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Face Detection on Distorted Images Augmented by

Perceptual Quality-Aware Features
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Abstract— Motivated by the proliferation of low-cost digi-
tal cameras in mobile devices being deployed in automated
surveillance networks, we study the interaction between per-
ceptual image quality and a classic computer vision task of
face detection. We quantify the degradation in performance of
a popular and effective face detector when human-perceived
image quality is degraded by distortions commonly occurring
in capture, storage, and transmission of facial images, including
noise, blur, and compression. It is observed that, within a
certain range of perceived image quality, a modest increase
in image quality can drastically improve face detection per-
formance. These results can be used to guide resource or
bandwidth allocation in acquisition or communication/delivery
systems that are associated with face detection tasks. A new
set of features, called qualHOG, are proposed for robust face-
detection that augments face-indicative Histogram of Oriented
Gradients (HOG) features with perceptual quality-aware spatial
Natural Scene Statistics (NSS) features. Face detectors trained on
these new features provide statistically significant improvement in
tolerance to image distortions over a strong baseline. Distortion-
dependent and distortion-unaware variants of the face detectors
are proposed and evaluated on a large database of face images
representing a wide range of distortions. A biased variant of the
training algorithm is also proposed that further enhances the
robustness of these face detectors. To facilitate this research,
we created a new distorted face database (DFD), containing
face and non-face patches from images impaired by a variety
of common distortion types and levels. This new data set and
relevant code are available for download and further experimen-
tation at www.live.ece.utexas.edu/research/Quality/index.htm.

Index Terms— Face detection, no reference image quality,
spatial NSS, surveillance.

I. INTRODUCTION

T
HE advent of affordable digital storage devices and

powerful, network pervasive visual data sharing websites

such as Flickr, Facebook, Instagram etc., has caused an

explosion of visual data that is being generated and shared at

an exponentially growing rate. While the principal consumers

of visual data are humans, practical machine vision deploy-

ments are becoming more commonplace. In both realms,

automated methods for culling, sharing, organizing, and under-

standing large volumes of visual content is highly desirable.
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Computer vision algorithms that aim to understand visual

content are being increasingly employed in real life applica-

tions such as image search, automated surveillance, human

computer interfaces, etc. A primary component of many

computer vision algorithms is some form of an object detec-

tion/recognition system. Such systems are often prone to

performance degradation when the quality of the input images

deteriorates. One such task that has resulted in successful

commercial embodiment is automatic face detection. Face

detection in inexpensive mobile or outdoor devices commonly

used for surveillance is often highly unconstrained and subject

to quality–destructive distortions, that can adversely affect

detection performance. Since face detection is usually a pre-

cursor to advanced tasks of recognition, expression tracking,

etc., understanding the relationship between face quality and

detectability is important.

Substantial research efforts have recently focused on the

development of automated image quality algorithms (IQA)

that aim to accurately predict end–user quality–of–experience.

These include Full Reference (FR) algorithms [1], [2],

in which the fidelity of a test image to a presumed

undistorted reference version is evaluated, No Reference (NR)

algorithms [3]–[6], which do not use any information from ref-

erence images, and the intermediate Reduced Reference (RR)

algorithms [7], [8], which use partial information available

about reference images. Among these, NR algorithms have the

greatest potential for many practical settings, since references

are seldom available. General purpose NR frameworks that

rely on models of natural statistics of images have been

recently shown to provide state–of–the–art performance in

predicting perceived image quality [4], [5], [9].

Another exciting direction of inquiry is the interaction

between visual quality and visual tasking. A small body of

work exists on how quality affects biometric tasks (iris, face,

fingerprint detection and recognition) [10]–[13]. These papers

study various image factors that affect the detection or

recognition performance. For example, ISO/IEC 19794-5 [14]

specifies a list of factors such as spectacles, pose, center-

ing, occlusion, expression, head shape, etc., that affect “face

quality”. While these do affect detection and recognition,

there is no clear distinction between scene–dependent chal-

lenges like occlusion, illumination, etc., and the challenges

imposed by traditional notions of “quality impairments” from

capture, compression, processing, transmission, etc. In this

paper, we are concerned with the latter interpretation of

“quality” as it affects face detection performance. This is

an important line of work as in many facial acquisition and

communication channels, the effects of such quality impair-
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ments on detection/recognition can often be mitigated,

e.g., by reallocating resources such as bandwidth. Further,

in spite of numerous algorithms proposed in the past few

decades [15], [16], face detection methods that are robust to

image distortions have not been widely explored.

This work is motivated by the fact that the IQA models

described above were designed to predict the perceptual qual-

ity of digital images but have not been applied to visual task

models involving faces. We explore the important question

of whether the perceptual quality of facial images is a good

predictor of the success of algorithm performance on visual

tasks. The question is quite relevant given that the human

visual apparatus is remarkably well adapted to analyzing

faces. Early works by Rouse et. al. in this direction [17]–[19]

show that perceptual FR IQA algorithms, including VIF and

SSIM, correlate strongly with “recognizing thresholds” of

human observers. However, the effects of quality on machine

vision algorithms have not been evaluated, and moreover

FR algorithms are of limited use in this regard due to the

unavailability of reference images in most practical scenarios.

A trade–off exists between ground truth image distortion

and face detection performance. In many image/video com-

munication channels, the distortion levels could be adjusted

using channel parameters to obtain a required level of face

detection performance. Therefore, we begin by investigating

the effects of different types and magnitudes of distortion

on face detection performance. However, in most practical

scenarios accurate measures of distortion types and levels is

not available. Therefore, we resort to using an easily obtainable

proxy for actual distortions, namely, the human visual-quality

aware NIQE score. Empirical studies reveal that this proxy

yields qualitatively similar results and also retains relative

performance results when compared to those provided by

using the actual distortion measures. We then show that as with

true distortion levels, over a range of objective quality scores

delivered by a high–performance NR image quality model,

moderate improvements in predicted quality can significantly

aid face detection performance.

Secondly, we show that the use of easily computable

“quality–aware” spatial Natural Scene Statistics (NSS)

features [6] has the potential to greatly assist the design

of more robust face detection algorithms. The widely–used

Histogram of Oriented Gradients (HOG) based detection

algorithm [20] is used as the baseline in our experiments.

We use this model because it is flexible and easily reconfigured

to enable the inclusion of features related to image quality.

Finally, existing face detection datasets1 consist of

samples of face and non–face patches. However, our goal is

to investigate the performance of face detectors on images

corrupted by common distortions such as gaussian blur and

JPEG compression, whose effects are not pixel-wise but

more global. So distortions isolated on local patches can

exert a different effect on detection performance as com-

pared to distortions on the entire image. Thus, we curated

a new Distorted Face Database (DFD), from the web for

our experiments. This new dataset consists of face and

1http://www.facedetection.com/facedetection/datasets.htm

non–face patches from images that were (globally) dis-

torted with known distortion types and levels. The dataset

is available for download and further experimentation at

www.live.ece.utexas.edu/research/Quality/index.htm.

The main contributions of this paper are as follows:

1) The performance degradation of a widely used

HOG based face detector [20] with respect to the

response of a high–performance NR image quality

algorithm called NIQE is studied on images distorted by

three common distortions: additive white gaussian noise,

gaussian blur and JPEG compression. We experimentally

show that over a certain range of NIQE scores, a modest

improvement in image quality can significantly improve

detection performance.

2) We show that the readily computable NIQE score is

a valid and suitable proxy for actual distortion in the

absence of knowledge about the original (reference)

images or the actual types and/or levels of distortions,

in terms of studying the effect of such distortions on

quality of algorithmic face detectors.

3) A new set of QualHOG features are proposed that

augments face–indicative HOG features with perceptual

“quality–aware” spatial–NSS features. Face detectors

learned on these features provide improved tolerance

against image distortions. We experimentally quantify

the degree of resulting improvements.

4) A modification to the cost function used by the classi-

fier (an SVM) is proposed which further enhances the

robustness of the QualHOG based face detector.

5) A new Distorted Face Database (DFD) was created that

has face and non–face patches from images that were

distorted using known distortion types and levels.

In Section II, we review relevant literature on image quality

assessment and face detection algorithms. The distortion types

investigated and the proposed model for robust face detection

are discussed in Section III. In Sections IV and V we

describe the experimental setup and the results, respectively.

We conclude with directions for future work in Section VI.

II. RELATED WORK

In this paper we combine ideas from two problems in

vision science and computer vision: image quality assessment

and face detection. Image quality assessment (IQA) aims at

predicting the quality of a given image as perceived by human

users. The performance of IQA models are assessed by mea-

sures of correlation between objective predicted quality scores

and aggregated human opinions (Differential Mean Opinion

Scores (DMOS)) on a set of representative test images. Face

detection is a fundamental problem in various computer vision

applications including camera focusing, and is a precursor

to advanced tasks of identification, tracking, etc. Efficient

and accurate algorithms for face detection have been widely

developed over the past few decades. The problem of face

detection involves accurately identifying the region(s) in an

arbitrary image that corresponds to human face(s). In the rest

of this section, we review some relevant literature pertaining

to these two problems.
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As stated previously, IQA algorithms can be broadly

categorized as Full Reference (FR), Reduced Reference (RR)

and No Reference (NR) models. While the presence of a

reference image or information regarding references simplifies

the problem, in real–life applications FR and RR algorithms

are limited in scope as the reference information is generally

unavailable at nodes where quality computation is undertaken.

Hence, we concentrate only on NR IQA models as they are

much more likely to be of use in practical vision applications.

Early NR IQA models were distortion specific [21], [22]. Such

algorithms extract distortion–specific features that relate to

loss of visual quality, such as ringing, blur, edge–strength

at block boundaries, etc. While these provide satisfactory

performance for specific distortion types, often the distortion

type that is actually encountered is unknown beforehand

or is poorly modeled. Thus, a few distortion–independent

approaches to the NR IQA problem have been proposed

recently [4]–[6]. These models are based on the hypothesis

that natural images follow regular statistical properties that are

modified by the presence of distortions. Deviations from the

regularity of these natural scene statistics (NSS) are indicative

of perceptual quality of images. Hence, models based on the

quantification of the naturalness of an image are useful for

creating distortion–independent measures of perceived quality.

For example, the DIIVINE index [4] deploys summary

statistics derived from the NSS models of wavelet coefficients.

These features are used to first identify most likely distor-

tion types followed by distortion specific quality assessment.

A similar approach named BLIINDS–II [5], operates in the

DCT domain. A small number of features are computed from

an NSS model of block DCT coefficients. These features are

in turn used to train a regression model that delivers accurate

quality predictions. While both DIIVINE and BLIINDS–II

deliver superior performance for assessing image quality,

computation of the features involved is expensive and hence

deploying these models in real time is difficult.

Scalable transform–free (spatial) models for NR IQA were

recently developed by Mittal et al. [6], [9]. The BRISQUE

and NIQE indices proposed in these works operate directly

on multiscale spatial pixel data and hence are inexpensive to

compute. These models are based on the statistics of locally

debiased and divisive normalized luminance coefficients that

quantify the deviation from naturalness of an image due

to the presence of distortions. The debiasing and divisive

normalization of spatial pixels are motivated by well–accepted

models of front end coding by the human visual appara-

tus. BRISQUE uses quality–aware spatial features to train

a regression model for IQA, while NIQE develops a model

for undistorted “pristine” images and measures deviations

of the statistics of the test image from the pristine image

model. Despite using purely spatial features, these models

show performance comparable to DIIVINE and BLIINDS–II

at a small fraction of the computation. Going forward, we will

use the spatial–NSS features used by BRISQUE and NIQE as

quality–aware features.

Some of the early work on face detection was surveyed

by Hjelmas et al. [16], Yang et al. [23], and more recently

by Zhang et al. [15]. Early face detection algorithms have

been categorized as knowledge based methods, which use

predefined rules to detect faces, or as feature invariant

methods, which use pose and lighting invariant features, or as

template matching methods, which detects faces by matching

against pre–stored templates, or finally as appearance based

methods, which model faces from a set of representative

training faces.

Most of the recent algorithms for face detection could be

categorized as appearance based methods. A typical practice

is to collect certain indicative features from a training set of

face and non–face image patches and use machine learning

algorithms to learn a classifier for detecting other faces. The

two key variants among these algorithms are the type of

features used and the kind of classifier employed.

Boosting algorithms have been a popular choice in the

literature. AdaBoost, RealBoost, and GentleBoost are some

of the popular methodologies in this framework and they have

been compared by Lienhart et al. [24] and Brubaker et al. [25].

The Viola–Jones algorithm [26] for face detection has had a

large impact on face detection research because of its low

testing time that has made face detection feasible in real

time. The algorithm uses simple Haar–like features to train

weak classifiers in a multi–stage boosting algorithm [27].

However, while the computation required for testing an image

for faces is real–time, the training of the cascaded classifier in

the Viola–Jones face detector requires exorbitant computation.

For example, using the implementation in OpenCV, training

a Haar cascade classifier takes about a week. Moreover,

the cascaded classifier structure works efficiently only with

a highly restrictive set of Haar–like features which limits

accuracy. Finally, Viola-Jones does not provide a mechanism

to investigate the trade-off between true and false positive, so

that AUROC/AUPR based comparisons are not possible.

More recently, regional image statistics features are being

used increasingly for face detection. With the advent of

more complex features, various single stage classifiers such

as Bayesian classifiers and support vector machines (SVMs)

have gained popularity. An extensive survey of various other

features used by recent face detection algorithms is provided

by Zhang et al. [15]. Dalal et al. [20], introduced a popu-

lar regional statistics based feature called the Histogram of

Oriented Gradients (HOG) and used a linear SVM classifier

to detect humans in an image. These features are invariant

to 2D rotations and illuminations. The baseline used for

comparison in this paper is an adaptation of the human

detector proposed by Dalal et al. [20], for the problem of face

detection [28].

Studying the effects of quality impairments on detection

and recognition tasks is of interest as it can be exploited

to mitigate the effects of such impairments on relevant

tasks. Some work can be found in the literature that study

the effects of image quality on object detection/recognition

performance [17]–[19], [29]. Rouse et al. take a broad view

of quality vs. tasking [17]–[19]. Recognizing the importance

of perceptual principles in both visual tasks and in quality

assessment, the authors study human “recognition thresholds”

of objects as a function of objective image quality as

measured by the FR algorithms, multiscale SSIM and VIF.
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They find that perception–driven FR IQA indices can indeed

successfully predict image recognizability [18], [19].

Likewise, Gala et al. [29] find that the SSIM metric can be

used to predict the performance of tracking algorithms with a

high degree of confidence. However, as mentioned previously,

FR and RR algorithms are limited in their applicability

and hence we investigate face detection performance as a

function of image quality predicted by a state–of–the–art

NR algorithm. This is of particular importance for oncoming

wireless vision applications, where intelligent, robust blind

algorithms are needed, where severe distortions occur, and

where facial images are becoming increasingly important in

both consumer and/or security applications.

III. QUALHOG BASED FACE DETECTORS

We first describe the types of image distortions that

we consider. A new quality–aware face detector called

QualHOG, which uses face–indicative HOG features and

quality–indicative spatial–NSS features, is then discussed.

We finally motivate and propose a modification to the cost

function of the SVM classifier to further enhance QualHOG.

A. Image Distortions

We consider three basic types of distortions that commonly

occur in digital devices and over communication channels. The

image is denoted by a matrix I , such that I (i, j) represents

the (i, j)th pixel in the image I .

1) AWGN (σ 2
N ), Additive White Gaussian Noise: This is

a local distortion, in which a zero mean gaussian noise of

variance parameter σ 2
N is added independently to each pixel.

Ĩ (i, j) = I (i, j) + Ni j , such that Ni j ∼ N (0, σ 2
N ) (1)

where N (µ, σ 2) is a gaussian distribution with mean µ and

variance σ 2. This is a common model for a broadband device

or channel noise.

2) Gblur(σB), Gaussian Blur: This is a global distortion

in which each pixel is blurred through convolution with a

gaussian low pass filter of standard deviation σB . For com-

putational ease the gaussian kernel is truncated at 6σB . The

discrete truncated gaussian filter in two dimensions is given

as follows:

G(x, y) =
1

2πσ 2
B

e
−

x2+y2

2σ2
B (2)

where −⌈3σB⌉ ≤ x ≤ ⌈3σB⌉ and −⌈3σB⌉ ≤ y ≤ ⌈3σB⌉.

An image with gaussian blur distortion is given by Ĩ = I ∗ G

Ĩ (i, j) =

⌈3σB⌉∑

x=−⌈3σB⌉

⌈3σB⌉∑

y=−⌈3σB⌉

I (i + x, j + y)G(x, y) (3)

This is a common model for lens blur.

3) JPEG(Q), JPEG Compression: This is the most

commonly used lossy compression method for digital photog-

raphy. The trade–off between storage size and image fidelity

is controlled by a “quality factor”, 0 ≤ Q ≤ 100, where

Q = 100 corresponds to no compression while lower values

of Q lead to higher compression and lower image quality.

Note that while Q is generally monotonic with the perceived

quality of a compressed image, it is a poor predictor of percep-

tual image quality. This compression scheme first converts the

spatial image into the frequency domain using a discrete cosine

transform (DCT). In the DCT domain the DCT coefficients

are quantized to reduce storage requirements. The degree of

quantization is controlled by the Q factor. If G is the DCT

matrix of image I , the quantized DCT matrix, G̃ is given by:

G̃(i, j) = round

(
G(i, j)

Q(i, j)

)
(4)

where the quantization matrix, Q (dependent on Q) which is

of the same size as G, is designed to provide higher resolution

in frequencies that are hypothesized to be perceptually more

important.

B. QualHOG Face Detector

The QualHOG patch descriptor consists of two components:

1) Spatial–NSS: The spatial–NSS features used in

QualHOG were proposed by Mittal et al. [6] to accomplish

blind IQA and consist of parameters describing the natural

scene statistics of spatial components. The image patch, I ,

is preprocessed using local mean removal and divisive

normalization:

Î (i, j) =
I (i, j) − µ(i, j)

σ (i, j) + C
(5)

where (i, j) are spatial indices, µ(i, j) and σ(i, j) are

the mean and variance, respectively, of neighborhood pixels

weighted by a truncated symmetric 2-D gaussian, and C is the

saturation constant (typically C = 1) that that stabilizes the

division.

The motivation for these NSS features lies in statistical

models of photographs and in low–level models of visual

perception. It is well established that the early stages of

human vision process images locally. These processes have

evolved to encode images using natural statistics for efficient

neural transmission and representation in higher–level visual

tasks [30], [31]. Ruderman [32] hypothesized that the neural

channel for transmitting visual signals were constrained by the

variance of the signals and hence the optimal coding of images

could be attained using gaussian statistics. He established that

local mean subtracted and divisive normalized pixel values

of natural images (as in Equation 5) regularly obey gaussian

histograms. The mean subtraction in the numerator of the

equation results from a center–surround band pass operation

that approximates post–retinal ganglion processing to obtain

residual images with lower entropy; apparently to accomplish

predictive coding [33]. The divisive normalization by σ in the

denominator models the adaptive gain control process (AGC)

in the visual cortex that accomplishes contrast masking as a

byproduct [34], [35].

A white gaussian model of (5) is quite regular across

good–quality photographic images. However, when images are

distorted, histograms of pixels after preprocessing using (5),

are generally no longer gaussian. Extensive experimentation

with IQA models has shown that the distorted image his-

tograms subject to (5) can be fit using a generalized gaussian
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distribution (GGD) and that the deviation of an image from the

“true naturalness” can be used to effectively predict distortion

types and levels. A zero mean GGD is parameterized by (α, β)

and is given as:

f (x; α, β) =
α

2βŴ(1/α)
exp

(
−|x |

β

)α

(6)

where Ŵ(t) =
∫ ∞

0
x t−1e−xdx is the Gamma function.

Moreover, it has been observed that distortions

typically introduce unnatural spatial dependencies, which can

be measured by examining the distributions of local image

correlations [36]. A set of directional (horizontal,vertical and

diagonal) spatial features are computed as:

H (i, j) = Î (i, j) Î (i, j + 1)

V (i, j) = Î (i, j) Î (i + 1, j)

D1(i, j) = Î (i, j) Î (i + 1, j + 1)

D2(i, j) = Î (i, j) Î (i + 1, j − 1) (7)

The histograms of each directional components, {H (i, j)},

{V (i, j)}, {D1(i, j)} and {D2(i, j)} are fit using a zero mode

asymmetric generalized gaussian distribution (AGGD), which

is parameterized by (γ, βl, βr ) as:

f (x; α, β) =

⎧
⎨
⎩

γ
2(βl+βr )Ŵ(1/γ )

exp
(

−|x |
βl

)α
, if x ≤ 0

γ
2(βl+βr )Ŵ(1/γ ) exp

(
−|x |
βr

)α
, if x > 0

(8)

Finally, the statistical mean of each AGGD fit is computed as:

η = (βr − βl)
Ŵ(2/γ )

Ŵ(1/γ )
(9)

The parameters of AGGD (γ, βl , βr , η) and GGD (α, β) are

estimated using moment–matching based approaches proposed

by Sharifi et al. [37] and Lasmar et al. [38], respectively. The

same approaches were also adopted by Mittal et al. [6].

Using, estimates of (γ, βl , βr , η) along the four directions

and (α, β) from the GGD fit to the histogram of { Î (i, j)},

18D features are computed at two scales leading to a

36D spatial–NSS feature vector.

Fast Spatial–NSS: Since QualHOG is intended to be used

in a scanning window approach, we first implemented a fast

algorithm using integral images to allow efficient spatial–NSS

feature computation within rectangular windows in an image.

By using this Fast Spatial–NSS implementation, it is only

necessary to first compute integral images at each scale in

an image pyramid. Computation of spatial–NSS features for

any rectangular window is near–instantaneous thereafter.

2) HOG: The HOG descriptor was first introduced by

Dalal et al. [20]. It is a widely used feature descriptor for

various object detection tasks [39]. To compute the HOG

features, a detection window is divided into dense overlapping

blocks of size 16 × 16 with a stride of 8 × 8 pixels. Each

block is further divided into 2 × 2 cells and a histogram

of gradients in 9 orientations is computed within each cell.

All the histograms within a patch are concatenated to form

the HOG feature descriptor.

This feature descriptor quantifies the gradient structure

within a block which characterizes local edge directions.

The appearance of an object in a detection window can be

largely captured by the edge directions within indexed blocks.

The local intensities are initially contrast normalized (before

computation of the gradients) to provide illumination invari-

ance. Thus, a discriminative classifier trained on histograms of

oriented gradients extracted from dense set of local blocks in

a detection window is capable of generalizing to other objects.

QualHOG: The quality aware QualHOG descriptor is

obtained by simply concatenating the HOG and spatial–NSS

features. In our experiments, the detection windows are of

size 80 × 64, which gives a HOG feature vector of length

2268, which combined with the 36D spatial–NSS features

yields a 2304 dimensional QualHOG feature vector. The

motivation behind appending perceptually relevant quality–

aware features to conventional object detection features is

that the optimal decision boundary in the HOG vector space

varies non–trivially as a function of input image/video quality.

By appending spatial–NSS features to the HOG feature vector

and passing this to a linear SVM, we effectively model a

quality dependent boundary shift in the space spanned by the

HOG features.

QualHOG Based Face Detector: Linear support vector

machines (SVMs) [40] were trained using QualHOG fea-

tures from face and non–face patches. Specifically, we use

a soft–margin SVM with a slack penalty that simultaneously

maximizes the margin while minimizing the training error.

SVMs with non–linear kernels were also tried in the initial

experiments, however, they require much longer computational

time and did not provide significant improvements in the

results.

Soft–margin SVM is trained using a set of n annotated

samples, {(X i , yi ) : i = 1, 2, . . . , n}, where X i are the

discriminating features of the training samples, and yi are the

class label, +1 for face and −1 for non–face samples. Training

a linear SVM involves solving the following optimization

problem:

min
W,b,{ξi }

1

2
‖W‖2

2 + λ

n∑

i=1

ξi

such that yi (〈W, X i 〉 + b) ≥ 1 − ξi ∀i (10)

where, λ controls the penalty for slack variables {ξi }.

For robust face detection, we train linear SVM with the

QualHOG features, i.e. X i = [XHOG
i , XNSS

i ]. The baselines

are trained using only {XHOG
i }. In the pre–processing step,

the features are scaled so that they take values in the range

of [−1, 1].

C. Biased–QualHOG Face Detector

In the above formulation of SVM, the linear predictor for

a sample with feature X is ŷ = sign(W T X + b), where W =

[W HOG, W NSS]. Further, the weights, w j corresponding to

each feature, x j are regularized equally. With such an uniform

regularization, the weights corresponding the 36 dimensional

spatial–NSS features W HOG, could be unfairly penalized in

comparison to weights of the 2268 dimensional HOG fea-

ture W NSS. This might potentially undermine the importance

of quality–aware spatial–NSS features. To overcome this
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we propose the following biased SVM formulation of the

QualHOG based face detector.

min
W,b,{ξi }

1

2
‖W HOG‖2

2 +
1

2C2
s

‖W NSS‖2
2 + λ

n∑

i=1

ξi

such that yi (〈W, X i 〉 + b) ≥ 1 − ξi ∀i (11)

In training the above model, Cs and λ are set using cross–

validation.

IV. EXPERIMENTS

As discussed in Section III, the distortions considered in this

paper (except for additive white noise) are global and hence

we cannot use existing face databases that have only face and

non-face patches. Instead we require full images which are

first distorted by known distortion types and levels and then

segmented into face and non–face patches. Thus, as a first

step, we created a new Distorted Face Database (DFD) of

facial images from images available freely on the internet.

To keep the task simple, we chose images with mainly frontal

faces. A total of 215 images were crawled, each with one

or more frontal faces. These images were manually ensured

to be of high quality with no visible distortions. This set of

215 images was divided into 150 training images and 65 test

images. The faces in these images were manually annotated.

A total of 1231 faces were present in the training set of images

and 393 were present in the test set.

For simplicity, we demonstrate our model at a single scale

and hence we designed a system that detects faces in patches

of size 80 × 64. In order to obtain training and testing face

samples of the required dimensions, we resized the images so

that the average sizes of the faces within an image are 80×64.

Also, in the image selection process, care was taken to ensure

that in case of multi–face images, the sizes of the faces were

not widely different. In this way, on the resized images, a

80 × 64 sized bounding box centered at the faces captures the

facial content accurately.

Next, the images were modified in various ways to create

distortions. The following distortion types were introduced at

different levels on the training and test datasets.

• AWGN: The imnoise() function in MATLAB was used

to introduce additive white gaussian noise to the images.

10 levels of AWGN were added with the noise variance

parameters varying over a log scale, σ 2
N = {4.5 × 10−5,

0.0001, 0.0003, 0.0009, 0.0025, 0.0065, 0.02, 0.05,

0.15, 0.36}.

• GBlur: The imfilter() function in MATLAB was used

to introduce gaussian blur at 10 levels. The standard

deviation of the gaussian filter was varied over a log scale,

σB = {0.4, 1.0, 2.3, 3.6, 4.5, 6.0, 7.4, 12.0, 20.0, 32.0}.

• JPEG: The imwrite() function in MATLAB was used

to produce JPEG compressed images at 10 levels

of distortion. The Q factor controlling the qual-

ity of the image was also varied on a log scale,

Q = {90, 60, 40, 25, 15, 10, 7.5, 5.0, 3.0, 2.0}.

A. Training the Face Detector

From each of the above sets of training images, the 1231

manually annotated faces were cut out to provide positive

samples for each dataset. A random subset set of 1500 negative

patches were initially selected from the non–face parts of the

images in each training dataset.

Soft–margin linear SVM (10) and its biased variant (11),

were trained using QualHOG features extracted on the positive

and negative samples from different combinations of the

training datasets described above. As baselines, analogous

classifiers were trained using just the HOG features. Hereafter,

we use the following terminology. A face detector trained

on QualHOG and HOG features of samples from pristine

images alone will be called QualHOG–Prist and HOG–Prist

respectively. Similarly, face detectors trained on QualHOG and

HOG features of samples from pristine images and images

from L1 to Ln levels of distortion of distortion type D,

are denoted as QualHOG–D–L1-n and HOG–D–L1-n respec-

tively (for example QualHOG–AWGN–L1-4 refers to the face

detector trained on QualHOG features of training samples

from pristine images and images distorted with AWGN of

variances {4.5×10−5, 0.0001, 0.0003, 0.0009}). Finally, anal-

ogous biased linear SVM variants (learned using (11)) of

QualHOG based face detectors are referred using the notation

Biased–QualHOG–D–L1-n.

To train the face detectors based on QualHOG and

HOG features, implementation of soft–margin linear SVM

from LIBLINEAR [41] was used in the experiments. For

each classifier, a preliminary detector was first trained using a

small sub–sample of non–face patches of the training images

(1500 negatives). The remainder of non–face regions of the

training images were searched exhaustively for false positives

(from the predictions of the preliminary detector), also referred

to as “hard negatives”. A maximum of 1000 hard negatives

were obtained for each training dataset. The classifiers were

then retrained using the augmented set of negative samples

(the initial 1500 negative samples + hard negatives). This

retraining process is adapted from the work by Dalal et al. [20],

where the authors observed a significant improvement in the

performance of each detector. Finally, for each type of face

detector (QualHOG and HOG), the parameter λ for the soft–

margin SVM was chosen via cross–validation by doing a grid

search on the log scale.

In Biased–QualHOG face detector, we also observe that the

optimization problem in (11) can be re–written as follows by

substituting Ŵ NSS = W NSS

Cs
:

min
W HOG,Ŵ NSS,b,{ξi }

1

2
‖W HOG‖2

2 +
1

2
‖Ŵ NSS‖2

2 + λ

n∑

i=1

ξi

s.t. yi

(
〈W HOG, XHOG

i 〉 + 〈Ŵ NSS, Cs XNSS
i 〉 + b

)
≥ 1 − ξi , ∀i

The above optimization problem can be solved via conven-

tional SVM learners using the scaled set of features, X̂ i =

[XHOG
i , Cs XNSS

i ]. In this setting, the parameters λ and Cs are

independently selected via cross–validation.

B. Testing

As mentioned earlier, the 393 faces annotated on each of

the test datasets were cut out to obtain positive test samples

and an exhaustive set of ∼17500 negative samples were



GUNASEKAR et al.: FACE DETECTION ON DISTORTED IMAGES 2125

Fig. 1. NIQE vs AWGN.

extracted from the non–face parts of the test images from the

corresponding datasets. The area under precision recall curve

(AUPR) was used as the evaluation metric since the test dataset

is highly skewed as compared to the training dataset. Precision

is defined as the fraction of detected positives that are faces,

i.e., the ratio of true positives to the detected positives. Recall

is defined as the fraction of actual positives that is detected,

i.e., the ratio of true positives to the total number of positives.

Typically, the continuous output of a classifier is thresholded to

determine the discrimination boundary. Precision–recall curves

for a system plot the trade–off between precision (y axis) and

recall (x axis) as the discrimination threshold is varied.

V. RESULTS

In practical settings, precise information regarding the

distortion types and distortion levels afflicting an image are

difficult to estimate. The NIQE image quality index, described

in Section II, on the other hand, is a high performance

distortion agnostic algorithm that does not rely on any form

of distortion models. Further, the spatial–NSS features used

to compute NIQE scores are computationally inexpensive as

compared to other NR quality scores [4], [5]. We therefore

use NIQE scores as surrogates for perceptual distortion levels.

However, as a sanity check, we first assessed the NIQE scores

of images against all of the distortion types considered. The

NIQE scores of images distorted by various levels of AWGN,

gaussian Blur and JPEG distortions are shown in Figs. 1–3,

respectively. As expected, a strong positive correlation

between degree of distortion and NIQE scores is observed

for the common distortion types considered. Of course

near–monotonicity against distortion severity is a minimum

expectation of a perceptual image quality model.

A. Degradation of Face Detector Performance With Quality

We next studied the performance degradation of the baseline

HOG based face detector, HOG–Prist on distorted images

that are quality assessed by NIQE. In order to evaluate the

performance of face detectors against NIQE scores, we first

binned the images from the test datasets which were distorted

by multiple degrees of each distortion type, into 10 discrete

Fig. 2. NIQE vs gaussian Blur.

Fig. 3. NIQE vs JPEG.

Fig. 4. Performance degradation of HOG–Prist with perceived quality
measured as NIQE (high NIQE⇒low quality).

NIQE levels, then evaluated the performance of the baseline

HOG–Prist face detector in each bin.

Fig. 4 plots the performance degradation of the HOG–Prist

against NIQE for the three distortion types considered. Please

note that binning process to create datasets of given NIQE

score introduces inaccuracies in the evaluation. For example,

the first bin in Fig. 4 with an average NIQE score of 2.1 has

patches from images with NIQE score in the range 1.4 to 2.8.

Thus, the absolute AUPR values reported in the experiments

using these NIQE datasets (Figs. 4 and 5–7) are potentially

inaccurate and are meant to only show the relative gain of

QualHOG based face detector as compared to HOG–Prist.
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Fig. 5. Performance on images with AWGN distortion.

Fig. 6. Performance on images with Gaussian blur distortion.

Fig. 7. Performance on images with JPEG compression.

It is not surprising that the degradation of face detection

performance with increasing NIQE score (decreasing quality)

is largely monotonic. It is, however, interesting to note that

a region of steep decline of face detection performance exists

for images with NIQE scores in the range 5–8, in which minor

enhancements to image quality can yield significant improve-

ment in face detection performance. This trade–off between

image quality and face detection performance could be imme-

diately exploited in the design of optimum communication

channel parameters in facial image systems. Moreover, it is

also interesting to note that for a given level of predicted image

quality, HOG–Prist is more tolerant of quality degradation due

to gaussian blur than those due to other distortions.

B. Distortion–Unaware Face Detectors

As knowledge of the distortion types present in a system

is often unavailable, we trained four distortion–unaware face

detectors: QualHOG–Prist and HOG–Prist which were trained

using QualHOG and HOG features, respectively, of samples

from only pristine images; and QualHOG–All and HOG–All

which were analogous detectors trained using training samples

from various levels of all three distortion types. We evaluate

the performance of face detectors against NIQE scores for

each distortion type. We use the test datasets with 10 discrete

NIQE levels, which was curated for the study in Section V-A,

for evaluating the performance of the distortion–unaware face

detectors at different NIQE levels. The performance of these

distortion–independent face detectors on test images in each

bin are plotted in Fig. 5–7.

It can be seen that QualHOG based face detectors

show significant improvement over the HOG based ones.

Training on distorted images improves the performance of both

HOG and QualHOG based face detectors. The HOG based

face detector is constrained to a single detection boundary

in the HOG vector space to capture the discriminating char-

acteristics across all distorted images. However, using the

quality–aware spatial–NSS features, QualHOG face detectors

are capable of modeling a quality dependent boundary shift in

HOG feature space. Thus, as hypothesized, the improvement

from training on distorted samples is significantly higher for

QualHOG compared to HOG based face detectors.

C. QualHOG vs HOG

For the performance analysis on individual distortion

types, we trained distortion–dependent QualHOG and HOG

based face detectors using samples with increasing levels

of the distortions, QualHOG–[D]–L1, QualHOG–[D]–L1-2,

…, QualHOG–[D]–L1-10 and HOG–[D]–L1, …, HOG–[D]–

L1-10, respectively, where, [D] is a placeholder for distortion

type, AWGN, GBlur, and JPEG (refer Section IV for notation).

For each distortion type, AWGN, GBlur, and JPEG, test

datasets analogous to the training datasets mentioned in

Section IV were created at each distortion level (L1–L10)

using the held out images. The distortion–dependent face

detectors were evaluated on test datasets from appropriate

distortion type. To avoid clutter we report the results of only

the best performing detector for each distortion type, along

with the distortion–independent detectors, QualHOG–Prist,

and HOG–Prist. The best performing face detectors were

separately chosen for the HOG and QualHOG based detectors.

These results are compared in Figs. 8–10, for AWGN, GBlur,

and JPEG distortions respectively. The distortions levels are

represented on a horizontal log–scale.

QualHOG based face detectors again show uniformly better

robustness as compared to the baselines. When the face

detectors are trained on samples form only the pristine

images (in HOG–Prist and QualHOG–Prist) the improvement

is marginal. This is because there is minimal information

regarding the distorted faces that the spatial–NSS features

used in QualHOG could deliver a benefit from. Training

on samples from distorted images in general improves the

tolerance to distortions. However, QualHOG face detectors

are better equipped to learn quality dependent discriminating

boundary in the HOG feature space, as compared to learning



GUNASEKAR et al.: FACE DETECTION ON DISTORTED IMAGES 2127

Fig. 8. AUPR vs AWGN σ 2
N .

Fig. 9. AUPR vs Gaussian blur kernel σB .

Fig. 10. AUPR vs JPEG Q.

from only the HOG features which are not known to cap-

ture quality aspects of the images. This is indeed observed

for distortions arising from AWGN and JPEG compression.

For these distortions types, the corresponding QualHOG face

detector show significant improvement in tolerance to quality

degradation as compared to the HOG face detector. However,

for distortions arising from gaussian blur, the improvement is

marginal.

D. Biased–QualHOG, QualHOG, and HOG

The initial results in Section V-C validate our hypothesis

that quality–aware image features can aid in building

distortion–robust face detectors. However, as discussed in

Section III, in the current SVM formulation, the quality–aware

Fig. 11. AUPR vs AWGN σ 2
N .

Fig. 12. AUPR vs Gaussian blur kernel σB .

Fig. 13. AUPR vs JPEG Q.

spatial–NSS features of QualHOG are possibly penalized

unfairly owing to the smaller number of features compared to

HOG. To overcome this, we used the biased SVM formulation

in (11). For each QualHOG face detectors described in

Section V-C, analogous biased face detectors were trained.

We again report results of only the best performing biased

and unbiased detectors for each distortion type, along

with the distortion–independent detectors, HOG–Prist, and

Biased–QualHOG–All. Note that Biased–QualHOG–All

(refer Section V-B) is a unified distortion–independent

model trained on QualHOG features of samples from all three

distortion types. To avoid clutter we did not plot the results for

QualHOG–Prist and HOG–All. These results are compared

in Figs. 11–13 for AWGN, GBlur, and JPEG distortions,

respectively.
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Fig. 14. Qualitative comparison of tolerance of the face detectors. In this illustration, for each distortion type, we show samples of images distorted to the
level at which the AUPR of the baseline HOG face detector (left) and the proposed Biased–QualHOG face detector (right) fall below 0.8.

It can be observed that the proposed modification to

the traditional SVM formulation significantly improves upon

both the unbiased QualHOG based detectors as well as

the baseline HOG based detectors, with the exception of

Biased–QualHOG–GBlur. For distortions arising from AWGN

and JPEG compression, the Biased–QualHOG variants outper-

form the baseline HOG based detectors by a large margin.

To get a qualitative sense of the comparison, we illustrate

the improved robustness in Fig. 14. The figure illustrates

samples of faces that are distorted to the level at which the

performance of the face detectors falls below a reasonably

good threshold of AUPR ≥ 0.8. It is clear that the proposed

detectors are visibly more tolerant to quality degradation from

AWGN and JPEG compression. The resulting improvement is

most remarkable for distortions from JPEG compression. For

gaussian blur, the improvement is only marginal, and more-

over, it can be seen from the illustration that both the baseline

HOG–GBlur and the proposed QualHOG–GBlur are highly

robust to distortions from gaussian blur compared to other

distortion types.
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TABLE I

NIQE SCORES UPTO WHICH THE FACE DETECTORS

HAVE PERFORMANCE, AU P R ≥ 0.8

Finally, we note that for AWGN and JPEG, even

the distortion–unaware QualHOG detector, Biased–

QualHOG–All, outperforms the distortion–aware baselines of

HOG–AWGN and HOG–JPEG, respectively. This provides

further evidence for the claim that spatial–NSS features

capture a distortion–agnostic measure of quality. However,

gaussian blur is again an exception. It is possible that the

HOG features are inherently robust to distortions from blur.

This would also explain the observation in Fig. 4, that the

baseline detector is more tolerant to quality degradation from

blur as compared to quality degradation from other distortions

considered.

E. Performance Measured Against NIQE Scores

To complete the analysis we also evaluate the face detectors

against an effective distortion–agnostic image quality measure,

NIQE. We created test datasets at various levels of perceptual

quality by binning the NIQE scores of the test images at

various distortion levels into 10 bins.

The results follow a trend similar to that observed against

ground truth distortion levels, and thus the plots omitted to

avoid redundancy. For a reasonable required level of perfor-

mance AUPR ≥ 0.8, the tolerance of Biased–QualHOG face

detectors as compared to the baseline are tabulated in Table I.

The results corroborate our conclusions so far.

F. Performance on Natural Images

To study the performance of proposed face detectors on

natural images encountered in real–life, we evaluate the

face detectors on a subset of images in a face annotated

database “FDDB: Face Detection Data Set and Benchmark”

which consists of annotated faces images collected from news

photographs [42]. We choose a single fold of the database

consisting of 290 images. These images were pre–processed

to discard non–frontal faces and faces with large occlusions

as detecting such faces is outside the scope of this paper.

A total of 405 face patches and a comprehensive set of ∼26K

non–face patches were extracted. Distortion agnostic face

detectors were evaluated on this dataset and the resulting

Precision–Recall curves are shown in Fig. 15.

Here again we observe that the QualHOG based face

detectors perform better than their HOG based counterparts.

The Biased–QualHOG–All detector, however, provides only

a marginal improvement. A possible explanation for this

behavior could be that the images in the database were

only mildly distorted (based on a visual examination). The

Biased–QualHOG–All detector, on the other hand, was trained

to operate under harsher distortions often arising in trans-

mission and storage. We propose to consider more extensive

Fig. 15. Precision–Recall curves for the performance of distortion agnostic
face detectors on a subset of FDDB benchmark data set.

experimentation by curating a dataset of images with various

degrees of natural distortions from real–life applications as a

part of future work.

G. Computation

In training and testing the face detectors, computation

involved depends primarily on two tasks: (a) computation

of the features (Spatial–NSS and HOG), and (b) learning

the SVM for classification. In comparison to the 2268D

HOG features, computing and learning from 36 additional

Spatial–NSS features does not cause significant overhead in

computation time.

VI. CONCLUSIONS

In this paper we first established that the easily computable

NR image quality score, NIQE is effective as a proxy for

actual distortion levels when evaluating the trade–off between

face detection performance against image impairments arising

from three common distortion types, AWGN, gaussian blur,

and JPEG. The performance of generic HOG–based face

detectors was found to degrade rapidly for NIQE scores greater

than 4. It was also observed that for NIQE scores in the

5–8 range, a modest improvement in perceived image quality

measures drastically improves face detection performance.

This region can be fruitfully targeted when allocating resources

in constrained settings. Another interesting observation was

that, face detector performances are consistently more tolerant

of quality impairments due to gaussian blur than those due to

other distortions considered.

Secondly, we showed that QualHOG features, which com-

bine face indicative HOG features with quality–aware spatial

NSS features are more effective at learning a face detector

that is robust to common and important image distortions.

The QualHOG based face detectors show significant improve-

ment over their HOG based analogues when trained on dis-

torted images. In a practical distortion–unaware setting, the

QualHOG–All face detector typically produced reliable results

(AU P R ≥ 0.8) for test datasets with NIQE scores of up to 6.5,

while HOG–All provided equivalent performance on images

with NIQE score up to 5.
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Initial comparison of the proposed QualHOG and the

baseline HOG face detectors in both distortion–aware and

distortion–agnostic settings validate our hypothesis that

quality–aware image features can aid in building distortion–

robust face detectors. The biased variants the QualHOG face

detectors further improve the robustness of the proposed

face detectors. For distortions arising for AWGN and JPEG

compression, the Biased–QualHOG face detectors show vis-

ibly higher tolerance to quality impairments. However, for

distortions arising from gaussian blur, the improvement is

marginal.

Interestingly, for AWGN and JPEG, in spite of being

distortion–independent, Biased-QualHOG-All also provides

better performance compared to distortion–aware HOG–

AWGN and HOG–JPEG models when tested on individual

distortion types. Thus, the QualHOG based face detectors are

able to achieve acceptable face detection performance at much

higher levels of visual impairments than what is currently

possible.

Going forward, we anticipate the development of quality–

aware face recognition models, where quality–predictive fea-

tures in combination with anthropometric facial features [43]

could yield recognition engines with significantly improved

distortion resilience.

Further, in real–life applications, the distortions observed

are sometimes more complex than the primitive distortion

types considered in this paper. Going forward, we are plan-

ning extensive experimentation where we will create datasets

of facial images affected by (a) multiple distortions, and

(b) authentic (non–synthetic) distortions drawn from real–

life photographic facial imaging applications. Given such a

resource, we will conduct extensive studies on the efficacy of

QualHOG features for face detection on images impaired by

complex mixtures of distortions. While such a study is far

beyond the scope of the work reported here, we are greatly

motivated by the results we have obtained.
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