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ABSTRACT With the continuous development of deep learning, face detection methods have made the

greatest progress. For real-time detection, cascade CNN based on the lightweight model is still the dominant

structure that predicts face in a coarse-to-fine manner with strong generalization ability. Compared to other

methods, it is not required for a fixed size of the input. However, MTCNN still has poor performance in

detecting tiny targets. To improve model generalization ability, we propose a Receptive Field Enhanced

Multi-TaskCascadedCNN. This network takes advantage of the Inception-V2 block and receptive field block

to enhance the feature discriminability and robustness for small targets. The experimental results show that

the performance of our network is improved by 1.08% on the AFW, 2.84% on the PASCAL FACE, 1.31%

on the FDDB, and 2.3%, 2.1%, and 6.6% on the three sub-datasets of the WIDER FACE benchmark in

comparison with MTCNN respectively. Furthermore, our structure uses 16% fewer parameters.

INDEX TERMS Face detection, cascade convolutional neural networks, receptive field.

I. INTRODUCTION

Face detection is the basis in the field of computer vision and

pattern recognition, as well as a fundamental step of face-

related research, such as face recognition [1], verification [2],

and tracking [3]. After decades of development and research,

face detection has been widely used in various aspects of

life, such as security monitoring. It has increasingly become

a research hotspot in the field of video images.

There are some widely used non-neural network-based

face detectors, such as skin-color detection, SVM classi-

fier [4]. Classic image feature extraction algorithms achieve

good accuracy with real-time efficiency for face detec-

tion. Ma et al. [5] proposed an AdaBoost-based training

method to obtain cascade classifiers with multiple feature

types: Haar-like, HOG for an improved discrimination ability.

However, this requires high computation due to contain-

ing too many weak classifiers. An algorithm based on the

Bayesian framework [6] used the Omega shape formed by

The associate editor coordinating the review of this manuscript and

approving it for publication was Mingbo Zhao .

a person’s head and shoulder for head localization to tackle

severe face occlusion. It achieves good performance in detec-

tion faces with severe occlusion, but the scene is restricted

in Automatic Teller Machines. Beyond the AdaBoost-based

methods, Mathias et al. [7] proposed face detection with

deformable part models (DPM) and obtain impressive results.

However, this method usually suffers from high computa-

tional cost. Another method [8] is proposed based on DPM

for detecting faces with occlusion. It can reduce the false-

negative face detection and error rate for detection, however,

it has poor universality for only frontal face images used in

the experiments.

In recent years, the face detection method based on a con-

volutional neural network (CNN) has made a breakthrough

and become the mainstream of the face detection method.

Several studies [9], [10] utilize deep CNN for face detec-

tion and have a better performance on face detection. Faster

R-CNN [11] and other CNN-based two-stage or one-stage

algorithms, with the help of deep convolutional networks

such as VGGNet [12] and ResNet [13], achieve superior

performance. Nevertheless, due to a surplus of convolutional
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layers, the speed of detection slows down greatly. Hence,

some models with a multi-stage face detection algorithm

that has a relatively high True Positive Rate and a real-

time speed are proposed. Wu et al., [10] proposed a funnel-

structured cascade (FuSt) detection constituted by multiple

view-specific fast LAB cascade, multiple coarse MLP cas-

cade, and a unified fineMLP cascade. Farfade et al., [14] pre-

sented a fast CNN’s cascade face detector, using a CNNwith a

novel pyramid architecture, multi-layer merging, knowledge

distilling online and offline hard sample mining.

Multi-task Cascaded Convolutional Neural Networks

(MTCNN) [9] is the dominant multi-stage and multi-task

structure in recent years. Different from generic object detec-

tion, face detection features much larger scale variations

(from several pixels to thousand pixels). Hence, the image

pyramid method adopted by MTCNN could not perform well

on faces with a high degree of variability in scale, especially

for the tiny face. The main reason lies in that the first stage,

the P-net of MTCNN which produces candidate windows

quickly through a shallow CNN, puts the limit of the per-

formance of the entire network. The shallow structure of

P-net cannot cover all the size of the receptive field to extract

the high discriminative feature with standard CNN, which

come from deeper neural networks. As the kernel of standard

convolution is sampled at the same center and commonly set

receptive field at the same size with a regular sampling grid

on a feature map, which probably induces some loss in the

feature discriminability as well as robustness.

According to the discussion above, we propose a new

model called Receptive Field EnhancedMulti-Task Cascaded

CNN (RFE-MTCNN), which integrates the ideal from the

Inception-V2 Block [15] and Receptive Field Block [16] to

build a fast yet powerful face detector with the reasonable

alternatives in a different stage of the cascade network. The

ideal is to enhance the network’s receptive field for feature

representation by bringing in certain hand-crafted mecha-

nisms rather than stubbornly deepening the model. At the

same time, we import Additive Angular Margins (AM) [17]

into Softmax to optimize loss function. Extensive experi-

ments on the Wider Face and FDDB datasets show that

the proposed method achieves state-of-the-art performance

compared with MTCNN variants.

The major contributions of this paper are summarized as

follows: (1) We propose a new face detection model RFE-

MTCNN which takes advantage of the Inception-V2 block

and receptive field block to enhance the feature discrim-

inability and robustness for small targets. (2) We use the

Global Average Pooling (GAP) to replace the second to last

fully connected layers in order to enforce correspondences

between feature maps and categories, avoid overfitting, and

reduce the network parameters. (3) The AM-Softmax loss

function is introduced to enhance the discriminability of the

R-Net.

The remainder of the paper is organized in the fol-

lowing manner. Section 2 presents the related technolo-

gies involved in this paper. Section 3 provides a detailed

description of our new proposed method of RFE-MTCNN.

In section 4, we show the experimental settings and compare

RFE-MTCNN to other state-of-the-art algorithms on FDDB,

Wider Face. Finally, the paper is drawn to the conclusion in

Section 5.

II. RELATED WORK

Inception-V2 Block [15] is composed of multiple differ-

ent branches. And the receptive field of the feature map is

enhanced by convolution kernels of different sizes. It adds

a BN layer based on Inception-V1 [18], which accelerates

the convergence speed of the network. At the same time,

two 3*3 convolutions are connected in series to replace a

5*5 convolution, and the parameter amount is reduced under

the condition that the receptive fields are the same. Compared

with Inception-V2 block, its derived structure Receptive Field

Block (RFB) [16] adopts multiple branch structures. Each

branch is constructed using a combination of conventional

convolution and dilated convolutions of different proportions.

Convolution kernels of different sizes can simulate different

sizes of the overall receiving field (pRF) [16] [13]. Its dilated

convolution layer uses a separate eccentricity to simulate the

ratio between pRF size and eccentricity. Inception-V2 has a

similar structure to RFB, and it realizes a multi-size receptive

field through a multi-branch structure. But the difference

between the two is that in the Inception-V2 structure, the con-

volution has the same sampling center. So part of the edge

informationwill be lost. But RFB exploits dilated convolution

to simulate the impact of the eccentricities of pRFs in the

human visual cortex. The kernel size and dilation have a

similar positive functional relation as that of the size and

eccentricity of pRFs in the visual cortex. The pixel in the

feature map contributes the same to the output response. The

spatial RF structure of Inception-V2 Block and RFB is shown

in Fig. 1 and Fig. 2.

FIGURE 1. Spatial RFs of inception-V2 block.

Generally speaking, object detection needs to make predic-

tions on the last layer of feature maps. And the receptive field

of the last layer of feature maps determines the upper limit of

the size that the network can detect. As usual, downsampling
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FIGURE 2. Spatial RFs of RFB.

can enhance the receptive field of the feature map, but it

makes small targets difficult to detect. Common downsam-

pling methods, such as standard convolution and pooling, can

enhance the receptive field of the feature map, but its spatial

resolution will be reduced, and the pooling operation will

lose the information of the feature map. Dilated convolution

can enhance the receptive field of the feature map without

losing information. Although it has problems such as gridding

effects, we use hybrid dilated convolution [19] to effectively

avoid this problem.

III. THE PROPOSED METHOD

Traditional MTCNN [9] uses standard convolution. As the

network depth increases, its receptive field will also increase,

which is conducive to the detection of large-sized faces, but

not conducive to the detection of small-sized faces. To solve

this problem, we use the Inception-V2 Block and its derived

Receptive Field Block (RFB) to use its multiple branches to

enhance the receptive field of the feature map.

MTCNN is a framework that integrates the face detec-

tion and face alignment tasks using unified cascaded CNNs

by multi-task learning. In MTCNN itself, it is made up of

three networks. The first network, called Proposal Network

(P-Net), mainly obtains candidate windows and their

bounding box regression vector and uses non-maximum sup-

pression (NMS) to merge the boxes that highly overlap.

The second network which is known as Refine Network

(R-Net), is employed to filter a large number of false can-

didates from P-Net and calibrates the bounding box with

regression. Last but not least, the final network with the

name Output Network (O-Net), outputs the final candidate

windows and five facial landmarks’ positions with a deeper

network.

Combining the characteristics of MTCNN and two Blocks

that enhance the receptive field, we introduced RFB in P-Net.

It enhances the deep features in the neural network and retains

the edge part of the feature map to obtain more accurate

candidate boxes. In R-Net and O-Net, the input is the face

detection candidate box of the superior network. If the candi-

date frame is the detection target, its central area contributes

a lot to the output response, so Inception-V2 Block based

on central sampling is introduced to improve the screening

ability of R-Net and O-Net to the candidate frame. At the

same time, we use the Global Average Pooling (GAP) [20]

to replace the connection layers in the last layers. In order to

enhance the discriminative ability of face classification in the

R-Net, we adapt AM-Softmax [17] to push the face /non-face

decision boundaries away from each other. Based on ablation

experiments, it is shown that the fully connected layer with

AM-Softmax in R-Net achieves better results.

A. FACE DETECTION NETWORK

Fig. 3, Fig. 4, and Fig. 5 shows the three proposed sub-

networks of RFE-MTCNN. As can be seen from the figure,

we introduced the RFB structure in P-Net. At the same time,

the Inception block was introduced in R-Net and O-Net.

Besides, maximum pooling is adopted between each block

for feature dimensionality reduction. Fig. 6 and 7 show the

RFB and Inception-V2 block, respectively.

Three tasks are used to train CNN detectors: face/non-face

classification, bounding box regression, and facial landmark

localization. For the first task of the face and non-face classifi-

cation, we use AdditiveMargin Softmax (AM-Softmax) [17],

which introduces additive margin to softmax loss function as

follows.

ϕ (θ) = cos (θ) − m (1)

Ldeti = −(ydeti · log(
es·(cos(θi)−m)

es·(cos(θi)−m) + es·cos(θi)
)

+ (1 − ydeti ) · log(
es·cos(θi)

es·(cos(θi)−m) + es·cos(θi)
)) (2)

where θi is the target angle between normalized weights and

normalized features and i denotes the i − th sample. The

hyperparameter s and m are set to 30 and 0.35 respectively,

which achieve good results in face recognition tasks [17].

The notation y
det
i denotes the ground-truth label. The margin

is enforced by subtracting m from cos (θ) rather than m

multiplied to θ , so that the derivative will not change during

backpropagation. On the other hand, the additive margin

enlarges the differences between face and background thus

making the learning of the classification task more difficult.

On the other hand, bounding box regression is formulated

in Equation 3,

Lboxi =

∥

∥

∥

ŷboxi − yboxi

∥

∥

∥

2

2
(3)

where regression target ŷboxi is obtained by the network and

yboxi is the ground-truth coordinate. Four coordinates are x, y

of the upper left corner, height and width.

Last but not least, facial landmark localization is formu-

lated as follows:

L landmarki =

∥

∥

∥

ŷlandmarki − ylandmarki

∥

∥

∥

2

2
(4)

Equation. 4 is the Euclidean loss, and facial landmark

detection is formulated as a regression problem. There are
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FIGURE 3. The architecture of P-Net.

FIGURE 4. The architecture of R-Net.

FIGURE 5. The architecture of O-Net.

FIGURE 6. The architecture of RFB.

FIGURE 7. The architecture of inception-v2 block.

five facial landmarks, including left eye, right eye, nose, left

mouth corner, and right mouth corner.

min

N
∑

i=1

∑

j∈(det,box,landmark)

αjβ
j
iL

j
i (5)

Then the overall learning target can be formulated as

Equation. 5, where N is the number of training samples.

αj denotes on the task importance and β
j
iǫ(0, 1) is the label

of the j− th sample.

B. FACE DETECTION PROCESS

The training and testing phase of RFE-MTCNN are per-

formed in the three networks, i.e., P-Net, R-Net, and O-Net.

When training the P-Net, first randomly crop images in

the dataset and resize the cropped images to 12*12. Then

determine the cropped image is a positive or negative sample

based on the Intersection over Union(IOU) ratio of the box to

ground truth. Secondly, when training the R network, detect

images in the dataset with a trained P-Net model, each image

will generate a large number of candidate windows. For each

candidate window, according to its’ IOU with ground truth,

this candidate window is determined to be a positive and neg-

ative sample. After, resize these windows to 14*14 and train

R-Net. Finally, similar to R-Net, the trained R-Net model is

used to generate candidate windows, the candidate windows

are determined to be positive and negative samples according

to its’ IOU with ground truth. Finally, resize these windows

to 48*48 and train O-Net. The steps for training the proposed

RFE-MTCNN are shown in Fig. 8.

When inference is performed, first of all, generate an image

pyramid of different scales. The candidate bounding boxes

and scores are initially obtained by P-Net. And then candidate

bounding boxes with large overlap are eliminated through

NMS. Next, merge overlapped candidates of different scales.

Secondly, detect the image with the P-Net model and convert
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FIGURE 8. The steps for training the proposed RFE-MTCNN.

FIGURE 9. The steps for face detection with RFE-MTCNN.

the detected candidate windows of the face into the square

boxes. Afterward, convert these square boxes in the original

image to new boxes starting at 0 coordinates and resize the

new boxes to 24×24. Subsequently, use the R-Net model to

detect these new boxes and get R-Net’s candidate windows

of the face and scores. After, merge overlapped candidate

windows with NMS. Finally, similar to R-Net, use the O-Net

model to detect these new boxes and output bounding boxes

and scores. The steps for face detection with RFE-MTCNN

are shown in Fig. 9, respectively.

IV. EXPERIMENTS AND RESULTS

A. DATASETS USED FOR TRAINING AND TESTING

WIDER FACE [21] dataset is a face detection benchmark

dataset, which is a challenging dataset and is widely used to

study the problem of unconstrained face detection. It contains

393,703 faces with a high degree of variability in scale, poses,

and occlusion.

CelebFaces Attributes (CelebA) Dataset [22] is a large-

scale face attributes dataset with more than 200K face images

and 10,177 identities, and 5 landmark locations per image.

Face Detection Data Set and Benchmark (FDDB) [23] is

a widely used public dataset. It contains the annotations for

5171 faces in a set of 2845 images.

Annotated Faces in the Wild (AFW) [24] Dataset contains

205 images with 473 labeled faces.

PASCAL face dataset [25] has 1335 labeled faces

in 851 images with large face appearance and pose variations.

It is collected from the PASCAL person layout test subset.

B. EXPERIMENT SETTING

1) TRAINING

We chooseWIDERFACE andCelebA as the training datasets

for training the proposed RFE-MTCNN. Similar to MTCNN,

the entire training dataset contains 215,479 images, of which

theWIDER FACE dataset has 12,880 images and the CelebA

dataset has 202,599 images. Four kinds of data annotation

are used in the training process, negatives, positives, part

faces, and landmark faces. We set the same parameter values

as MTCNN. Positives mean that the Intersection-over-Union

(IOU) ratio is more than 0.65 to a ground truth face. Part

faces are between 0.4 and 0.65. Negatives are lower than

0.3. Landmark faces label the locations of the left eye, right

eye, nose, left mouth corner, right mouth corner. We use

(classification = 1, bounding box = 0.5, landmark = 0.5)

in P-Net and R-Net, meanwhile, (classification = 1, bound-

ing box = 0.5, landmark = 1) in O-Net. These numbers

denote the importance of classification loss function, bound-

ing box regression loss function, and landmark regression

loss function.

Three networks are trained in order and the steps of training

networks are as Fig. 8. It should be noted that the trained

P-Net model is used to detect pictures to obtain the samples

when R-Net is trained, so the steps of training R-Net include

the steps of P-Net detection. Similarly, the trained R-Net

model is used to detect pictures to obtain the samples when

O-Net is trained, so the steps of training O-Net include the

steps of P-Net and R-Net detection.

2) TEST

We conduct considerable test experiments on the public-

domain face detection benchmark: FDDB dataset, Wider

Face dataset, AFW dataset, and PASCAL dataset. The steps

of face detection with RFE-MTCNN are shown in Fig. 9.

C. EXPERIMENT RESULTS

To better understand the proposed RFE-MTCNN, we con-

ducted extensive ablation experiments to examine how the

improvement of different network substructures and the intro-

duction of AM-Softmax quantitatively affect the performance

of face detection.

Table 1 shows that we conducted an ablation experiment

on the proposed model. It can be seen from the table that the

improved sub-network has a certain improvement to the entire

network, but the performance of the overall network will

also be limited to other cascaded networks. Besides, adding

the Inception-V2 Block to O-Net has the greatest improve-

ment on the network. AM-Softmax has improved network

174926 VOLUME 8, 2020



X. Li et al.: Face Detection Based on Receptive Field Enhanced MTCNN

TABLE 1. Ablation experiments of the proposed methods on FDDB
dataset.

FIGURE 10. ROC curves on FDDB database.

TABLE 2. Detection performance comparison on FDDB dataset.

performance to a certain extent. The detection performance

on the FDDB data set has been improved by 0.18%.

Fig 10 and Table 2 show the performance evaluation of our

proposed RFE-MTCNN against the state-of-the-art methods

MTCNN [9], Multiscale Cascade [26], LDCF+ [29], Hyper-

face [27], DP2MFD [28] on FDDB.We obtained its data from

the FDDB official website and evaluated the performance

of the model through the ROC curve. The horizontal axis

of the ROC curve represents False Positive (FP), and the

vertical axis represents True Positive Rate (TPR). Besides

the ROC curve, another indicator AUC is used to illustrate

the pros and cons of the model, which is defined as the area

enclosed by the ROC curve and coordinates. From the ROC

curves in Fig 10, our proposed RFE-MTCNNoutperforms the

conventional MTCNN and other state-of-the-art algorithms

for face detection. Compared with the MTCNN [9], the TPR

of our proposed method increases by 1.3% at 2000 false

positives (96.35%).

TABLE 3. Detection performance comparison on wider face.

TABLE 4. Detection performance comparison on AFW dataset.

TABLE 5. Detection performance comparison on PASCAL dataset.

On the WIDER FACE dataset, we compared the pro-

posed new network architecture with other excellent net-

works. We use the Precision-Recall (P-R) graph to measure

the performance of the model. The horizontal axis of the

P-R graph represents the recall of the model, and the verti-

cal axis represents the Precision of the model. The Average

Precision represents the area enclosed by the P-R graph and

the coordinate axis. The better the performance. WIDER

FACE has three different subsets, namely EASY, MEDIUM,

and HARD. We obtained the detection data of ACF [34],

Multiscale Cascade CNN [26], Faceness [32], LDCF+ [29],

and MTCNN [9] on the official website of WIDER FACE,

and plotted P-R diagrams. As shown in Table 3, the model

we proposed has been greatly improved on three different

subsets, especially on the HARD subset. Therefore, it can

be seen that the model has strong robustness and detection

performance.The results are shown in Fig. 11.

On the AFW and PASCAL face dataset, we compared the

proposed new network architecture with our baseline and

other excellent networks. We use the PR graph to measure

the performance of the model. It has a great performance

improvement on these two datasets. The results are shown

in Table 4 and Table 5.

Fig. 12 and Fig. 13 demonstrate some qualitative results on

common face detection benchmarks, including AFW, FDDB,

Wider Face, and PASCAL face. The experimental results

show that the proposed method has good robustness in the

real environment.

D. INFERENCE EFFICIENCY

As shown in Table 6, compared with 496k parameters in

MTCNN, the proposed network structure parameters are
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FIGURE 11. WIDER FACE Val: (a) Easy (b) Medium (c) Hard.

FIGURE 12. Qualitative results on AFW, PASCAL, and FDDB dataset.

FIGURE 13. Qualitative results on wider face.

reduced by 78k, and the detection speed reaches 26 FPS on

NVIDIA GTX 1070Ti. We use the Inception-V2 Block and

RFB to increase the reception range of the network, and use

a global average pool to replace the fully connected layer,

which reduces the number of parameters and improves the

detection performance of the network.
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TABLE 6. Comparison Of network structure parameters.

E. EXPERIMENT ENVIRONMENT

The experimental software environment is the operating sys-

tem Ubuntu 18.04, CUDA 10.0, and cudnn 7.4. The deep

learning framework is Tensorflow. The experimental hard-

ware environment is Intel Core i7 8700K processor GPU for

NVIDIA GTX 1070Ti.

V. CONCLUSION

In this paper, we propose a new face detection model

RFE-MTCNN. According to the unique cascading character-

istics of MTCNN, two different receptive field enhancement

modules are used to optimize the network structure, and

the AM-Softmax loss function is introduced to enhance the

discriminability of the network. Experimental results show

that, compared with other methods, this method has certain

advantages, can improve the accuracy of face detection, and

has fewer parameters.
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