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Abstract. 1 The central problem in the case of face detectors is to build a face
class model. We present a method for face class modeling in the eigenfaces space
using a large-margin classifier like SVM. Two main issues are addressed: what is
the required number of eigenfaces to achieve a good classification rate and how
to train the SVM for a good generalization. As the experimental evidence show,
generally one needs less eigenfaces than usually considered. We will present dif-
ferent strategies for choosing the dimensionality of the PCA space and discuss
their effectiveness in the case of face-class modeling.

1 Introduction

Human face detection is usually the first task performed in a face recognition system. Its
performances significantly influence the overall quality of the system. In spite of con-
siderable attention that it has received, the problem of reliable face detection remains
open. The difficulty stems from the fact that face detection is a problem of categoriza-
tion: the system must recognize objects belonging to a large class, not just previously
seen entities. While, theoretically, the set of all human faces is finite, practically it is
impossible to have access to all its instances. However, as all the faces share the same
structure, there must be an underlying model that generates all instances of the face
class. The problem is then to find (an approximation of) this model and a good classifi-
cation function.

One of the most effective approaches is to model the set of available faces as a
sequence of linear approximations. The best (in the sense of least squares) such ap-
proximation is given by Principal Component Analysis (PCA) [1]. The use of PCA in
the context of face modeling dates for more than a decade ago ([2],[3]) and proved its
capabilities in different contexts like face detection or face recognition. However, in the
case of most applications a simple decision rule, e.g. a simple threshold (like in the case
of distance–from–feature–space – see below), or a linear classifier (LDA) [4] is used to
discriminate between faces and non-faces or for face recognition. Another problem is
how to choose the number of required principal components. While in the context of

1 Work partially performed in the BANCA project of the IST European program with the finan-
cial support of the Swiss OFES and with the support of the IM2–NCCR of the Swiss NFS.



face recognition it makes much sense to use the reconstruction error as an indication of
the number of components, in the case of face-class modeling this is not so evident. In
fact, as it will be shown below, one needs less principal components to achieve a good
performance than usually is considered.

This paper tries to address both problems of selecting the number of components
and designing a more flexible discriminant function. Its structure is as follows: the first
two sections address the theoretical aspects of the classifier used (SVM) and of the
eigenfaces space while the third section is dedicated to the experimental results. Finally,
we draw some conclusions in the last section.

2 Eigenfaces for face modeling

2.1 Principal Component Analysis (PCA)

Let � ����������� ���	��

� be a set of ��� dimensional vectors and consider the following
linear model for representing them

��������������� � (1)

where ������� is a � !#" matrix, �$� 
 � and �%��

� � For a given "'&(� � the PCA can
be defined ([1]) as the transformation �)����� whose column vectors *,+ � called principal
axes, are those orthonormal axes onto which the retained variance under projection is
maximal. It can be shown that the vectors * + are given by the dominant " eigenvectors
of the sample covariance matrix2 - � �

� . �0/ �213� �54 / �213� �54�6 such that - * + �879* +
and where � is the sample mean. The vector �:1
�(� 6����� / �212�;�54 is the "<� dimensional
representation of the observed vector �51 �

The projection defined by PCA is optimal in the sense that amongst the "�� dimensional
subspaces, the one defined by the columns of �)�=��� minimizes the reconstruction error. 1?> �21��(@�21 >�A where @�51B�C� ���D�0�E1<� � �

2.2 Probabilistic PCA (PPCA)

The PPCA ([5]) also assumes a linear model for the observed data

����� �=�����F���G��H (2)

(compare it with (1)) which is closely related to the factor analysis model, but it differs
from it in the assumptions made about the density functions generating � and H :
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Under this model, the probability of observing the vector � is
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2 We denote with a prime symbol the transpose of a matrix or a vector.



For this model, an elegant EM algorithm for estimating the parameters of the model is
given in [5]. A similar model was also discussed in [6] in the context of object detection.

Here we are interested in the approach taken in [7] for estimating the underlying
dimensionality. Starting from the above model, it can be shown [7] that

I���� �21�� � 1�� � T "	��

�� ��+ � � 7 +����� �� /��P A 4 � ������������! � "$# �� (6)

where % � � � � � � �
A � � � � ��� � � � � � � �

A and 7:+ are the eigenvalues of the sample co-
variance matrix. (6) is the Bayesian Information Criterion (BIC) approximation of the
likelihood (5). In one set of experiments we will use this criterion for choosing the PCA
dimensionality.

2.3 Eigenfaces

Let R denote a � � !'� A gray-scale image. By considering its pixels in lexicographic
order, we build a vector & of size � � � � � A , which can be seen as a point in 
S� . When
performing PCA we will use these vectors instead of the original set of images. In the
context of face detection and/or recognition, the eigenvectors of the sample covariance
matrix are called eigenfaces ([8]). A large number of methods rely on the distance from
feature space (DFFS) ')(+*

/ �54 � > � �(@� > A � > � �#� > A � > � > A (7)

and/or distance in feature space (DIFS)'	,.-/*
/ &<4L� > � > A (8)

for estimating the class membership. For example, in [6] the following distance is de-
rived under the assumptions (2,3,4):0 / �54L� �1
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')(6*
/ �54 (9)

3 An Overview of Support Vector Machines

In this section we briefly sketch the SVM algorithm and its motivation. A more detailed
description of SVM can be found in [9], [10].

Let us consider first the simple case of linearly separable data. We are searching an
optimal separating (hyper–)plane 3 7

* � �$83�:9 � N (10)

3 We use ;=<�>?< @ to denote the inner product operator



which minimizes the VC confidence term while providing the best generalization. The
decision function is �

/ �54L�
* ��� / 7 * � �$8B� 9D4 (11)

Geometrically, the problem to be solved is to find the hyperplane that maximizes the
sum of distances to the closest positive and negative training examples. The distance is
called margin and the optimal plane is obtained by maximizing A����� or, equivalently,

by minimizing > * >�A subject to � 1 /
7
* � �$8
� 9D4�	�
 � Suppose now that the two classes

overlap in feature space. One way to find the optimal plane is to relax the above con-
straints by introducing the slack variables � 1 and solving the following problem (using
2-norm for the slack variables):
 , ���� � � � > * > A ��� �1

1�� � � A1 (12)

subject to � 1 /
7
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where � controls the weight of the classification errors ( � ��� in the separable case).
By introducing the Lagrange multipliers, we obtain the primal and the dual La-

grangian forms� � � 
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where # 1,	 N � The solution of the primal problem is linked to the solution of the dual
by * � . 1 � 1 # 1 �21 �

We can express now the decision function as a function of # :�
/ �54S�

* ��� - 1
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7
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where - � � ��T # 132 N � . The vectors � 1 � �F� - are called support vectors and are the
only examples from the training set that affect the shape of the separating boundary.

In practice however, a linear separating plane is seldom sufficient. To generalize the
linear case one can project the input space into a higher–dimensional space in the hope
of a better training–class separation. In the case of SVM this is achieved by using the
so–called ”kernel trick”. In essence, it replaces the inner product

7
�31 � � + 8 in (15) and

(16) with a kernel function 4 / �51 � � + 4 � As the data vectors are involved only in this
inner products, the optimization process can be carried out in the feature space directly.
Some of the most used kernel functions are:

the polynomial kernel 4 / � � �J4L� /
7
� � ��8B�5
 476 (17)

the RBF kernel 4 / � � � 4L�58:9<; / �,= > � �;� > A 4 (18)



4 Proposed method and Experiments

Relying on eigenfaces for describing the face model is an appealing technique. Not
only we reduce the dimensionality of the input space, thus needing less examples for
training the classifiers, but also the eigenfaces proved to be robust features in real-world
applications.

We want to benefit from those advantages while going beyond the DFFS-like clas-
sification methods. To this end, we propose to use a SVM to directly model the face
class boundary. There are a number of issues that must be addressed like how many
eigenfaces are needed for a good face class model and what kernel should be employed
for SVM. We will analyze different alternatives of choosing the PCA dimensionality
and discuss the performances of the SVM for each of those choices.

4.1 Experiments

In the following we will discuss a set of experiments that were performed to study the
performance of SVM-based classifiers in the eigenfaces space. As pointed out before,
the main problem in the case of face detection is finding a good model for the entire
class of faces. As such, we concentrated mainly on the face/non–face classification task.

The face dataset used was a subset of BANCA database ([11]), consisting of 6540
images. Faces were cropped out from the images and rescaled to 
�� ! !�� . The posi-
tive example set (faces) consisted of 3 subsets, labelled g1, g2 and wm, respectively,
containing different individuals. The g1 and g2 sets contained 3120 images each, for
26 individuals per set, recorded in 12 sessions (10 images per session) covering 3 dif-
ferent environments (different illumination conditions, different pose and background).
The set wm contained 300 images of 30 different individuals recorded in 3 sessions (10
individuals per session). For training, the positive example set consisted always of 684
images from wm and either g1 or g2 (2 images per individual per session, 26 individuals
from either g1 or g2 and 30 individuals from wm); for testing we used all the images of
individuals not present in training set (i.e. if we used images from g1 in training then all
g2 set was used for testing and the reciprocal), so we had 3120 face images for tests. The
negative examples were collected from various images not containing human faces by
bootstrapping some initial versions of the classifiers. In all, there were 19500 non-face
images, splited in two sets of 7000 and 12500 for training and testing respectively. The
classification results that will be presented are the average classification rates obtained.
Figure 1 presents the first eigenfaces from the set of principal axes obtained by per-
forming PCA on the positive training set and the estimation of the latent dimensionality
of the eigenface space.

First we studied the influence of the PCA dimensionality on the performance of
the classifier. We trained a SVM with a RBF kernel (see (18)), keeping its parameters
(i.e. = and � ) constant and we varied the number of eigenfaces used to construct the
”face space”. Figure 2 shows the variability of different performance indices. As one
would expect, while the training performances keep increasing, the testing results show
a peak in true positive rate. This peak coincides with the estimated latent dimensionality
(102). However, using so many eigenfaces impacts on the speed of the computations.
In real applications one has to trade off some performance points for a speedup of the
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Fig. 1. Eigenfaces and cummulative variance. 1(a) The first 12 eigenfaces correspond roughly to
80% of total variantion of face set. 1(b) Cummulative variance and latent dimensionality estima-
tion by BIC approximation (Eq.6)

detection. For a faster detection, it seems reasonable to choose only 20 eigenfaces and
then to tune the classifier in this reduced space.

We will further investigate the classification performances by tuning the classifiers
for 3 different dimensionalities: 20, 36 (which corresponds roughly to 90% of total vari-
ation) and 102 (as suggested by BIC) eigenfaces. We trained two different SVM, one
with a polynomial kernel and another one with a RBF kernel (equations (17,18)), vary-
ing their parameters. The results are presented in figure 3. As can be seen, adding more
eigenfaces in the representation improves up to a point the results. However, having too
many eigenfaces leads to less stable behavior of the SVM (in the case of the polynomial
kernel) or even degrades the performances. This is due to both the over–fitting effect
that may appear in training and to the limited number of training samples used. Interest-
ingly, even the difference between the two cases (20 and 36 eigenfaces respectively) is
not so important if we consider that in the first case we have almost half of the number
of eigenfaces (which corresponds to approximately 85% of total variation).

The best classification rates are summarized in Table 1. For comparison, the clas-
sification rates obtained with a simple threshold based classifier (using the distance (9)
are given in the last row, even if the difference in complexity between the two classifiers
makes the comparison unfair.

Finally we used a classifier trained as above, using only 20 eigenfaces and a RBF
kernel, for a large scale test on real-world data (the entire set of images from the English
part of BANCA database). We scanned the images with a sliding window at different
scales. The overall performace (aggregated over the 3 conditions) was about 95%. More
detailed results will be presented in the final version of the paper.
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(a) Training results
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(b) Testing results

Fig. 2. Training and testing result using a RBF kernel. The dashed line indicates the estimated
dimensionality of the PCA space. The pannels show three performance factors (from top to bot-
tom): true positive rate, false positive rate and overall accuracy with respect to the number of
selected eigenfaces.

5 Conclusions

In this paper we presented a method for face class modeling in eigenfaces space. The
method relies on a SVM for class boundary modeling, being able to implement highly
nonlinear (in eigenfaces space) decision functions.

Another issue that we have addressed was the problem of the number of eigenfaces
needed to achieve good performances. We have compared different approaches like the
”90%” rule-of-thumb or the more principled BIC approximation. As the experiments
have shown, generally one needs less eigenfaces than suggested by those rules to reach
an acceptable level of accuracy. Beyond that, one needs a large number of additional
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Fig. 3. Accuracy of two SVM on the test set. The horizontal axis represents the values of the
kernel parameter.



Number of eigenfacesClassifier
20 36 102

Polynomial SVM 96.21% 97.86% 97.35%
RBF SVM 96.30% 97.41% 97.93%

Distance-based 75.91% 77.38% 78.85%
Table 1. Top performances on the test set. Kernel parameters were ����� >�������>	����� for the
polynomial kernel and 
��
��� ����� >�
��
��� ����� >�
��
��� ����� for the RBF kernel, respectively.

eigenfaces for a significant improvement. An interesting outcome is the coincidence
of the number of eigenfaces needed for the highest true positive rate with the latent di-
mensionality suggested by BIC. However, this criterion produces a largely overestimate
number of eigenfaces if we take into account the overall accuracy of the classifier.
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