
International Journal of Computer Applications (0975 – 8887)

Volume 72– No.16, June 2013

49

Face Detection using Color based

Segmentation and Edge Detection

Jagdish Prasad Goswami

M.Tech Scholar
Department of CSE
Mewar University

Chittorgarh, Rajasthan

Preetam Kr. Chourasiya
M.Tech Scholar

Department of ECE
RKDF Inst. Of Tech.

Bhopal, MP

Nipendra Singh Chauhan
M.Tech Scholar

Department of CSE
Manav Bharti
University, HP

ABSTRACT
The increasing use of computer vision in security in place of

humans led many to research the problem of face detection in

images. The problem is not a petty one as the classification of

a human face proves to challenging. Despite the many

variations of a human face, features can still be found, given a

certain context, which will uniquely identify a face. Early

face-detection algorithms focused on the detection of frontal

human faces, whereas this paper attempt to solve the more

general and difficult problem of multi-view face detection.

Face detection involves many research challenges such as

scale, rotation, and pose and illumination variation. The

techniques used for face detection have been researched for

years and much progress has been suggested in literature. This

paper proposes a new technique for detecting faces in color

images using color model and edge detection. Face detection

is used in as a part of a facial recognition system. It is also

used in human computer interface, image database

management and video surveillance. The results of this

technique show that the proposed algorithm is good enough to

detect the human face taken through video with accuracy.

This paper is achieving high detection speed, high detection

accuracy and reduces the false detecting rate.

Keywords

Face detection, Color segmentation, Color model, Edge

detection, Canny edge detector.

1. INTRODUCTION
Face detection is the method of discovering all possible faces

at different locations with different sizes in a given image.

Face detection locates and segments face regions in cluttered

images. It has various applications in areas like security

control systems, surveillance, content-based image retrieval,

intelligent human computer interfaces and video conferencing

[1] [2]. The system segments faces in cluttered images face.

As a visual frontend processor, a face detection system should

also be able to achieve the task regardless of illumination,

orientation, and camera distance [3]. A system that performs

face detection or recognition will find many applications such

as surveillance cameras and security control systems.

Face detection is used in many places now days especially the

websites hosting images like photobucket, facebook and

picassa. The automatically tagging feature adds a new

dimension to sharing pictures among the people who are in

the picture and also gives the idea to other people about who

the person is in the image. This paper implemented a pretty

simple but very effective face detection algorithm which takes

human skin color into account [4].

Face detection is the first step of face recognition as it

automatically detects a face from a complex background to

which the face recognition algorithm can be applied. But

detection itself involves many complexities such as

background, poses, illumination etc. Face detection rate and

the number of false positives are important factors in

evaluating face detection systems. Face detection rate is the

ratio between the number of faces correctly detected by the

system and the actual number of faces in the image [5] [6].

Most face detection systems attempt to extract a fraction of

the full face, thereby eliminating most of the background and

other areas of an individual's head such as hair that are not

necessary for the face recognition task [7]. With static images,

this is usually done by running a 'window' across the image.

The face detection method then judges if a face is present

inside the window. Unfortunately, with static images there is a

very large search space of possible locations of a face in an

image. Faces may be 21 large or small and be positioned

anywhere from the upper left to the lower right of the image.

The development of the feature-based approach can be further

divided into three areas. Given a typical face detection

problem in locating a face in a cluttered scene, low-level

analysis first deals with the segmentation of visual features

using pixel properties such as color and gray-scale. Due to

low-level nature, features generated by this analysis are

indistinct. In feature analysis, visual features are organized

into a more global concept of face and facial features using

information of face geometry. Through feature analysis,

feature ambiguities are reduced and locations of the face and

facial features are determined [8].

This paper is categorized into six sections. The first section

gives the introduction of face detection. The second section

define the color segmentation, in which there are different

types of color spaces like CIEXYZ, HSV, YCbCr, YUV,

YCoCg color space. The third section deals with edge

detection, which use canny edge detector to detect the edge.

The fourth section draws the block diagram of design

approach. The fifth section concludes conclusion and future

scope and last sixth section end with references.

2. COLOR SEGMENTATION
Segmentation involves partitioning an image into groups of

pixels which are homogeneous with respect to some criterion.

Different types of groups must not intersect each other and

adjacent groups must be heterogeneous [9]. The aim of color

space transformation is to increase the separability between

http://en.wikipedia.org/wiki/Facial_recognition_system

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.16, June 2013

50

skin and non-skin classes while decreasing the separability

among skin tones [3]. Hopefully it will bring robust

performance under varying illumination conditions. However,

there are many color spaces to choose from and a large

number of metrics to judge whether they are effective.

Segmentation techniques locate objects consisting of pixels

having something in common. Commonly this means that

pixels with almost the same intensity values are grouped

together, or pixels with the same color code. There are

techniques for finding for instance objects with convex

objects, closed contours and the boundaries of an object. The

segmentation principle states that the first step in processing a

pixel should be to segment the local region encompassing that

pixel. This provides a snapshot of the local structural features

of the image, with the signal clearly separated from the noise.

It is hoped that the identified structural information could be

used to implement many image processing tasks including

[10].

This paper present five color spaces that are:

 CIEXYZ

 HSV and HLS

 YCbCr

 YUV

 YCoCg

2.1 CIEXYZ Color Space
The CIEXYZ color space is developed by the CIE

(Commission Internationale de l’Eclairage) is an international

standard. This color space is based on three hypothetical

primaries X, Y and Z. All the visible colors can be

represented by X, Y and Z components positive values. The

primaries in CIEXYZ color space are hypothetical because

they do not contain any real light wavelengths. Y primary is

used to define to match closely to luminance, while X and Z

primaries are used to define the color information. The major

advantage of the XYZ color model is that this space is

completely independent of device [11]. The block position

RGB colors in the CIEXYZ color space is shown in Figure.

Figure 1: CIEXYZ Color Space

The following basic equations to convert RGB color space to

XYZ color space and XYZ color space to RGB color space.

X = 0.412453*R + 0.35758 *G + 0.180423*B

Y = 0.212671*R + 0.71516 *G + 0.072169*B

Z = 0.019334*R + 0.119193*G + 0.950227*B

R = 3.240479 * X - 1.53715 * Y - 0.498535 * Z

 G = -0.969256 * X + 1.875991 * Y + 0.041556 * Z

 B = 0.055648 * X - 0.204043 * Y + 1.057311 * Z

2.2 HSV and HLS Color Space
The HSV (hue, saturation, value) and HLS (hue, lightness,

saturation) color models were designed to approximate the

way humans perceive and were developed to be more intuitive

in manipulating with color and interpret color.

Hue defines the color itself. The values for the hue axis vary

from 0 to 360 beginning and ending with red and running

throughout green, blue and all mediator colors. Saturation

indicates that the degree to which the hue differs from an

impartial gray. The values run from 0, which means no color

saturation and 1, which is the whole saturation of a given hue

at a given illumination. The value HLS or value HSV

indicates the illumination level. Both vary from 1 (white, full

illumination) to 0 (black, no light). The differences between

them is that maximum saturation (S=1) of hue in the HLS

color space with lightness L=0.5 and at value V=1 in the HSV

color space.

2.3 YCbCr Color Space
The YCbCr color space is widely used for various

applications. In this format, luminance information is stored

as a single component (Y), and chrominance information is

stored as two color-difference components (Cb and Cr). Cb

component represents the difference between the blue

component and a reference value. Cr component represents

the difference between the red component and a reference

value. YCbCr value can be double precision, but the color

space is typically well suited to 8 bit data. For 8 bit images,

the data range for Y is [16, 235], and the range for Cb and Cr

is [16, 240]. YCbCr leaves room at the top and bottom of the

full 8 bit range so that additional (nonimage) information can

be included in a video stream [12].

The following basic equations to convert RGB and YCbCr are

Y = (77/256)R + (150/256)G + (29/256)B

Cb = ‐(44/256)R ‐ (87/256)G + (131/256)B + 128

Cr = (131/256)R ‐ (110/256)G ‐ (21/256)B + 128

R = 1.164*(Y-16) + 1.596*(Cr-128)

G = 1.164*(Y-16) - 0.813*(Cr-128) - 0.392*(Cb-128)

B = 1.164*(Y-16) + 2.017*(Cb-128)

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.16, June 2013

51

Figure 2: YCbCr Color Space

2.4 YUV Color Space
The YUV color space is the recoding of RGB for downward

compatibility with black-and white television and for

transmission efficiency (minimum bandwidth). The YUV

color space is generate from the RGB space. It comprises the

luminance (Y) component and two color difference (U, V)

components. The luminance value can be calculated as a

weighted sum of red, green and blue components of color.

The color difference or components, chrominance are formed

by subtracting luminance from red and blue.

The principal advantage of the YUV color model in image

processing is color information and decoupling of luminance.

The significance of this decoupling is that the luminance

component of an image can be processed without affecting its

color components. YUV were used for a specific analog

encoding of color information in television systems.

Figure 3: YUV Color Space

There are several combinations of YUV color values from

nominal ranges that result in invalid RGB values, because the

possible RGB colors engage only piece of the YUV color

space limited by these ranges. Below figure shows the valid

color block in the YUV color space that corresponds to the

RGB color cube RGB values are normalized to [0, 1]).

The YUV notation means that the components are produce

from gamma-corrected RGB. Weighted sum of these non-

linear components of color space forms a signal representative

of luminance that is called luma component Y.

The following basic equation to convert between gamma-

corrected RGB and YUV models:

R = Y + 1.4075 * (V - 128)

G = Y - 0.3455 * (U - 128) - (0.7169 * (V - 128))

B = Y + 1.7790 * (U - 128)

Y = R * 0.299000 + G * 0.587000 + B * 0.114000

U = R * -0.168736 + G * -0.331264 + B * 0.500000 + 128

V = R * 0 .500000 + G * -0.418688 + B * -.081312 + 128

2.5 YCoCg Color Space

The YCoCg color model was developed to increase the

effectiveness of the image compression. This color model

comprises the luminance (Y) and two color difference

components (Co - offset orange, Cg - offset green).

Figure 4: YCoCg Color Space

There are following simple basic equations to convert
between RGB and YCoCg:

Y = R/4 + G/2 + B/4

Co = R/2 - B/2

Cg = -R/4 + G/2 - B/4

R = Y + Co - Cg

G = Y + Cg

B = Y - Co - Cg

http://software.intel.com/sites/products/documentation/hpc/ipp/ippi/ippi_ch6/ch6_color_models.html#fig6-4

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.16, June 2013

52

A variation of this type of color space which is called YCoCg

color space enables transformation reversibility with smaller

dynamic range requirements than does YCoCg. The possible

value of RGB colors engage only part of the YCoCg color

space limited by the nominal ranges, therefore there are

several combinations of YCoCg that result in invalid RGB

values.

3. EDGE DETECTION
After an image is segmented using CIEXYZ and YCbCr color

model, apply edge detection method. Edge detection is an

important preprocessing step in various computer vision

algorithms [13] [14]. Within this paper we implement the

Canny Edge Detector method.

3.1 Canny Edge detector
The Canny edge detection algorithm is known to many as the

optimal edge detector. Canny edge detector were to enhance

the many edge detectors already out at the time started work

[15] [16].

Step1: The first step of edge detection is to filter out any

noise in the original image before trying to locate and detect

any edges. The Gaussian filter can be completed by a simple

mask, it is used completely in the Canny edge detector. Once

a proper mask has been determined, the Gaussian smoothing

can be performed by standard convolution methods. A

convolution mask is usually much lesser than the real image.

Thus, the mask is slid over the image, manipulating a square

of pixels at a instance. The large width of the Gaussian mask,

the lower is the sensitivity of detector to noise. The

localization error in the detected edges also increases a little

as the Gaussian width is increased. The Gaussian mask is

shown below.

Figure 5: Discrete Approximation to Gaussian Function

Step 2: After eliminating the noise and smoothing the image,

the next step is to find the edge strength by taking the gradient

of the image. The Sobel operator operates a 2-D spatial

gradient measurement on an image. Then, the estimated

absolute gradient magnitude can be found at each point. The

Sobel operator take a couple of 3x3 convolution masks, one

approximating the gradient in the x-direction (columns) and

the other estimating the gradient in the y-direction (rows).

They are shown below:

Figure 6: Approximated Gradient

The edge strength or magnitude of the gradient is then
approximated using the formula:

|G| = |Gx| + |Gy|

Step 3: Finding the edge direction is slight once the gradient

in the x and y directions are known. However, we will

produce an error whenever sum X is equal to zero. So in the

code there has to be a constraint set whenever this takes place.

Whenever the gradient of edge in the x direction is equal to

zero, the edge direction has to be equal to 0 degrees or 90

degrees, depending on what the value of the gradient in the y-

direction. If Gy has a value of zero, the edge direction will

equal to 0 degrees, otherwise the edge direction will equal to

90 degrees [17]. The formula for calculating the edge

direction is as:

theta = invtan (Gy / Gx)

Step 4: After calculating the edge direction, the next step is to

relate the edge direction to a direction that can be traced in an

image. As a result if the pixels of a 5x5 image are aligned as
follows:

x x x x x

x x x x x

x x a x x

x x x x x

x x x x x

Then, it can be seen by looking at pixel "a", there are only

four possible directions when describing the surrounding

pixels 0 degrees (in the horizontal direction), 45 degrees

(along the positive diagonal), 90 degrees (in the vertical

direction), or 135 degrees (along the negative diagonal). So

now the edge direction has to be resolved into one of these

four directions depending on which direction it is closest to.

Assume of this as taking a semi circle and dividing it into 5

regions.

Figure 7: Edge Direction Diagram

Therefore, any edge direction falling within the yellow range

(0 to 22.5 & 157.5 to 180 degrees) is set to 0 degrees. Any

edge direction falling within the green range (22.5 to 67.5

degrees) is set to 45 degrees. Any edge direction falling

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.16, June 2013

53

within the blue range (67.5 to 112.5 degrees) is set to 90

degrees. Finally any edge direction falling within the red

range (112.5 to 157.5 degrees) is set to 135 degrees.

Step 5: After the edge directions are finding, nonmaximum

suppression now has to be applied. A Nonmaximum

suppression is used to trace along the edge in the edge

direction and suppress any pixel value (sets it equal to 0) 0 so

that is not considered to be an edge. This will produce a thin

line in the output image.

Step 6: Finally, hysteresis is used as a means of eliminating

streaking. The streaking is the breaking up of an edge contour

caused by the operator output fluctuating above and below the

threshold. If a single threshold value, T1 is applied to an

image, and an edge has an average strength of edge is equal to

T1, then due to noise, there will be instances where the edge

dips below the threshold. Equally it will also expand above

the threshold making an edge look like a dashed line. To

avoid this type of problem, hysteresis uses two thresholds, a

low and a high. Any pixel in the image that has a value greater

than T1 is presumed to be an edge pixel, and is marked such

as immediately. Then, any pixels that are connected to this

edge pixel and that have a value greater than T2 are also

selected as edge pixels [18].

4. DESIGN APPROACH

Figure 8: Block diagram of design approach

5. CONCLUSION AND FUTURE SCOPE
The main contribution of this paper is to propose a method to

construct a simple and fast face detection system. Initially the

images are enhanced by contrast adjustment and noise

removal. Then the images are divided into number of blocks

to extract the rectangle features. The feature values are

calculated or the block is considered based on a novel edge

tracking algorithm. This paper proposes an algorithm with

good accuracy and running time for face detection based on

Canny Edge Detector algorithm. Though there are some cases

of false positives, the overall performance of the proposed

algorithm is quite satisfactory. We can implement this

technique in real time application. We can also implement this

technique with hardware.

6. REFERENCES
[1] Chandrashekar M Beedimani, “Automated face detection

in color images using skin region and adaptive template

matching”, IJCER Journal.

[2] Ming-Hsuan Yang et.al. “Detecting faces in Images: a

survey”, IEEE transaction on Pattern analysis and

machine intelligene, vol. 24, no.1 2002.

[3] Sanjay singh et.al, “A robust skin color based face

detection algorithm”, Tamkang Journal of Science and

Engineering vol.6, no.4,pp227-234, 2003.

[4] Henry A. Rowley, Shumeet Baluja, and Takeo Kanade.

“Neural network based face detection”, IEEE

Transactions on Pattern Analysis and Machine Intellig

ence, 20(I), pp.23-38, 1998.

[5] Mohamed A. Berbar, Hamdy M. Kelash, and Amany A.

Kandeel, “Face and Facial Features Detection in Color

Images” Proceedings of the Geometric Modeling and

Imaging New Trends (GMAI'06).

[6] J. Chen, C. M. Taskiran, A. Albiol, C. A. Bouman, and

E. J. Delp, “Vibe: A video indexing and browsing

environment,” in IEEE- SPlE Conference on Multirnedia

Storage and Archiving Systems lV, Boston (USA),

September 1999.

[7] M. Yagi and T. Shibata, .Human-Perception-Like Image

Recognition System Based on the Associative Processor

Architecture,. in the Proc. of 11th European Signal

Processing Conference (EUSIPCO 2002), pp. I-103 - I-

106, Sep. 2002.

[8] Lalendra Sumitha Balasuriya, “Frontal View Human

Face Detection and Recognition” University of Colombo

Sri Lanka May 2000.

[9] Mohammad Mohmmad Fiuzy, Khosro Foad Rezaei,

Javad Mohammad Haddadnia, “A Novel Approach For

Segmentation Special Region In An Image”, MALJESI

Journal of Multimedia Processing.

[10] T, Agui, Y. Kokubo, H. Nagashi, and T.Nagao,

“Extraction of face recognition from monochromatic

photographs using neural networks,” Proc. 2nd Int’l Conf.

Automation, Robotics, and Computer Vision, vol.1, pp.

18.81-18.8.5, 1992.

[11] Abhishek Gudipalli, Dr.Ramashri Tirumala,

“Comprehensive Infrared Image Edge Detection

Algorithm” International Journal of Image Processing

(IJIP), Volume (6) : Issue (5) : 2012 .

[12] http://www.mathworks.in/help/images/converting-color-

data-between-color-spaces.html

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.16, June 2013

54

[13] V. Torre and T. A. Poggio. “On edge detection”. IEEE

Trans. Pattern Anal. Machine Intell., vol. PAMI-8, no.2,

pp. 187-163, Mar. 1986.

[14] Y. Suzuki and T. Shibata, .Multiple-Clue Face Detection

Algorithm Using Edge-Based Feature Vectors, accepted

for presentation in IEEE International Conference on

Acoustics, Speech, and Signal Processing (ICASSP

2004), May 2004.

[15] J. Canny. “Finding edges and lines in image”. Master’s

thesis, MIT, 1983.

[16] M. Turk and A. Pentland, “Eigenfaces for recognition,”

J. of Cognitive Neuroscience, vol.3, no. 1, pp. 71-86,

1991.

[17] Harshlata Vishwakarma, S.K.Katiyar, “Comparative

Study of Edge Detection Algorithms on the remote

sensing images Using matlab”, (IJAER) 2011, Vol. No.

2, Issue No. VI.\

[18] http://dasl.mem.drexel.edu/alumni/bGreen/www.pages.dr

exel.edu/_weg22/can_tut.html

IJCATM : www.ijcaonline.org

