23], more recent

methods such as the k-Same algorithm provide provable privacy guarantees [14,25].

In this chapter we review the previously proposed naı̈ve and formal face de-

identification methods, highlighting their strengths and weaknesses (Section 2). The

majority of previously introduced methods operate directly on image data which

varies both with identity as well as non-identity related factors such as facial ex-

pressions. A natural extension of these methods would use a factorization approach

to separate identity and non-identity related factors to improve preservation of data

utility. However, existing multi-factor models such as the bilinear models intro-

duced by Tenenbaum and Freeman [33] or tensor models [36] require complete

data labels during training which are often not available in practice. To address this

problem we describe a new multi-factor framework which combines linear, bilin-

ear, and quadratic models. We show in experiments on a large expression-variant

face database that the new algorithm is able to protect privacy while preserving data

utility (Section 3). The new model extends directly to image sequences, which we

demonstrate on examples from a medical face database (Section 4).

2 Related Work

The vast majority of previously proposed algorithms for face de-identification fall

into one of two groups: ad-hoc distortion/surpression methods [7,10,18,23,24] and

the k-Same [14, 25] family of algorithms implementing the k-anonymity protection

model [30]. We describe both categories of algorithms along with their shortcom-

ings in this section.
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Fig. 1 Examples of applying the naı̈ve de-identification methods blurring and pixelation to images

from the CMU Multi-PIE database [15].

2.1 Naı̈ve De-Identification Methods

Following similar practices in traditional print and broadcasting media, image dis-

tortion approaches to face de-identification alter the region of the image occupied

by a person using data surpression or simple image filters. These ad-hoc methods

have been discussed numerous times in the literature [7, 10, 18, 23, 24], often in the

context of computer supported cooperative work (CSCW) and home media spaces

where explicit user control is desired to balance between privacy and data utility.

Image filtering approaches use simple obfuscation methods such as blurring

(smoothing the image with e.g. a Gaussian filter with large variance) or pixelation

(image subsampling) [7,24]. See Figure 1 for examples. While these algorithms are

applicable to all images, they lack a formal privacy model. Therefore no guarantees

can be made that the privacy of people visible in the images is actually protected.

As a consequence naı̈ve de-identification methods neither preserve privacy nor data

utility as results presented in the next section show.

Work on privacy protection in video surveillance scenarios favors data suppres-

sion. Systems typically determine the region of interest in the image through varying

combinations of standard computer vision techniques such as background subtrac-

tion [29, 35], object tracking [39], and in some cases face detection [27, 37]. Ap-

proaches proposed in the literature then differ in which area of the object to mask

such as the face [8,21], the silhouette (thereby preserving the body shape) [20,31,38]

or the entire bounding box covering the person [12,38]. The amount of information

transmitted can be further reduced by only indicating the position of the person in

the image by e.g. a dot and replacing the image area occupied by the person in the

original image with static background in the de-identified image [20]. An alterna-
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(a) Blur (b) Pixelation

Fig. 2 Manual parrot recognition for both blurred and pixelated images. Instead of comparing

de-identified images in the probe set with original images in the gallery we apply the same trans-

formation to the gallery images prior to PCA recognition. This was termed parrot recognition by

Newton et al. [25]. For both de-identification algorithms, recognition rates drastically improve,

thereby demonstrating the vulnerability of both privacy protection algorithm to this attack.

tive approach in the video surveillance space which provides some user control on

the amount of distortion applied in the image was proposed by Dufaux et al. [11].

Following background subtraction the regions of interest in the image are distorted

by scrambling the coefficients used to encode the areas in a Motion JPEG 2000 [32]

compressed video sequence. The magnitude of change is controlled by the number

of altered coefficients.

2.2 Defeating Naı̈ve De-Identification Methods

While naı̈ve de-identification algorithms such as blurring and pixelation have been

shown to successfully thwart human recognition [7,40] they lack an explicit privacy

model and are therefore vulnerable to comparatively simple attacks. A very effec-

tive approach to defeat naı̈ve de-identification algorithms was proposed by Newton

et al. as (manual) parrot recognition [25]. Instead of comparing de-identified images

to the original images (as humans implicitly or explicitly do), parrot recognition ap-

plies the same distortion to the gallery images as contained in the probe images

prior to performing recognition. As a result, recognition rates drastically improve,

in effect reducing the privacy protection offered by the naı̈ve de-identification algo-

rithms.

We demonstrate this empirically using frontal images from 228 subjects from the

CMU Multi-PIE database [15] displaying neutral, smile, and disgust expressions.

Images are shape normalized using manually established Active Appearance Model

labels [9,22] (see Figure 1). We then build Principle Component Analysis [19] bases

on a small subset of the data (68 subjects representing 30% of the data) and encode
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Fig. 3 Automatic parrot recognition for pixelation. We automatically determine the degree of pix-

elation applied to probe images by determining the size of blocks of equal (or approximately equal)

pixel intensities in the image. The same pixelation is then applied to gallery images prior to PCA

recognition. The resulting recognition accuracy is identical to the accuracy achieved if ground-truth

knowledge of the correct pixelation degree is assumed.

the remainder of the data using these basis vectors. With the neutral face images

as gallery and smile and disgust images of varying blur and pixelation levels as

probes1 we compute recognition rates using a whitened cosine distance, which has

been shown to perform well in face PCA spaces [4]. In Figure 2 we compare accu-

racies for relating de-identified to original images with parrot recognition rates. For

both blurring and pixelation, parrot recognition rates are significantly higher than

the original de-identification rates. For low parameter settings of either algorithm,

parrot recognition performs even better than using original, unaltered images in both

gallery and probe. This is likely due to a reduction in image noise in de-identified

images.

In the experiments for Figure 2 knowledge of the amount of blurring or pixelation

present in the probe images was used to de-identify the gallery images with the same

amount. This information, however, can be extracted directly from the de-identified

probe images for an automatic parrot attack. In the case of pixelation we simply

determine the size of blocks of equal (or approximately equal) pixel intensities in

the image. As shown in Figure 3 the resulting recognition rates are identical to the

manual procedure. A similar procedure can be applied in the case of blurring by

analyzing the frequency spectrum of the de-identified images.

1 The gallery contains images of known subjects. The probe images are compared against the

gallery to determine the most likely match [26].
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Fig. 4 Overview of the k-Same algorithm. Images are de-identified by computing averages over

the closest neighbors of a given face in H and adding k copies of the resulting average to Hd .

2.3 k-Same

The k-Same family of algorithms [14,16,25] implement the k-anonymity protection

model [30] for face images. Given a person-specific2 set of images H = {I1, . . . ,IM},
k-Same computes a de-identified set of images Hd = {Id

1 , . . . ,I
d
M} in which each Id

i

indiscriminately relates to at least k elements of H. It can then be shown that the

best possible success rate for a face recognition algorithm linking an element of Hd

to the correct face in H is 1
k
. See [25] for details. k-Same achieves this k-anonymity

protection by averaging the k closest faces for each element of H and adding k copies

of the resulting average to Hd . See Figure 4 for an illustration of the algorithm.

While k-Same provides provable privacy guarantees, the resulting de-identified

images often contain undesireable artifacts. Since the algorithm directly averages

pixel intensity values, even small alignment errors of the underlying faces lead to

“ghosting” artifacts. See Figure 5(a) for examples. To overcome this problem we

introduced a model-based extension to k-Same, referred to as k-Same-M in [16].

The algorithm fits an Active Appearance Model (AAM) [9, 22] to input images and

then applies k-Same on the AAM model parameters. The resulting de-identified

images are of much higher quality than images produced by k-Same while the same

privacy guarantees can still be made. See Figure 5(b) for examples.

k-Same selects images for averaging based on raw Euclidean distances in im-

age space or Principal Component Analysis coefficient space [25]. In order to use

additional information during image selection such as gender or facial expression

labels we introduced k-Same-Select in [14]. The resulting algorithm provides k-

anonymity protection while better preserving data utility. See Figure 6 for examples

images from the k-Same and k-Same-Select algorithms.

The k-Same family of algorithms [14, 16, 25] implement the k-anonymity pro-

tection model [30] for face images. Given a person-specific3 set of images H =
{I1, . . . ,IM}, k-Same computes a de-identified set of images Hd = {Id

1 , . . . ,I
d
M} in

2 In a person-specific set of faces each subject is represented by no more than one image.
3 In a person-specific set of faces each subject is represented by no more than one image.
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Fig. 5 Examples of de-identified face images. Faces shown in (a) were de-identified using the

appearance-based version of k-Same. Due to misalignments in the face set, ghosting artifacts ap-

pear. Faces in (b) were de-identified using k-Same-M, the model-based extension of k-Same. In

comparison, the images produced by k-Same-M are of much higher quality.

which each Id
i indiscriminately relates to at least k elements of H. It can be shown

that the best possible success rate for a face recognition algorithm linking an element

of Hd to the correct face in H (independent of the algorithm used) is 1
k
. See [25] for

details. k-Same achieves k-anonymity protection by averaging the k closest faces for

each element of H and adding k copies of the resulting average to Hd . In order to

use additional information during image selection such as gender or facial expres-

sion labels, k-Same-Select was introduced in [14]. The resulting algorithm provides

k-anonymity privacy protection while preserving data utility as evidenced by both

gender and facial expression recognition experiments.

While k-Same provides adequate privacy protection, it places strong restrictions

on the input data. The algorithm assumes that each subject is only represented once

in the dataset, a condition that is often not met in practice, especially in video se-

quences.
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Original k = 2 k = 3 k = 5 k = 10 k = 20

(a) k-Same

Original k = 2 k = 3 k = 5 k = 10 k = 20

(b) k-Same-Select

Fig. 6 Examples of applying k-Same and k-Same-Select to expression variant faces. Since k-Same-

Select factors facial expression labels into the image selection process, facial expressions are pre-

served better (notice the changing expression in the first row). Both algorithm provide k-anonymity

privacy protection.

2.4 Shortcomings of the k-Same Framework

k-Same assumes that each subject is only represented once in the dataset H, a con-

dition which is often not met in practice. Since k-Same uses the nearest neighbors of

a given image during de-identification, the presence of multiple images of the same

subject in the input set can lead to lower levels of privacy protection. To demonstrate

this we report results of experiments on the Multi-PIE database [15]. Each face in

the dataset is represented using the appearance coefficients of an Active Appearance

Model [9, 22]. Recognition is performed by computing the nearest neighbors in the

appearance coefficient space. In the first experiment we employ images of 203 sub-

jects in frontal pose and frontal illumination, displaying neutral, surprise, and squint

expressions. In the second experiment we use images of 249 subjects recorded in

frontal pose, displaying neutral expressions. Images of five illumination conditions

per subject are included in the dataset. In either case, k-Same fails to provide ad-

equate privacy protection. Figure 7 shows face recognition accuracies for varying

levels of k. For the expression-variant dataset, accuracies stay well above the 1
k

rate

guaranteed by k-Same for datasets with single examples per class (see Figure 7(a)).

The same observation holds for the illumination-variant dataset for low k values (see

Figure 7(b)). We obtain similar results even when class information is factored into

the k-Same de-identification process. We can conclude that k-Same does not pro-

vide sufficient privacy protection if multiple images per subject are included in the

dataset.

k-Same operates on a closed face set H and produces a corresponding de-

identified set of faces Hd . Many potential application scenarios for de-identification

techniques involve processing individual images or sequences of images. k-Same is
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(a) k-Same on expression-variant face data (b) k-Same on illumination-variant face data

Fig. 7 Recognition performance of k-Same on image sets containing multiple faces per subject. (a)

shows recognition accuracies after applying k-Same to a subset of the CMU Multi-PIE database

containing multiple expressions (neutral, surprise, and squint) of each subject. (b) shows recog-

nition accuracies after applying k-Same on an illumination-variant subset of Multi-PIE. For both

datasets recognition accuracies exceed 1
k
, indicating lower levels of privacy protection.

not directly applicable in these situations. Due to the definition of k-Same, exten-

sions for open-set de-identification are not obvious.

3 Multi-Factor Face De-Identification

To address the shortcomings of the k-Same framework described in Section 2.4 we

proposed a multi-factor framework for face de-identification [13, 17], which unifies

linear, bilinear, and quadratic models. In our approach we factorize input images

into identity and non-identity factors using a generative multi-factor model. We then

apply a de-identification algorithm on the combined factorized data before using

the bases of the multi-factor model to reconstruct de-identified images. See Figure

8 for on overview. In the following we first define our unified model (Section 3.1).

We then describe two fitting algorithms, the alternating and joint fitting algorithm

and compare their performance on synthetic data (Section 3.2). In Section 3.3 we

describe how to extend the model to include additional constraints on basis and

coefficient vectors. We present results from an evaluation of the algorithm on a face

de-identification task in Section 3.4.

3.1 Reconstructive Model

We define the general model M for data dimension k as
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FACTORIZATION

RECONSTRUCTION

Generative
Multi-Factor

Model
RECOGNITIONDE-IDENTIFICATION

Identity

Factors

Non-Identity

Factors

De-Identified Images

Input Images

Fig. 8 Overview of the combined framework for face de-identification introduced in this thesis.

Input images are factorized into identity and non-identity components using a generative multi-

factor model. The resulting identity parameters could be used for face recognition (red arrows)

or, together with the non-identity parameters for face de-identification (blue arrows). After de-

identification, the bases of the multi-factor model are used to produce de-identified images.

Mk(µ,B1
,B2
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,Q2;c1,c2) =

(1 cT
1 cT

2 )




µk B2
k 0
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k Wk Q1
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︸ ︷︷ ︸

Ω k





1

c2

c1





(1)

with mean µ , linear bases B1
,B2, bilinear basis W, quadradic bases Q1

,Q2, and

coefficients c1 and c2. c1 ∈ R
r1

,c2 ∈ R
r2

,µ ∈ R
d
,B1 ∈ R

d×r1 with B1
k ∈ R

1×r1 ,

B2 ∈ R
d×r2

,Wk ∈ R
r1×r2

,Q1
k ∈ R

r1×r1
,Q2

k ∈ R
r2×r2 . To avoid redundancy, Q1

,Q2

could be either symmetric or upper triangular. Here we choose upper triangular.

While Eqn. (1) defines a quadratic model, it in fact contains lower-dimensional

linear, bilinear and quadratic models as special cases. To illustrate this we set W =
Q1 = Q2 = 0 and obtain
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MLin
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the linear model in c1 and c2. Similarly, for Q1 = Q2 = 0 we obtain the bilinear

model

MBilin
k (µ,B1

,B2
,W,0,0;c1,c2) =

=
(1 cT

1 cT
2 )




µk B2
k 0

B1
k Wk 0

0 0 0









1

c2

c1





= µk + cT
1 B1

k +B2
kc2 + cT

1 Wkc2

Mixtures of the components yield model combinations, i.e. mixed linear and bilin-

ear, mixed bilinear and quadratic, etc. The model as defined in Eqn. (1) is ambigu-

ous, i.e. there exists transformations of c1
,c2

, and Ω k that produce identical data

vectors. See [17] for more details.

3.2 Model Fitting

The goal of fitting is to compute the parameters that minimize the model reconstruc-

tion error for a given training data set d = [d1 . . .dn]:

argmin
Γ ,C1,C2

n

∑
l=1

‖M(Γ ;c1(l),c2(l))−dl‖
2
2 (2)

with the bases Γ =(µ,B1
,B2

,W,Q1
,Q2) and coefficients C1 =(c1(1), . . . ,c1(n)),C2 =

(c2(1), . . . ,c2(n)).
For the linear model MLin the corresponding minimization problem is

argmin
B,C

n

∑
l=1

‖MLin(B;c(l))−dl‖
2
2 (3)

where we combined the separate bases B1
,B2 into B and the coefficients C1,C2 into

C = (c(1), . . . ,c(n)). Eqn. (3) can be minimized efficiently by using PCA (see e.g.

[5]). This, however, is not the only way. Assuming initial parameter estimates B0 and

C0 we can minimize the expression in Eqn. (3) by alternating between computing

updates ∆B that minimize ‖MLin(B0 +∆B;C)−D‖2
2 and updates ∆C that minimize

‖MLin(B0;Co + ∆C)−D‖2
2 [34]. Both equations are linear in their unknowns and
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The Alternating Fitting Algorithm

Initialization

Randomly initialize µ,B1
,B2

,W,Q1
,Q2;C1,C2

Iterate

(I1) Compute ∆Γ in

argmin∆Γ ‖M(Γ +∆Γ ;C1,C2)−D‖2
2

Update Γ ← Γ +∆Γ
(I2) Compute ∆C1 in

argmin∆C1
‖M(Γ ;C1 +∆C1,C2)−D‖2

2

Update C1← C1 +∆C1

(I3) Compute ∆Γ C2 in

argmin∆C2
‖M(Γ ;C1,C2 +∆C2)−D‖2

2

Update C2← C2 +∆C2

Fig. 9 The alternating fitting algorithm.

The Joint Fitting Algorithm

Initialization

Randomly initialize µ,B1
,B2

,W,Q1
,Q2;C1,C2

Iterate

(I1) Compute ∆ = (∆Γ ,∆C1,∆C2) in

argmin∆ ‖M(Γ +∆Γ ;C1 +∆C1,C2 +∆C2)−D‖2
2

Update Γ ← Γ +∆Γ
Update C1← C1 +∆C1

Update C2← C2 +∆C2

Fig. 10 The joint fitting algorithm.

can therefore be solved directly. In the case of linear models this alternated least

squares algorithm has been shown to always converge to the global minimium [2].

PCA does not generalize to bilinear or quadratic models, however the alternat-

ing algorithm does. (Note that for bilinear models and fully labeled data, the iter-

ative Tenenbaum-Freeman algorithm can be used [33]). We can minimize Eqn. (2)

by solving separately in turn for updates ∆Γ , ∆C1, and ∆C2. See Figure 9.

In each case the corresponding minimization problem is linear in its unknowns

and can therefore be solved directly. In order to e.g. compute the basis update

∆Γ we compute argmin∆Γ ‖E−T∆Γ ∆Γ ‖2
2, with the current reconstruction error

E = D−M(Γ ;C1,C2) and the constraint matrix TΓ . ∆Γ can be computed in closed

form as ∆Γ = (TT
Γ TΓ )−1TT

Γ E. ∆C1 and ∆C2 are computed in a similar manner.

While the alternating algorithm works well for linear models it has issues for

higher-order models. The linearization into separate component updates ignores the

coupling between the bases Γ and coefficients C1,C2. As a consequence the algo-

rithm is more prone to local minima (see results in Section 3.4). To improve perfor-

mance we propose to jointly solve for updates to all parameters at the same time.
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Fig. 11 Comparison of the covergence frequency for the alternating and joint fitting algorithm on

synthetic data. The fitting algorithms are initialized with ground-truth data perturbed by noise of

varying magnitude. Results are shown for different model configurations combining the mean (M),

linear (L), bilinear (B), and quadratic (Q) components. The joint fitting algorithm is more robust

as shown by higher frequencies of convergence across models and initial perturbations.

By dropping second order terms and reorganizing components we can transform the

minimization problem argmin∆Γ ,∆C1,∆C2
‖M(Γ +∆Γ ;C1 +∆C1,C2 +∆C2)−D‖2

2

into a similar form as above:

argmin
∆Γ ,∆C1,∆C2

‖E−TΓ ,C1,C2





∆Γ

∆C1

∆C2



‖2
2 (4)

with E = D−M(Γ ;C1,C2) and the constraint matrix TΓ ,C1,C2
. Figure 10 summa-

rized the algorithm. See [13] for details.

In order to compare the performance of the alternating and joint fitting algorithms

we use synthetic data with known ground-truth. We randomly generate bases and

coefficient matrices (drawn from a zero mean, unit variance normal distribution) and

perturb both with varying amounts of noise before initializing the fitting algorithm.

For each noise level the bases and coefficients are then normalized to ensure that

all models are initialized at the same reconstruction error. We evaluate the fitting

algorithms by comparing the ground-truth models with the fitted models.

In all experiments we report results averaged over five different ground-truth set-

tings with three different initialization settings each for a total of 15 experiments

for every model and fitting algorithm. We run every algorithm until convergence

(normalized ground-truth error falls below a threshold) or a maximum of 150 itera-

tions, whichever comes first. Figure 11 compares the frequency of convergence for

different variations of the joint and alternating fitting algorithms for different initial

reconstruction errors. Across all conditions, the joint fitting algorithm performs bet-
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ter than the alternating algorithm. For the combined linear, bilinear and quadratic

model (M+L+B+Q) the joint algorithm converges in 80% of all cases whereas the

alternating algorithm only converges in 61% of trials. The difference is even larger

for the combined linear and bilinear model (M+L+B) where the joint algorithm con-

verges in 96.2% of all trials compared to 68.6% for the alternating algorithm. The

joint fitting algorithm also converges faster, requiring on average 8.7 iterations in

comparison to 86.7 iterations for the alternating algorithm (for an initial ground-

truth error of 20.0).

3.3 Multi-Factor Models with Constraints

The joint fitting algorithm described in Section 3.2 computes bases and coefficients

iteratively by minimizing the model reconstruction error for a given training dataset.

See Eqn. (2). While the resulting model succeeds at reconstructing the data, no other

properties (e.g. affinity of class coefficients, basis orthonormality) are enforced. In

order to accomplish this we add further constraints to the energy function on the

coefficients, the bases or both. We then strive to compute

argmin
Γ ,C1,C2

n

∑
l=1

‖M(Γ ;c1(l),c2(l))−dl‖
2
2 +

+ λ1Θ1(C1,C2)+λ2Θ2(Γ ) (5)

where Θ1 and Θ2 refer to sets of constraints. The parameters λ1 and λ2 balance the

magnitude of the terms.

Let S1 = {s1
1, . . . ,s

1
m1
}, S2 = {s2

1, . . . ,s
2
m2
} be sets of coefficient indices of ele-

ments in C1 and C2, respectively, for which we want to enforce equality. We then

strive to compute

argmin
Γ ,C1,C2

n

∑
l=1

‖M(Γ ;c1(l),c2(l))−dl‖
2
2 +

+ λ11 ∑
s1
i
,s1

j
∈S1

s1
i
6=s1

j

‖c1(s
1
i )− c1(s

1
j)‖

2
2 +

+ λ12 ∑
s2
i
,s2

j
∈S2

s2
i
6=s2

j

‖c2(s
2
i )− c2(s

2
j)‖

2
2 (6)

Linearalizing the expression in Eqn. (6) as described in Section 3.2 leads to
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argmin
∆Γ ,∆C1,∆C2

‖ERE −TΓ ,C1,C2





∆Γ

∆C1

∆C2



‖2
2 +

+ λ11‖EC1
−TS1

∆C1‖
2
2

+ λ12‖EC2
−TS2

∆C2‖
2
2 (7)

with the reconstruction error ERE = D−M(Γ ;C1,C2), the coefficient constraint er-

ror for C1 (C2 is defined analogously)

EC1
=





c1(s
1
i1
)− c1(s

1
i2
)

. . .

c1(s
1
im−1

)− c1(s
1
im

)



 (8)

and the coefficient constraint matrices TS1
,TS2

. The problem defined in Eqn. (7)

can be solved as constraint least squares problem with linear equality constraints

(see e.g. [6]). To do so we stack the components of Eqn. (7) and compute

argmin
∆Γ ,∆C1,∆C2

‖

(
ERE

λ11 ∗EC1

λ12 ∗EC2

)

− (9)

−





TΓ ,C1,C2

0 λ11 ∗TS1
0

0 0 λ12 ∗TS2









∆Γ

∆C1

∆C2



‖2
2

The solution to Eqn. (9) can be computed in the same way as the solution to the

unconstrained least squares problem. Since the coefficient constraints are added in-

dividually and independently for the factors c1 and c2, the framework enables semi-

supervised learning (see [17]). Constraints on the basis vectors can be enforced in a

similar fashion.

3.4 Experiments

In order to evaluate the multi-factor model proposed in Section 3.3 we use a sub-

set of the CMU Multi-PIE face database [15] containing 100 subjects displaying

neutral, smile and disgust expressions in frontal pose and with frontal illumination.

The images were captured within minutes of each other as part of a multi-camera,

multi-flash recording. We normalize the face images by manually establishing facial

feature point labels, computing an Active Appearance Model [9,22] over the dataset,

and extracting the appearance parameters for all images. We compare privacy pro-

tection and data utility of the (ε,k)-map algorithm [13] using two different data rep-

resentations: the original AAM appearance parameters and the combined c1 and c2

parameters extracted from a combined linear and quadratic model. The (ε,k)-map

algorithm is a probabilistic extension of the k-Same algorithm described in Section

2.3. For both representations we de-identify the data, reconstruct the (normalized)
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Fig. 12 Privacy-Data Utility map of the (ε,k)-map algorithm using original and multi-factor rep-

resentations. We show PCA face recognition and SVM facial expression classification rates for

different values of the privacy parameter k. Usage of the multi-factor representation (MF (ε,k)-
map) results in higher expression classification accuracies than the original representation while

providing similar privacy protection. As comparison we also show results for image blurring.

image and compute recognition rates using a whitened cosine distance PCA classi-

fier [4] with the de-identified images as probe and the original images as gallery. We

evaluate the utility of the de-identified images by computing facial expression clas-

sification rates using a SVM classifier (trained on independent original images) [28].

Figure 12 plots the results of both experiments for varying values of k for the origi-

nal and multi-factor representations. Across all values of k, expression classification

on de-identified images based on the multi-factor representation yields better recog-

nition rates while providing the same privacy protection. As comparison, results for

simple blurring of the images are included as well. Figure 13 shows examples of

smile images de-identified using the proposed framework.

4 Conclusion and Future Work

In this chapter we provided an overview of face de-identification. We described pre-

viously proposed naı̈ve as well as formal de-identification algorithms and illustrated

their shortcomings. We then introduced a novel de-identification framework using

multi-factor models and demonstrated that the algorithm protects privacy (as mea-

sured by face recognition performance) while preserving data utility (as measured

by facial expression classification performance on de-identified images).

The multi-factor de-identification algorithm described here operates on single

images. However, since it is integrated with the Active Appearance Model frame-

work [9, 22], extension of this work to video de-identification is natural. In Figure

14 we show example frames of applying the algorithm to a video sequence from
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Original MF (ε, k)Blur

Fig. 13 Examples of smile images de-identified using the multi-factor (ε,k)-map algorithm.

Input AAM Track k-Same Multi-Factor

Fig. 14 Comparison of k-Same and multi-factor de-identification on video sequences. The multi-

factor algorithm preserves more of the data utility during de-identification as shown by e.g. the

wrinkles around the eyes of the subject.

the UNBC-McMaster Shoulder Pain Expression Archive [1]. This dataset contains

image sequences recorded of subjects after shoulder surgery who rotate either their

affected or unaffected shoulder, resulting in a range of pain expressions. We show

example images from a sequence in Figure 14, contrasting the results from applying

the multi-factor and k-Same algorithms. The multi-factor algorithm preserves more

of the data utility during de-identification as shown by e.g. the wrinkles around the

eyes of the subject.
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