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Abstract

We present two methods using mixtures of linear sub-

spaces for face detection in gray level images. One method

uses a mixture of factor analyzers to concurrently perform

clustering and, within each cluster, perform local dimen-

sionality reduction. The parameters of the mixture model

are estimated using an EM algorithm. A face is detected

if the probability of an input sample is above a predefined

threshold. The other mixture of subspaces method uses

Kohonen’s self-organizing map for clustering and Fisher

Linear Discriminant to find the optimal projection for pat-

tern classification, and a Gaussian distribution to model the

class-conditional density function of the projected samples

for each class. The parameters of the class-conditional den-

sity functions are maximum likelihood estimates and the de-

cision rule is also based on maximum likelihood. A wide

range of face images including ones in different poses, with

different expressions and under different lighting conditions

are used as the training set to capture the variations of hu-

man faces. Our methods have been tested on three sets of

225 images which contain 871 faces. Experimental results

on the first two datasets show that our methods perform as

well as the best methods in the literature, yet have fewer

false detects.

1 Introduction

Images of human faces are central to intelligent human

computer interaction. Much research is being done involv-

ing face images, including face recognition, face tracking,

pose estimation, expression recognition and gesture recog-

nition. However, most existing methods on these topics

assume human faces in an image or an image sequence

have been identified and localized. To build a fully auto-

mated system that extracts information from images of hu-

man faces, it is essential to develop robust and efficient al-

gorithms to detect human faces. Given a single image or a

sequence of images, the goal of face detection is to iden-

tify and locate all of the human faces regardless of their po-

sitions, scales, orientations, poses and lighting conditions.

This is a challenging problem because human faces are

highly non-rigid objects with a high degree of variability in

size, shape, color and texture. Most recent methods for face

detection can only detect upright, frontal faces under cer-

tain lighting conditions. In this paper, we present two face

detection methods that use mixtures of linear subspaces to

detect faces with different features and expressions, in dif-

ferent poses, and under different lighting conditions.

Since the images of a human face lie in a complex sub-

set of the image space that is unlikely to be modeled by

a single linear subspace, we use a mixture of linear sub-

spaces to model the distribution of face and nonface pat-

terns. The first detection method is an extension of factor

analysis. Factor analysis (FA), a statistical method for mod-

eling the covariance structure of high dimensional data us-

ing a small number of latent variables, has analogue with

principal component analysis (PCA). However PCA, unlike

FA, does not define a proper density model for the data since

the cost of coding a data point is equal anywhere along the

principal component subspace (i.e., the density is unnormal-

ized along these directions). Further, PCA is not robust to

independent noise in the features of the data since the prin-

cipal components maximize the variances of the input data,

thereby retaining unwanted variations. Hinton et al. have

applied FA to digit recognition and they compare the per-

formance of PCA and FA models [10]. A mixture model

of factor analyzers has recently been extended [7] and ap-

plied to face recognition [6]. Both studies show that FA per-

forms better than PCA in digit and face recognition. Since

pose, orientation, expression, and lighting affect the appear-

ance of a human face, the distribution of faces in the image

space can be better represented by a mixture of subspaces

where each subspace captures certain characteristics of cer-

tain face appearances. We present a probabilistic method

that uses a mixture of factor analyzers (MFA) to detect faces

with wide variations. The parameters in the mixture model

are estimated using an EM algorithm.

The second method that we present uses Fisher Linear



Discriminant (FLD) to project samples from a high dimen-

sional image space to a lower dimensional feature space.

Recently, the Fisherface method has been shown to out-

perform the widely used Eigenface method in face recog-

nition [2]. The reason for this is that FLD provides a bet-

ter projection than PCA for pattern classification. In the

second proposed method, we decompose the training face

and nonface samples into several classes using Kohonen’s

Self Organizing Map (SOM). From these labeled classes,

the within-class and between-class scatter matrices are com-

puted, thereby generating the optimal projection based on

FLD. For each subspace, we use a Gaussian to model each

class-conditional density function where the parameters are

estimated based on maximum likelihood [5]. To detect

faces, each input image is scanned with a rectangular win-

dow in which the class-dependent probability is computed.

The maximum likelihood decision rule is used to determine

whether a face is detected or not.

To capture the variations in face patterns, we use a set of

1,681 face images from Olivetti [20], UMIST [8], Harvard

[9], Yale [2] and FERET [15] databases. Both methods have

been tested using the databases in [18] [22] to compare their

performances with other methods. Our experimental results

on the data sets used in [18] [22] (which consist of 225 im-

ages with 619 faces) show that our methods perform as well

as the reported methods in the literature, yet with fewer false

detects. To further test our methods, we collect a set of 80

images containing 252 faces. This data set is rather chal-

lenging since it contains profile faces, faces with expres-

sions and faces with heavy shadows. Our methods are able

to detect most of these faces regardless of their poses, fa-

cial expressions and lighting conditions. Furthermore, our

methods have fewer false detects than other methods.

2 Related Work

Numerous intensity-based methods have been proposed

recently to detect human faces in a single image or a se-

quence of images. In this section, we give a brief review

of intensity-based face detection methods. See [23] for a

comprehensive survey on face detection. Sung and Pog-

gio [22] report an example-based learning approach for lo-

cating vertical frontal views of human faces. They use a

number of Gaussian clusters to model the distributions of

face and nonface patterns. For computational efficiency,

a subspace spanned by each cluster’s eigenvectors is then

used to compute the evidence of a face. A small window

is moved over all portions of an image to determine, based

on distance metrics measured in the subspaces, whether a

face exists in each window. In [16], a detection algorithm

is proposed that combines template matching and feature-

based detection method using hierarchical Markov random

fields (MRF) and maximum a posteriori probability (MAP)

estimation. The watershed algorithm is used to segment an

image at some fixed scales and to generate an image pyra-

mid. To reduce the search, a heuristic is used to select ar-

eas where faces may appear. Layered processes are used

in a MRF to reflect a priori knowledge about the spatial

relationships between facial features (eye, mouth and the

whole face) which are identified by template matching and

gradient of intensity. Detection decision is based on MAP

estimation. Colmenarez and Huang [3] apply Kullback rel-

ative information for maximal discrimination between pos-

itive and negative examples of faces. They use a family

of discrete Markov processes to model the face and back-

ground patterns and estimate the density functions. De-

tection of a face is based on the likelihood ratio computed

during training. Moghaddam and Pentland [12] propose a

probabilistic method that is based on density estimation in

a high dimensional space using an eigenspace decomposi-

tion. In [18], Rowley et al. use an ensemble of neural net-

works to learn face and nonface patterns for face detection.

Schneiderman et al. describe a probabilistic method based

on local appearance and principal component analysis [21].

Their method gives some preliminary results on profile face

detection. Finally, hidden Markov models [17], higher or-

der statistics [17], and support vector machines (SVM) [13]

[14] have also been applied to face detection and demon-

strated some success in detecting upright frontal faces under

certain lighting conditions.

3 Mixture of Factor Analyzers

In the first method, we fit the mixture model of factor an-

alyzers to the training samples using an EM algorithm and

obtain a distribution of face patterns. To detect faces, each

input image is scanned with a rectangular window in which

the probability of the current input being a face pattern is

calculated. A face is detected if the probability is above

a predefined threshold. We briefly describe factor analysis

and a mixture of factor analyzers in this section. The details

of these models can be found in [1] [7].✂☎✄✝✆ ✞✠✟☛✡✌☞✎✍✑✏✓✒✓✔✠✟✑✕✗✖☎✘✚✙✛✘
Factor analysis is a statistical model in which the ob-

served vector is partitioned into an unobserved systematic

part and an unobserved error part. The systematic part is

taken as a linear combination of a relatively small number

of unobserved factor variables while the components of the

error vector are considered as uncorrelated or independent.

From another point of view, factor analysis gives a descrip-

tion of the interdependence of a set of variables in terms of

the factors without regard to the observed variability. In this

model, a ✜ -dimensional real-valued observable data vector✢ is modeled using a ✣ -dimensional vector of real-valued



factors ✤ where ✣ is generally much smaller than ✜ . The

generative model is given by:✢✦✥★✧ ✤✪✩✬✫ (1)

where ✧ is known as the factor loading matrix. The factors✤ are assumed to be ✭✯✮✛✰✲✱✴✳✶✵ distributed (zero-mean inde-

pendent normals with unit variance). The ✜ -dimensional

random variable ✫ is distributed ✭✯✮✗✰✷✱✹✸✺✵ where ✸ is a di-

agonal matrix, due to the assumption that the observed vari-

ables are independent given the factors. According to this

model,
✢

is therefore distributed with zero mean and covari-

ance ✻ ✥★✧✼✧✼✽ ✩✾✸ . The goal of factor analysis is to find the✧
and ✸ that best model the covariance structure of

✢
. The

factor variables ✤ model correlations between the elements

of
✢

, while the ✫ variables account for independent noise

in each element ✢ . The ✣ factors play the same role as the

principal components in PCA, i.e., they are informative pro-

jections of the data. Given ✧ and ✸ , the expected value of

the factors can be computed through the linear projections:✿❁❀ ✤❃❂ ✢✲❄❅✥❇❆❈✢ (2)✿❁❀ ✤✶✤ ✽ ❂ ✢✷❄❅✥ ✳❊❉ ❆❈✧ ✩ ❆❈✢✌✢ ✽ ❆ ✽ (3)

where
❆✓✥★✧ ✽ ✻✪❋❅● .✂☎✄✗❍ ■❏✙✛❑▲☞✚▼◆✏✶❖P■◗✍✠❘◆❖❙✕

In this section, we consider a mixture of ❚ factor an-

alyzers (indexed by ❯❲❱❳✱✝❨ ✥❬❩ ✱❪❭❫❭❪❭❫✱❴❚ ) where each factor

analyzer has the same number of ✣ factors and each fac-

tor analyzer has a different mean ❵❃❱ . The generative model

obeys the mixture distribution:

❛ ✮ ✢ ✵ ✥❝❜❞❱❴❡ ●
❢ ❛ ✮ ✢ ❂ ✤✌✱✴❯❫❱❲✵ ❛ ✮✗✤❙❂ ❯❫❱❫✵ ❛ ✮✛❯❫❱❲✵❣✜✚✤ (4)

where ❛ ✮✛✤❃❂ ❯ ❱ ✵ ✥ ❛ ✮✗✤❤✵ ✥ ✭✯✮✛✰✲✱✐✳❤✵ (5)❛ ✮ ✢ ❂ ✤✌✱✴❯ ❱ ✵ ✥ ✭✯✮✗❵ ❱ ✩ ✧ ❱ ✤✷✱❥✸✺✵ (6)

The parameters of this mixture model are ❦✲✮✗❵ ❱ , ✧ ❱ ✵ ❜❱❴❡ ● , ❧ ,✸❊♠ where ❧ is the vector of adaptable mixing proportions,❧✲❱ ✥ ❛ ✮♥❯❫❱❫✵ . The latent variables in this model are the fac-

tors ✤ and the mixture indicator variable ❯❫❱ , where ❯❫❱ ✥♦❩
when the data point is generated by the first factor analyzer.

Given a set of training images, the EM algorithm [4] is

used to estimate ❦✺✮♣❵❃❱❳✱ ✧ ❱❲✵ ❜❱❴❡ ● , ❧ , ✸❊♠ . For the E-step of the

EM algorithm, we need to compute expectations of all the

interactions of the hidden variables that appear in the log

likelihood, ✿q❀ ❯❫❱❫✤❙❂ ✢✌rs❄❅✥ ✿❁❀ ❯❫❱✶❂ ✢✌r✗❄ ✿q❀ ✤❙❂ ❯❲❱t✱ ✢✌r✗❄ (7)

✿❁❀ ❯❫❱❪✤✚✤ ✽ ❂ ✢✌r✗❄❅✥ ✿q❀ ❯❫❱✶❂ ✢✌r✗❄ ✿❁❀ ✤✶✤ ✽ ❂ ❯❲❱❳✱ ✢✌r✗❄ (8)

Defining✉ r ❱ ✥ ✿q❀ ❯❫❱✶❂ ✢✌r✗❄❙✈ ❛ ✮ ✢✇r ✱✹❯❫❱❲✵ ✥ ❧✷❱❴✭✯✮ ✢✇r ❉①❵❃❱❳✱ ✧ ❱ ✧ ✽❱ ✩②✸✺✵
(9)

and using equations (2) and (6), we obtain✿q❀ ❯❫❱❪✤❙❂ ✢✇r♣❄❅✥ ✉ r ❱ ❆ ❱✚✮ ✢✇r ❉①❵❃❱❲✵ (10)

where ❆ ❱✦③ ✧✼✽❱ ✮ ✧ ❱ ✧✼✽❱ ✵ ❋☛● . Similarly, using equations (3)

and (8), we obtain✿❁❀ ❯❫❱❫✤✚✤ ✽ ❂ ✢✌r✛❄❙✥ ✉ r ❱✶✮✗✳④❉ ❆ ❱ ✧ ❱☛✩ ❆ ❱✎✮ ✢✇r ❉⑤❵❃❱❲✵❥✮ ✢✇r ❉⑤❵❃❱❪✵ ✽ ❆ ✽❱ ✵
(11)

The EM algorithm for mixture of factor analyzers can be

stated as follows:⑥ E-step: Compute
✿q❀ ❯❫❱✶❂ ✢✌r✗❄ , ✿❁❀ ✤q❂ ❯❫❱❳✱ ✢✇r♣❄ and

✿❁❀ ✤✚✤ ✽ ❂❯❫❱❳✱ ✢✇r♣❄ for all data points ⑦ and mixture components❨ .⑥ M-step: Solve a set of linear equations for ❧✷❱ , ✧ ❱ , ❵❃❱
and ✸ .

The mixture of factor analyzers is essentially a reduced di-

mensionality mixture of Gaussians. Each factor analyzer

fits a Gaussian to a portion of the data, weighted by the

posterior probabilities,

✉ r ❱ . Since the covariance matrix for

each Gaussian is specified through the lower dimensional

factor loading matrices, the model has ❚✾✣❃✜◆✩⑧✜ , rather than❚⑤✜❃✮✗✜⑨✩ ❩ ✵❴⑩❳❶ parameters dedicated to modeling covariance

structure in high dimensions.✂☎✄♣✂ ❷❸❖✌☞✚❖✇✡✌☞✚✙✝✔✠❹❺✞✠✟☛✡✇❖②❻❼✟❅☞❳☞✚❖✇✏❤✔✠✘
To detect faces, each input image is scanned with a rect-

angular window in which the probability of there being a

face pattern is estimated as given in equation (4). A face is

detected if the probability is above a predefined threshold.

In order to detect faces of different scales, each input im-

age is repeatedly subsampled by a factor of 1.2 and scanned

through for 10 iterations.

4 Mixture of Linear Spaces Using Fisher Lin-
ear Discriminant

In the second mixture model, we first use Kohonen’s

self-organizing map [11] to divide the face and nonface

samples into ❽ ● face classes and ❽❥❾ nonface classes, thereby

generating labels for the samples. Next, Fisher projection

is computed based on all ❽ ● ✩❿❽❥❾ classes to maximize the

ratio of the between-class scatter (variance) and the within-

class scatter (variance). The now labeled training set is pro-

jected from a high dimensional image space to a lower di-

mensional feature space, and a Gaussian distribution is used



to model the class-conditional density function for each

class where the parameters are estimated using the maxi-

mum likelihood principle. For detection, the conditional

probability of each sample given each class is computed

and the maximum likelihood principle is used to decide to

which class the sample belongs. In our experiments, the

reason that we choose 25 face and 25 nonface classes is be-

cause of the size of training set. If the number of classes

is too small, the clustering results may be poor. On the

other hand, we may not have enough samples to estimate

the class-conditional density function well if we choose a

large number of classes.➀✠✄✝✆ ➁⑨✟☛➂➃❖❙✕✝✙✝✔✠❹➅➄▲✟➇➆❿➈➉✕♥❖✇✘➋➊✬✘✎✙✝✔◆❹➌➄✼➍⑧■
In applying Fisher Linear Discriminant to find a projec-

tion, we need to know the class label of each training sam-

ple. However, such information is not available in the train-

ing samples. Therefore, we use Kohonen’s Self-Organizing

Map [11] to divide face samples into a finite number of

classes. In our experiments, we divide the face sample im-

ages into 25 classes. After training, the final weight vector

for each node is the centroid of the class, i.e., the prototype

vector, which corresponds to the prototype of each class.

The same procedure is applied to nonface samples. Figure 1

shows the prototypical face of each class. It is clear that the

sample face images with different poses and under different

lighting conditions (intensity increases from the lower right

corner to the upper left corner) have been classified into dif-

ferent classes. Note that the SOM algorithm also places the

prototypes in the two dimensional feature map, shown in

1, in accordance with their topological relationships in the

image space. In other words, prototype vectors correspond-

ing to nearby points on the feature map grid have nearby

locations in the high dimensional image space (e.g., nearby

prototypes have similar intensity and pose).➀✠✄✗❍ ✞✾✙✛✘✚➎✠❖❃✏✓➁⑨✙✝✔◆❖✇✟☛✏❸❷✬✙♥✘❳✡✇✏✶✙✝➆➏✙✝✔✠✟➇✔❈☞
While PCA is commonly used to project face patterns

from a high dimensional image space to a lower dimen-

sional feature space, a drawback of this approach is that

it defines a subspace such that it has the greatest variance

of the projected sample vectors among all the subspaces.

However, such projection is not suitable for classification

since it may contain principal components which retain un-

wanted large variations. Therefore, the classes in the pro-

jected space may not be well clustered and instead smeared

together [2] [6] [10]. Fisher Linear Discriminant is an ex-

ample of a class specific method that finds the optimal pro-

jection for classification. Rather than finding a projection

that maximizes the projected variance, FLD determines a

projection, ✤ ✥➑➐➒✽➓☛➔✷→ ✢ , that maximizes the ratio be-

➣✇↔ ↕❙➙✷➛➝➜➟➞✷➠✠➡▲➛➝➢✲➤✹➢✲➤❣➥❤➦✇➜q➢❤➧➉➜✚➨❤➩✚➫⑤➧✝➨❤➩➭➜⑤➩✎➯➲➨✶➳✹➳t➠
tween the between-class scatter (variance) and the within-

class scatter (variance). Consequently, classification is sim-

plified in the projected space. Recently, it has been demon-

strated that the Fisherface method outperforms the Eigen-

face method in face recognition [2].

Consider a ❽ -class problem, let the between-class scatter

matrix be defined as➵☛➸ ✥ ➺❞ r ❡ ●☛➻ r ✮✗❵ r ❉①❵➇✵❥✮♣❵ r ❉➋❵➇✵ ✽ (12)

and the within-class scatter matrix be defined as➵➇➼ ✥ ➺❞ r ❡ ●
❞➽t➾❲➚✎➪➹➶ ✮ ✢❃➘ ❉➋❵ r ✵❥✮ ✢✇➘ ❉①❵ r ✵ ✽ (13)

where ❵ is the mean of all samples, ❵ r is the mean of class➴ r , and ➻ r is the number of samples in class
➴ r . The

optimal projection ➐ ➓☛➔✷→ is chosen as the matrix with or-

thonormal columns which maximizes the ratio of the deter-

minant of the between-class scatter matrix of the projected

samples to the determinant of the within-class scatter matrix

of the projected sampled, i.e.,

➐ ➓☛➔✷→ ✥★➷✎➬❴➮▲➱❁➷❳✃❐ ❂ ➐➒✽ ➵ ➸ ➐ ❂❂ ➐ ✽ ➵➇➼ ➐ ❂ ✥ ❀ ❒ ● ❒ ❾➟❭❫❭❪❭ ❒ ❜ ❄ (14)

where ❦ ❒ r ❂ ⑦ ✥➌❩ ✱✹❶❤✱❪❭❫❭❪❭❥✱✐❚❮♠ is the set of generalized eigen-

vectors of
➵ ➸

and
➵ ➼

, corresponding to the ❚ largest gen-

eralized eigenvalues ❦❳❰ r ❂ ⑦ ✥Ï❩ ✱✹❶❤✱❪❭❫❭❪❭✹✱✐❚❮♠ . However, the

rank of
➵☛➸

is ❽⑨❉ ❩ or less because it is the sum of ❽ ma-

trices of rank one or less. Thus, the upper bound on ❚ is



❽✪❉ ❩ [5]. See [2] for details about a method to overcome

singularity problems in computing ➐ ➓☛➔✷→ .➀✠✄♣✂ ÐÑ✕✛✟➇✘❳✘tÒ➭Ð✦✍➹✔✠❘➉✙✛☞✚✙♥✍❈✔◆✟➇✕❊❷❸❖❙✔◆✘✎✙✛☞❫✖Ó✞✼▼◆✔◆✡✷☞✶✙✛✍➹✔
Once ➐ ➓☛➔✷→ is computed, the now labeled training set

is projected to the ❽Ô❉ ❩
dimensional feature space, i.e.,✤ ✥❝➐➒✽➓☛➔✷→ ✢

, and a Gaussian distribution is used to

model each class-conditional density (CCD) function, i.e.,❛ ✮✗✤❙❂ ➴ r ✵ ✥ ✭✯✮✗❵ ➪➹➶ ✱✹✻ ➪➹➶ ✵ where ⑦ ✥Õ❩ ✱❫❭❪❭❫❭❥✱✐❽ . The param-

eters, Ö ➪➹➶ ✥ ✮✗❵ ➪❈➶ ✱✹✻ ➪➹➶ ✵❴♠ of each CCD are the maximum

likelihood estimates, i.e.,×❵ ➪ ➶ ✥ ❩❂ ➴ r ❂ ❞Ø ➾ ➚✎➪ ➶ ✤ ➘ (15)

and ×✻ ➪➹➶ ✥ ❩❂ ➴ r ❂ ❞Ø ➾ ➚✎➪ ➶ ✮✗✤ ➘ ❉ ×❵ ➪➹➶ ✵❪✮✗✤ ➘ ❉ ×❵ ➪❈➶ ✵ ✽ (16)

➀✠✄s➀ ❷✬❖✌☞✎❖❃✡✷☞✶✙♥✔◆❹❿✞◆✟☛✡✌❖P❻❼✟❅☞❳☞✎❖❃✏❤✔✠✘
Each input image is scanned with a rectangular window

to determine whether a face exists in the window or not.

The decision rule for deciding whether an input window

contains a face or not is based on maximum likelihood,➴①Ù ✥❿➷❳➬✐➮☎➱❁➷➭✃➪ ➶ ❛ ✮✗✤❙❂ ➴ r ✵ (17)

To detect faces of different scales, each input image is re-

peatedly subsampled by a factor of 1.2 and scanned through

for 10 iterations.

5 Experiments

For training, we use a set of 1,681 face images (collected

from Olivetti [20], UMIST [8], Harvard [9], Yale [2] and

FERET [15] databases) which have wide variations in pose,

facial expression and lighting condition. In the second mix-

ture method, we start with 8,422 nonface examples from

400 images of landscapes, trees, buildings, etc. Although it

is extremely difficult to collect a representative set of non-

face examples, the bootstrap method similar to [22] is used

to include more nonface examples during training. Each

face sample is manually cropped and normalized such that

it is aligned vertically and its size is ❶❳✰➋Ú❇❶✎✰ pixels. To

make the detection method less sensitive to scale and ro-

tation variation, 10 face examples are generated from each

original sample. The images are produced by randomly ro-

tating the images by up to
❩❲Û

degrees with scaling betweenÜ ✰✶Ý and
❩ ❶❳✰✶Ý . This produces 16,810 face samples.

We test both methods on the three sets of images col-

lected by Rowley [18], Sung [22] and ourselves. In our

experiments, a detected face is a successful detect is if the

subimage contains eyes and mouth. Otherwise, it is a false

detect. The detection rate is the ratio between the number

of successful detects and the number of faces in the test set.

Table 1 shows the detection rates of our methods and the

reported results of several detection methods on the test set

in [18]. Experimental results on test set 1, which consists of

125 images (483 faces) excluding 5 images of hand drawn

faces, show that our methods have comparable detection

performance with other methods, yet with fewer false de-

tects. Table 1 also shows the our experimental results on

the test set of Sung and Poggio [22] which consists of 20

images excluding 3 images of line drawn faces (136 faces).

Both of our methods consistently perform well and have few

false detects.

Test set 3 consists of 80 images (252 faces), collected

from the World Wide Web, with different poses, expres-

sions and faces with heavy shadows. The detection rates

are
Ü✚Þ ❭àß✎Ý and

Ü✎Ü ❭➲❶✶Ý for MFA and FLD-based methods.

The number of false detects are á Û and á✚✰ , respectively.

Both methods perform equally well in detecting these faces

though the FLD-based method performs slightly better than

the first one. Figures 2 and 3 show the results of our meth-

ods on some test images. See the web page mentioned

above for more results. Notice that there is a false detect in

the upper left corner of the image in Figure 2 since one win-

dow resembles a face. Also notice that our methods can de-

tect, up to certain degree, profile faces and faces with heavy

shadows. However occluded, rotated faces or faces with

sunglasses cannot be detected effectively by both methods

due to lack of such examples in the training sets. None

of the existing detection methods cannot effectively detect

these types of faces except one recent method [19] seems

to able to detect rotated faces. Nevertheless, this method

cannot detect occluded faces or face with heavy shadows.

6 Discussion and Conclusion

We have described methods using mixture of linear sub-

spaces methods to detect human faces regardless of their

poses, facial expressions and lighting conditions. Both

methods find better projection than PCA for pattern clas-

sification, thereby facilitating detection of face and nonface

patterns. The first method fits a mixture of factor analyzers

to estimate the density function of face images, and the sec-

ond method uses Self-Organizing Map to partition the train-

ing set into classes and Fisher Linear Discriminant to find

the optimal projection for classification. Experimental re-

sults on three sets of images demonstrate that both methods

perform as well as the best algorithms in detecting upright

frontal faces, yet with fewer false detects.

The contributions of this paper can be summarized as

follows. First, we introduce projection methods that per-
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Test Set 1 Test Set 2

Method Detect Rate False Detects Detect Rate False Detects

Mixture of factor analyzers 92.3% 82 89.4% 3

Fisher linear discriminant 93.6% 74 91.5% 1

Distribution-based [22] N/A N/A 81.9% 13

Neural network [18] 92.5% 862 90.3% 42

Naive Bayes [21] 93.0% 88 91.2% 12

Kullback relative information [3] 98.0% 12758 N/A N/A

Support vector machine [13] N/A N/A 74.2% 20
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form better than PCA. Consequently, the classification re-

sult in the linear subspace is better. Second, we apply mix-

ture models such that the linear subspaces can better cap-

ture the variations of face patterns. Although some methods

[12][22] have applied mixture model, they use PCA for pro-

jection which is suboptimal for classification in subspaces.

On the other hand, it is not clear how SVM performs in

face detection since the study in [13] has applied SVM on

a rather small test set with 136 faces. It will be of great in-

terest to compare our methods with SVM on a large test set

since SVM aims to find the optimal hyperplane that min-

imizes the generalization error under the theoretical upper

bounds.
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