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Disclosed is a two step process for automatically finding a 

human face in an electronically digitized image (for 

example, taken by handheld digital cameras and digital 

video-cameras such as cam-carders), and for confirming the 

existence of the face by examining facial features. Step 1 is 

to detect the human face and is accomplished in stages that 

include enhancing the digital image with a blurring filter and 

edge enhancer in order to better set forth the unique facial 

features such as wrinkles, and curved shapes of a facial 

image. After prefiltering, preselected curves sometimes 

referred to as snakelets are dropped on the image where they 

become aligned to the natural wrinkles and curves of a facial 

image. Step 2 is to confirm the existence of the human face 

in seven stages by finding facial features of the digital image 

encompassing the chin, sides of the face, virtual top of the 

head, eyes, mouth and nose of the image. Ratios of the 
distances between these found facial features can be com­

pared to previously stored reference ratios for recognition. 

This method for detecting facial features of an image can be 

used in applications such as but not limited to detecting 

human faces for the gathering of population age-statistics 

from patrons at entertainment/amusement parks and televi­

sion network viewer-rating studies. Such gathering can 

include counting the patrons, distinguishing certain age and 

gender groups, and/or identifying specific people. Computer 

vision with this capability can further have application in 

such fields as automated surveillance systems, demographic 

studies, automated photography for point-and-shoot cam­

eras and human computer interactions. Automated photog­

raphy can eliminate the manual adjustment problems that 

result in poor quality from lack of focused subjects. Com­

puter systems can utilize this system to recognize and 

respond to the specific needs of a user, and further translate 

for human users. 
Primary Examiner-Yon J. Couso 

Attorney, Agent, or Firm-Brian S. Steinberger 3 Claims, 19 Drawing Sheets 
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Fig. 2 
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Fig. 3 
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Fig. 6 
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1 
FACE DETECTION USING TEMPLATES 

This invention relates to detecting human faces, and in 

particular to a process for automatically finding and detect­

ing a human face from digital images. This application is a 

continuation-in-part to application Ser. No. 08/198,816 filed 

on Feb. 18, 1994 now abandoned entitled Automatic Feature 

Detection and Age Categorization of Human Faces in Digi­

tal Images. 

BACKGROUND AND PRIOR ART 

Humans are generally able to categorize a person to a 

precise age group based on an image of the person's face. 

Humans also have the capability of recognizing familiar 

faces as well as recognizing facial expressions. For com­

puters to have these visual capabilities would represent a 

major commercial advantage. However, current computer 

vision systems lack the ability of finding faces in images and 

completing facial analysis. 

U.S. Pat. No. 3,805,238 to Rothjell describes a method of 

2 
able to differentiate between audible word commands, the 

inventors are not aware of any such systems that will allow 

a computer to interpret and respond to the facial images of 

a user. For example, a human's moves their lips to say no, 

5 and/or frowns, and/or shakes their head from side-to-side, 

another person naturally interprets these expressions as a 

negative response to a question even when no sounds are 

audible. None of the prior art cited above addresses the 

problems of recognizing the common meaning intended by 

10 a particular facial feature. Thus, in human computer inter­

faces it is advantageous to be able to find the human face in 

the scene, so that the computer can respond to the facial 

expression of the human, and then be able to interpret the 

plain meaning of the facial features of that human. Utilizing 

15 a computer to translate the facial features of a human can 

have significant applications such as but not limited to 

serving the needs of the blind and deaf. 

SUMMARY OF THE INVENTION 

20 

identifying human beings using selected facial body curves. 

However, this patent is limited to the facial side profiles and 

does not analyze minute detailed curves such as the facial 

wrinkles which are unique to each human being and is not 
25 

specifically concerned with digitally created images. U.S. 

Pat. No. 4,975,969 to Tal describes analyzing facial param­

eters. However, this patent also does not analyze the unique 

facial features of the subject being examined. U.S. Pat. No. 

5,163,094 to Prokoski et al. describes a system for identi-
30 

fying individuals from images. However, this patent restricts 

the detected image to that taken by a thermogram. The 

thermogram pictures used in Prokoski et al. generally center 

The first objective of the present invention is to provide an 

automatic method for detecting a human face from a digital 

image. 

The second object of this invention is to provide a method 

of using computer vision to recognize the existence of a 

facial image from a digital image. 

The third object of this invention is to provide a method 

of confirming that facial features exist from the detected 

human face. 

A fourth object of this invention is to provide a method to 

interpret and recognize the common meaning intended by 

the facial image. 

A preferred embodiment is described for using a two step 

process for automatically finding a human face in an elec­

tronically digitized image (for example, taken by a video­

camera), and for confirming the existence of the face by 

on various heat levels that are broadly generated by a face 

but the thermograph pictures themselves do not recognize or 
35 

show the specific wrinkles that are unique to each individu­

al's face. examining facial features. The first step is to detect the 

human face and is accomplished in five stages. Stage one is 

to convolve a digital image with a blurring filter and with an 

Using computer vision to analyze for faces and to inter­

pret facial-expressions, can be used in various application 

areas such as but not limited to the gathering of population 

and age-statistics from patrons at entertainment/amusement 

parks and television network viewer-rating studies. Com­

puter vision with this capability can further have application 

in such fields as automated security/surveillance systems, 

demographic studies, safety monitoring systems, human 

interfaces to computers, and automated photography. 

Current problems exist with manual operated cameras. In 

photography, one may wish to aim the camera in the vicinity 

of a subjects face and have the camera center itself on that 

face automatically. Normally, users must take time to manu­

ally adjust the camera lens and the body of the camera itself. 

Such manual adjustments would also be needed if the person 

taking a picture must search for a single recognized face 

from multiple faces in a scene. With manual adjustments, the 

quality of the pictures can than depend upon the skill of the 

user. The manual adjustments usually results in different 

users taking nonuniform pictures of dissimilar quality if they 

all use the same camera at different times. An automated 

40 edge enhancer. Stage two is to drop a population of prese­

lected curves, sometimes referred to as snakelets, onto the 

digital image. Stage three is to eliminate these curves from 

plateaus, Stage four is having the curve nodes vote for a 

facial oval. Stage five of the first step is to allow for 

45 non-maximal suppression of the votes from step four. Step 

2 is to confirm the existence of the human face in seven 

stages by: 1. finding an initial rough oval that encompasses 

the chin from the image; 2. adjusting the oval to find the chin 

of a face; 3. finding the sides of a face; 4. finding the eyes 

50 in the face; 5. finding the mouth of the face; 6. finding the 

nose of the face; and 7 verifying the normalicy of facial 

feature ratios from the found facial features of stages 3 

through 6. Ratios of the distances between these found facial 

features can be compared to previously stored reference 

55 
ratios for recognition. 

point-and-shoot camera and camcorder would eliminate the 

adjustment problems prevalent from making manual adjust- 60 

men ts. None of the prior art listed above allows for detecting 

Further objects and advantages of this invention will be 

apparent from the following detailed description of a pres­

ently preferred embodiment which is illustrated schemati­

cally in the accompanying drawings. 

BRIEF DESCRIPTION OF THE FIGURES 

a facial image that would allow for a camera to automati­

cally align itself to point and shoot a subject Automated 

point-and-shoot cameras using face detection technology 

can create pictures of a uniform quality by different users. 65 

Another problem exists where computers are interacting 

and responding to human users. While computers may be 

FIG. 1 is a flow chart overview of the two step process 

used in the preferred embodiment for the invention. 

FIG. 2 illustrates the five stages followed in step one of 

FIG. 1. 

FIG. 3 illustrates the seven stages followed in step two of 

FIG. 1. 
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3 
FIG. 4 shows the directional derivative orthogonal to the 

snakelet curve for each side of the snakelet used in stage 3 

of FIG. 2. 

FIGS. Sa through 5d illustrate the resultant images using 

the five stages of FIG. 2. 

FIG. 6 shows a face template with the parameters used for 

oval-fitting and eye fitting. 

FIGS. 7a through 7/illustrates the process followed in the 

oval fitting stage of FIG. 3. 

FIGS. Sa through Sf illustrates the various stages followed 

in a chin finding procedure of FIG. 3. 

FIGS. 9a and 9b, respectively shows the right and left 

open-ended parabolas. 

FIGS. lOa through lOe illustrates the changes followed in 

locating the left and right sides of the face used in FIG. 3. 

FIGS. lla through 11/ shows the outcome for finding a 

virtual head of FIG. 3 from an original image. 

4 
240, is to find the eyes of the face. Stage four, 250, is to find 

the mouth of the face. Stage five, 260, is to find the nose of 

the face. Stage seven, 270, is to verify that facial features are 

located in typical positions. 

5 STEP A: FIND CANDIDATE FACES 

Digital images are generally two dimensional arrays of 

numbers that each represent the level of brightness at each 

pixel in the image. Referring to FIG. 2, in stage one, 110, of 

Step A, the digital image is prefiltered with a blurring filter 

10 and edge enhancer. A blurring filter is when you take a 

region of pixels from the image and take their weighted sum 

value and assign that result to the center of that region and 

do this to every possible center of a region in the image. An 

example is assigning all the weights to be 1/n where n is the 

15 number of pixels in the region. An edge enhancer is a filter 

that will increase the intensity variation near an actual edge 

in the image. An edge in an image is a discontinuity in the 

intensity of the image or in its rate of change. An example 

FIG. 12 shows the snakelets and chin-point that is used in 
20 

the virtual top of head finding algorithm used in one of the 

stages of FIG. 3. 

of combining both a blurring filter with an edge enhancer is 

described in parent application Ser. No. 08/198,816 now 

abandoned which is incorporated by reference, which uses a 

exponential filter and a morphological operator as a blurring 

filter and edge enhancer, respectively. Thus, the digital 

image is prefiltered at step one, 110 of FIG. 1, in order to 

FIGS. 13a through 13i shows the various levels of the 

Iris-attracting and fitting stage. 

FIGS. 14a through 14d shows the outcome oflocating the 

center of the mouth, and the bottom of the nose. 

FIGS. 15a through 15/ illustrates the six ratios that are to 

be evaluated for age classification for Step 2 of FIG. 2. 

FIGS. 16a through 16y shows the original images for the 

baby class. 

FIGS. 17a through 17y shows the final fit for the baby 

class of FIGS. 16a through 16y. 

FIGS. lSa through lSv shows the original image for the 

adult and senior class. 

FIGS. 19a through 19v shows the final fit for the adult and 

senior class of FIGS. lSa through lSv. 

DESCRIPTION OF THE PREFERRED 

EMBODIMENT 

Before explaining the disclosed embodiment of the 

present invention in detail it is to be understood that the 

invention is not limited in its application to the details of the 

particular arrangement shown since the invention is capable 

of other embodiments. Also, the terminology used herein is 

for the purpose of description and not of limitation. 

FIG. 1 is a flow chart overview of the two step process 

used in the preferred embodiment for the invention. The first 

step A, 100, covers finding a candidate face from a digital 

image. The details of this step are illustrated in FIG. 2. The 

second step B, 200, is to confirm that facial features exist 

from the candidate face. 

25 enhance the edges of the image. 

Referring to FIG. 2, in stage two, 120, small preselected 

curves sometimes referred to as snakelets, are dropped onto 

the image. This process has sometimes been referred to as 

snakes. Snakes is a method for matching a model of a curve 

30 to an actual curve in a general image. Kass M., WitkinA. and 

Terzopoulos D. (1988), "Snakes: Active Contour Models", 

International Journal of Computer Vision, pp. 321-331. 

We use snakes to find pieces of curves, such as a piece of 

a wrinkle or a piece of a chin, or a piece of a side of a face 

35 and the like. These pieces of snakes, we call snakelets. In a 

digital image where intensity values in that image can be 

interpreted as height, a snake is a curve, representing a string 

of connected pixels, such that this curve will tend to adjust 

itself so that it falls into a local valley. Hence, such a curve 

40 is first dropped somewhere (fitting over certain pixels), then 

the connected curve will tend to slither down the intensity 

valley till it stabilizes and slithers no more. The manner in 

which stabilization is evaluated by adding together the 

intensity values beneath a snake. See FIG. 4. Then if by 

45 moving one of the points to a neighboring pixel, the sum can 

be decreased, the movement is carried out If the movement 

will increase the overall sum, it is not carried out. After all 

possibilities have been examined, the snake is said to be 

stabilized, when no more movement occurs amongst the 

50 connected pixels, and the snakes become aligned to and 

generally match a natural curve in the image. See FIGS. 

5a-5d. 

FIG. 2 illustrates the five stages followed in step one of 

FIG. 1, and are broadly discussed as follows. In stage one, 55 

110, the image is convolved with a blurring filter and edge 

enhancer. In stage two, 120, snakelets are dropped onto the 

image. In stage three, 130, snakelets are eliminated from 

plateaus. In stage four, 140, snakelet nodes vote for face 

ovals. In stage five, 500, there occurs a non-maximal sup- 60 

pression of votes. 

In stage two, 120, of FIG. 2, multiple snakelets are 

dropped in random orientations in a grid, one per grid point, 

in a rectangular region that spans the whole image until the 

snakelets have stabilized. Those snakelets that have found 

shallow type valleys also referred to as plateaus are elimi­

nated in the next step. 

In stage three, 130, of FIG. 2, snakelets are eliminated 

from plateaus. In order to eliminate snakelets that do not 

correspond to intensity edges, shallow potential valleys in 

which snakelets have settled are detected. A shallow valley 

is detected according to the following: For each point in a 

snake let, the directional derivative (of the raw image 

FIG. 3 illustrates the seven stages followed in step two of 

FIG. 1, where facial features in a candidate face are con­

firmed to exist and are broadly discussed as follows. Stage 

one, 210, is to find a initial rough oval about the face. Stage 65 

two, 220, is to find the chin and adjust the oval accordingly. 

Stage three, 230, is to find the sides of the face. Stage three, 

intensity) taken orthogonal to the snakelet curve is calcu­

lated. FIG. 4 shows the directional derivative orthogonal to 

the snakelet curve for each side of the snakelet. 
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5 
Referring to FIG. 4, the snakelet points are summed 

separately for each side of the snakelet and normalized for 
the number of points in the snake let, to obtain two sums that 
indicate the steepness of the valley the snakelet is occupy­
ing. If these steepness sums do not exceed some preselected 
threshold, the snakelet is then eliminated. In this process, 
only those snakelets that lie in a deep enough edge-potential 
valley survive. By "deep enough", we mean valleys that are 

not shallow. 

In stage four, 140, of FIG. 2, snakelets vote for oval 

curves of a facial image by using a Hough Transform 

function. The snakelet survivors, (that is those that are in 

deep-enough valleys) then are used to obtain a Hough 

Transform for the ovals (ellipses) that the curves belong to. 

The Hough Transform which is used for overall voting is 

implemented in two stages. First, the two end-points of each 

snakelet vote for a center of the oval. The equations (1) and 

(2) for two points #(x1,y1)# and (x2,y2) on an oval centered 

at (xc,Y c), as follows, 

(x1 +x,)2 (Yt + y,)2 
~1 + 

(1) 

a2 b2 

and 

6 
applying a morphological operator of close(21) and then 
blurring it by using an exponential filter e-a(x2+y2)112 with 

an a of 0.8. A morphological operator applies an operator to 

an image in three steps: first the image has its similar-

5 intensity regions broadened; second another version has its 

similar-intensity regions narrowed; and third, the second 

version is substracted from the first. The potential image for 

the valley (which is the region of lowest intensity in the 

image) was generated by first applying a morphological 

10 operator which first broadens the similar-intensity regions, 

and then narrows them, and then blurring it by using an 

exponential filter with an a value of 0.4. 

The eye potential image is the potential image to assist 

finding the eye; this potential image is generated by a first 

15 difference operator of size 3, in both X and Y directions. The 

symbols in FIG. 6 breakdown as follows: 

Oval Center (xO, yO) is the center of the oval. 

fa is half the horizontal width of the oval through its center 

fb is half the vertical height of the oval through its center 

20 r is the radius of the left iris; it is also the radius of the right 

ins. 

(x2 +x,)2 (y2 + y,)2 
~1 

(2) 25 

leye (x,y) is the center position of the left iris 

reye (x,y) is the center position of the right iris 

nose (x,y) is the position of the base of the nose 

mouth (x,y) is the center of the mouth 
+ 

a2 b2 

where; 

x1 is the horizontal coordinate of the first of two points. 

y 1 is the vertical coordinate of the first of two points. 

x2 is the horizontal coordinate of the second of two points. 

y2 is the vertical coordinate of the second of two points. 

xc is the horizontal coordinate of the center of the oval. 

y c is the vertical coordinate of the center of the oval. 

a is the first oval parameter. 

b is the second oval parameter. 

Equations (1) and (2) are combined to form equation (3) 

as follows: 

30 

35 

chin (x,y) is the lowest point of the chin 

FIND INITIAL ROUGH OVAL 

The initial oval-finding stage 210 uses the edge-image 

potential to find the best oval that fits the image. 

E ova!_total=E edge +E internal 

Ecdgc ~ !ei1th <Pcdgc(x)ds C2 f ~ 
g face_edge 

(3) 40 The coefficients used are: c2=200, C3 =100, k1 =100, k2=100 

000, ~1 =0.04, ~2=0.028. 
b=± 

(y2 + y,)2 (x1 + x,)2 - (yi + y,)2 (x2 + x,)2 

(x1 + x,)2 - (x2 + x,)2 

Thus, for every pair of snakelet end-points or nodes and 

given a particular value for (xc,Y J. a value for "b" is 

computed. By dividing the possible values of "b" into 

several intervals, support for coarsely binned (intervals are 

called bins) values, of b is computed across all possible 

values of the center (xc,Yc)· In other words, snakelet nodes 

vote for a face oval. After which stage five of FIG. 2 occurs 

In Stage five, 150, FIG. 2, non-maximal suppression is 

then performed on values of b. This means that for a range 

of possible values of b only local peaks in the votes(most 

popular values of "b") are recorded for subsequent process­

ing. 

The next part of the Hough Transform which is a voting 

procedure, is performed on all component points #(x;,y)# to 

obtain the parameter a, according to equation (4). 

The oval axes half-lengths (fa,fb), are initialized with a 

value and the oval is positioned inside the face perimeter. 

The k1 term force draws the oval center downward because 
45 the oval center found in-stage 1 is biased towards the top due 

to the inclusion of hair in stage 1. The k1 term also maintains 

the horizontal component of the center close to where it was 

initially dropped. The k3 terms are an outward forcing term 

of each half-length to prevent the oval from becoming too 

50 small. The k3 term also helps to overcome the possibility of 

the lower edge of the oval stabilizing around the mouth. The 

k2 term tries to maintain a ratio that is reasonable for a face. 

The fitting of the oval is performed by iteratively updating 

the oval center position and the oval axes half-lengths (fa, 

55 fb), The update formula is obtained by gradient descent with 

respect to these four parameters. The stage is complete when 

the total energy stabilizes around a minimum value. FIG. 7 

illustrates the process followed in the oval fitting stage. FIG. 

(
4

) 60 
7a shows an original image. FIG. 7b shows the image with 

a negative edge potential. FIGS. 7c through 7/ show the 

various stages of fitting the oval until a final fit has been 

reached. 

a=± 
b2 - (y; + y,)2 

where: 

x1 is the horizontal coordinate of the i th point. 

y 1 is the vertical coordinate of the i th point. 

intensity of the image or in its rate of change. In FIG. 6, the 

potential image for the edge <Pedge was generated by first 

CHIN-FINDING STAGE 

The chin-finding stage 220 of FIG. 3, uses the edge-image 

65 potential to find the bottom of the chin. First, multiple 

snakelets are dropped in random orientations in a grid, one 

per grid point, in a rectangular region of width 3/2F a 
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7 
centered at the vertical axis of the oval center, and of height 

V.fb to the top and 1/sfb to the bottom positioned from the 

horizontal axis tangent to the bottom of the oval. 

8 
-continued 

Perform Non-Maxima suppression; 

Snakes is a method for matching a model of a curve to a 
curve in a general image. Kass M., Witkin A. and Terzopou- 5 

los D. (1988), "Snakes: Active contour models", Interna­
tional Journal of Computer Vision, pp. 321-331. We use 
snakes to find pieces of curves, such as a piece of a wrinkle 

(keep only the local peaks) 

Select the 5 local maxima and rank them in descending order; 

Select the winning bin, which is BIN[h, c ]; 

Extract the snakelets that voted for the winning bin, for later use; 
or a piece of a chin, or a piece of a side of a face. These 
pieces of snakes, we call snakelets. 

After all the snakelets have stabilized, they are used to 
obtain a voting scheme for the strongest parabola in that 
region. The voting scheme is implemented in two stages. 
First, each snakelet votes for a coarse candidate position for 
the base of the parabola. Non-maximal suppression is per­
formed on these votes, and the best five are chosen. Amongst 
these five, the one that is located in the highest position on 
the face (to eliminate parabolas corresponding to necklines 
of clothing, or of the shadow formed by the chin) is chosen. 

10 For the right open-ended parabola of FIG. 9a, the parabola 

equation is: 

x~k(y-c) 2 +h 

For the left open-ended parabola of FIG. 9b, the parabola 
15 equation is: 

x~-k(y-c )2 +h 

~~ef;a~~e a~~af ~~~~~d~~,t ~~~e~ f~~et;i:e:~~ni~f {h~s~~~~ ~! 20 

FIG. 10 illustrates the changes followed in locating the 

left and right sides of the face. This process works even 

under conditions that are not ideal, except when the ear is too 

close to the side of the face, or when there is dishevelled hair performed in a similar manner. 

This leads to detection of the chin, when it is delineated 
in the raw image. If the image quality is poor, or illumination 
conditions are bad, the correct position of the chin is very 
difficult to find. 25 

below the lower half of the face. FIG. lOa shows the original 

image. FIG. lOb shows the negative of the edge-image 

potential. FIG. lOc shows a rectangular grid of randomly 

oriented snakelets dropped on each side of the initial oval. 

FIG. lOd shows the image with the snakelets settling down. 

FIG. lOe shows the symbol "X" on each side that marks the 

base point of the parabola for that side of the face. 

FINDING THE VIRTUAL TOP OF THE HEAD 

Computing the virtual top of head in stage 240 of FIG. 3 

is very difficult to estimate when the person has hair on their 

head. Hence, an alternative strategy is used here. 

At this stage, the three pools of snakelets that voted for 

Determination of whether a chin is found is currently 
done by human visual inspection. If it has been found, it is 
used in three places: to refine the initial oval; to find the 
virtual top of the head using also the sides of the face (see 
upcoming sections on "Face Side-finding stage" and "Find- 30 

ing the virtual top of the head"); and to be used in ratios 3a 
and Sa. If it is determined that it is not found, the bottom of 
the initial oval is used in the ratios, thus requiring ratios 3b 
and Sb. In these ratios, the chin is referred as "ochin" (for 
oval-chin). 35 

winning parabolas in FIG. lOe are pooled, and a single oval 
is fit to all the snakelets' points. The oval is used to find the 

virtual top of the head, as confined by the snakelets that 

supported the parabolas of the chin and sides of the face. The 

purpose of this is to have an estimate of the ratio of the 

FIG. S illustrates the various stages followed in a chin 
finding procedure. FIG. Sa shows an original image. FIG. Sb 
shows the image with a negative of edge potential. FIG. Sc 
shows the image after snakelets have been dropped. FIG. Sd 
shows the image with snakelets at an intermediate stage. 
FIG. Se shows the snakelets in a stabilized form. FIG. Sf 
shows the winner in Hough space marked with and "X", 

which signifies the chin in the image. 

FACE SIDE-FINDING STAGE 

The face side-finding stage 230 of FIG. 3, uses the 
edge-image potential to find the left and right sides of the 
face. This stage uses the parabola-fitting algorithm, except 
that the parabola equations are modified to suit the left and 
right open-ended parabolas. FIGS. 9a and 9b shows the right 
and left open-ended parabolas. FIG. 9a shows a right 
open-ended parabola used to fit the left side of a face. FIG. 
9b shows a left open-ended parabola that is used to fit the 
right side of a face. The parabola-fitting algorithm is as 
follows: 

for all snakelets { 

/* (x 1' YI) and (x2' y,) are two end points of the snake let; *I 

BIN[ h, c] ++; /* Increment bin *I 

40 
height of the eyes from the chin, relative to the virtual top 

of the head. This process can be affected by the errors in 

finding the sides of the face, which in turn are affected by 

dishevelled hair in the lower half of the face, and a ear that 

is too close to the side of the face. 

45 
FIGS. lla through 11/ shows the outcome for one of the 

successful cases. FIG. lla shows an original image. FIG. 

llb shows the negative of edge potential of that image. FIG. 

llc shows original snakelets dropped for the chin and the 

sides of face. FIG. lld shows the snakelets after they have 

50 
settled down. FIG. lle shows snakelets that support the 

three parabolas. FIG. 11/ shows that the fit of the face-oval 

has been refined. Wherein the virtual top of the head is the 

top of the oval shown in FIG. llf 
The following is a numerical description of the process of 

55 
estimating the oval for the virtual top of the head. The 

parametric form of the oval equation is as follows: 

60 

65 

x=fa *cos8+x0 

where 

(x0 ,Yo)=oval-center, 

(x, y)=point on the oval-edge, 

8=angle from the x-axis, 

(fa,fb)=the respective x and y distances from the oval­

center 
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9 
Given (x, y), (x0 , y0) and fb, we can solve for fa: 

fa~(x-x 0 )/cos8 5 

FIG. 12 shows the snakelets and chin_point that is used 

in the virtual top of head finding algorithm used in one of the 

stages of FIG. 3. FIG. 12 shows the resulting snakelets of the 

parabola-fitting for the three groups. These snakelets are 10 

then used as an input to the virtual top of the head finding 

algorithm. The algorithm for finding the virtual top of the 

head is as follows: 

Eintensity 

Evalley 

10 

-continued 

C5 ff :XJ --- <P· . x dA area . . intensity( 

left_ uis_ area 

- area . . . <Pintensiry(x)dA C5 ff ~ 
nght_ uis_ area 

C5 ff ~ area <l>vallcy(x )dA 
left_ iris_ area 

C5 ff ~ area . . . <l>vallcy(x)dA 
nght_ uis_ area 

Perform parabola fitting for chin, left and right sides of the face; 

/* As a result from parabola fitting, we have all the snakelets that 

15 E,y,~~f <l>,y,(X}ds+ 
eng left_ iris_ edge 

contributed to the three parabola groups and a chin point (x, y) 
from 

the chin parabola. */ 

/* The chin point (x, y) serves as the base of the oval *I 

for all snakelets { 

for each snakelet point SP; { 

/* SP;(x, y) ~current point under consideration (known) */ 

/* x0 ~ x from the chin point (x, y) *I 

for Yo~ Ym;n to Ymax { 

/ 6 ~Yo - chin(y); /* y from the chin point (x, y) */ 

8 ~ sin-'[(y - Yo)! fbl; 

fa ~ (x - x0 )/cos(8); 

BIN[y0 , !al++ ; /* increment bin */ 

Perform Non-Maxima suppression; 

Select the 5 local maxima and rank them in descending order; 

Select the winning bin - BIN[y0 , !al; 

EYE-FINDING STAGE 

The eye-finding stage 250 of FIG. 3 consists of an 

iris-attracting sub-stage and an iris-fitting substage. 

The iris-attracting sub-stage places both the left and the 

right iris center of the template (FIG. 6) near the respective 

iris centers in the image specified by the oval parameter. 

20 

C4 f ~ )---u;- <P cyc(XJdS 
eng right_ iris_ edge 

The coefficients used are: c4 =100, c5 =300. 

The iris centers are initially positioned, guided by the oval 

25 
parameters. The valley potential is strong around the actual 

iris area and it draws the iris/eye template over a substantial 

distance. The update is by gradient descent which is a 

procedure that changes the parameters in such a manner that 

causes the strongest possible decrease in the Eeye -total· The 

30 oval parameters are not allowed to change in this stage. 

Thus, only a change in the iris parameters will update the 

total energy value. 

For the his-fitting substage, the equations from the Iris­

attracting stage and additional equations for each of the 
35 energy potentials are used. Also an internal energy term is 

introduced to prevent the iris radius from collapsing to a 

point. The equations used are as follows: 

40 
E iris_total=E intensity_total+Evalley_total+E eye_Jota/l internal 

E intensity_total=E intensity_eye +E intensity_iris 

45 
E valley_total=E valley_eye +E valley _iris 

E eye_total=E eye_eye +E eye_iris 

Eintensity - eye same as in Iris-attracting stage 

50 

2xc9 f 
Emtensity iris = r x length <Pintensity{J)ds + 

left_ iris_ edge 

Using the parameters from the refined oval (or the initial 55 

oval), both the left and the right iris centers of the template 

--- Phi;n1m,;1y(i)dA 2xc9 ff 
r x area left_ iris_ area 

are placed near the respective irises in the image. The left iris 

center is placed 1.ltofb, above oval center for y and Yifa left 

of the oval center for x. Similarly, the right iris center is 

placed 1.ltofb above oval center for y and Yifa right of the oval 60 

center for x. The iris-attracting stage uses the valley image 

potential <Pvalley and the intensity image potential <Pintensity to 

attract both left and right iris centers to their true positions. 

Eeye_Jotal = Eintensity + Evalley + Eeye 
65 

Evalley -eye same as Iris-attracting stage 

2xcs f 
Evalley_iris = r x length <Pvalley{J)ds -

left_ iris_ edge 

2 X Cg 

r x area f f 
Phivallcy(i)dA 

left_ iris_ area 
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11 12 
Eeye - eye same as in Iris-attracting stage FINDING IBE NOSE 

Eeye_iris =Ith <Peye(x)ds C7 f ~ 
eng left_iris_edge 

The coefficients used are: c4 =100, c5 =300, C7 =200, c8 =100, 
C9 =150, k4 =80000, ~ 3 =0.6. 

After the mouth is found, the next stage is finding the nose 

260 FIG. 3. Here, an area for the nose (as shown in the 

template of FIG. 6) is determined guided by the vertical axis, 
5 

the mouth, and the eye. The nose is searched for in a 

rectangular region bounded vertically by the middle 60% of 

the distance between the eyes and the mouth, and horizon­

tally by the 2 eye-centers. Similar to the mouth stage, an 

10 
averaging filter with mask size (31x5)) is applied to the nose 

area to produce a nose image potential # From the nose 

image potential, each horizontal line is summed and the one 

with the maximum is selected as the position of the bottom 

The iris-fitting sub-stage uses the intensity image poten­
tial <Pintensity' the valley image potential <Pvalley' the eye image 
potential <Peye to fit the iris template to the actual image. The 
k4 term is an outward force that prevents the radius of the iris 
from becoming too small. The darkness of the iris area from 
the intensity image and the brightness of the iris area from 
the valley image potential along with the iris edge informa- 15 

tion from the eye image potential will guide the fitting of the 
iris template to the image. The eye parameters a, b, c (these 

of the nose. The mask size will vary with the oval size. 

FIGS. 14a through 14d shows the outcome of locating the 

center of the mouth, and the bottom of the nose. FIG. 14a 

shows an original image. FIG. 14b shows a final mouth and 

nose-fit over the original image. FIG. 14c shows an enlarged 

mouth potential from the image. FIG. 14d shows an enlarged 

are constants controlling the boundary of the eye) are scaled 
with respect to the radius of the iris and these parameters are 
used to clip the iris disc to a partial disc. The only parameters 
allowed to change in this stage are both the iris centers and 
the scale of the iris template. The parameters are updated by 
gradient descent. 

20 nose potential from the image. 

FIG. 13a through 13i shows the outcome of the iris­
attracting and fitting substages. FIG. 13a shows an original 
image. FIG. 13b shows an edge potential of that image. FIG. 25 

13c shows the valley potential. FIG. 13d shows the edge 
potential shown just for eyes. FIGS. 13e through 13g shows 
the iris attracting sub-stage. FIGS. 13h through 13i shows 
the substage for iris-fitting. 

VERIFY NORMALICY OF FACIAL FEATURE STAGE: 

The results obtained from facial feature detection, which 

encompass stages 210 through 270 in FIG. 3 are categorized 

in tables. Tables I and 2 show the positions detected for the 

various primary facial features. For the columns labelled 

oval, leye, reye, nose, mouth, chin, the values of x and y 

represent the coordinates that are measured in pixel units. 

The values of fa and fb in the column labelled oval represent 
FINDING THE MOUTH 

Stage250 of FIG. 3 covers finding the mouth (as shown in 
the template of FIG. 6) as the next stage. After finding both 
iris centers, a vertical axis half way between the two irises 

30 the measured half-lengths of the oval in pixel units. Tables 

3 and 4 indicate human evaluation of these results. All the 

is computed. The search area for the mouth is determined by 
a rectangular region of width %fm centered at the vertical 

35 
axis, and of height O.Sfb centered at O.Sfb from the bottom 
of the oval. This area is large enough so that the mouth is 
guaranteed to be within this region. An averaging filter 
which takes the average of the numbers it is processing, with 
mask size of (31x5) is convolved with the mouth area to 

produce the mouth image potential <Pmouth which is just the 40 

output from applying the averaging filter above. From the 
mouth image potential, each horizontal line is summed and 
the one with the maximum sum is selected as the position of 
the center of the mouth. FIG. 14 to be discussed in the next 
section details the outcome of locating the center of the 
mouth. 

faces used in these experiments are shown with their facial 

feature fits in FIGS. 16 through 19. FIGS. l6a through l6y 

show the original images for the baby class. FIGS. l 7a 

through l 7y show the final fit for each of the images of 

FIGS. l6a through l6y. FIGS. l8a through l8v show the 

original images for the adult and senior class. FIGS. l9a 

through l9v show the final fit for each of the images of 

FIGS. l8a through l8v. These evaluations are used to decide 

which data to include in evaluating whether a ratio is 

appropriate for classification. Here, the candidate face is 

judged for its facial feature ratios, to see if these ratios fall 

into the range acceptable for the range of babies to adults. If 

the computed ratios agree with the pre-known ratios, then 

the candidate face is accepted. 

TABLE 1 

Results of the facial feature data found for baby class. 

oval le ye reJ:e nose mouth _____ffilg_ oval 

subject x y x y x y x y x y x y f, fb 

baby01 140 105 113 106 165 110 139 73 139 52 146 19 61 85 

baby02 143 118 114 139 174 135 144 98 144 76 142 40 59 77 

baby03 134 145 117 152 151 152 134 128 134 114 132 93 43 57 

baby04 131 125 109 138 151 136 130 109 130 92 131 64 46 60 

baby05 140 119 120 131 164 131 142 97 142 84 142 55 49 65 

baby08 122 122 92 120 146 120 119 80 119 58 113 21 72 100 

babylO 110 115 166 115 138 79 138 58 

baby12 129 95 104 104 154 100 129 70 129 49 64 84 

baby13 131 127 107 139 153 139 130 110 130 91 52 62 

baby14 95 149 73 157 115 155 94 127 94 110 83 86 49 65 

baby15 107 112 157 114 132 80 132 60 

baby16 114 135 158 133 136 105 136 89 

baby17 133 118 109 118 163 116 136 82 136 58 67 91 

baby18 142 125 116 137 168 137 142 99 142 75 144 37 61 85 



subject 

baby19 

baby20 

baby21 

baby22 

baby24 

baby25 

b02 

b06 

b07 

b09 

b18 

subject 

snr01 

snr02 

snr03 

snr05 

snr06 

snr07 

snrlO 

snrll 

snr15 

snr18 

s01 

slO 

sll 

s12 

adult01 

adult04 

a01 

a02 

a04 

a06 

a12 

a19 
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TABLE 1-continued 

Results of the facial feature data found for baby class. 

oval le ye re ye nose mouth -----9lliL oval 

x 

136 

131 

142 

145 

y 

121 

138 

123 

119 

x y 

113 141 

114 118 

100 137 

112 149 

125 129 

94 122 

106 128 

120 143 

131 117 

92 136 

84 157 

x y 

167 141 

158 122 

152 139 

152 147 

177 131 

148 120 

154 128 

166 145 

179 117 

146 136 

124 159 

x y 

140 115 

136 93 

126 108 

132 120 

151 100 

121 91 

130 97 

143 111 

155 84 

119 105 

104 135 

TABLE 2 

x y x y f, 

140 88 

136 74 129 54 52 70 

126 85 

132 105 48 66 

151 84 152 44 57 79 

121 66 

130 73 

143 93 145 55 63 87 

155 64 72 88 

119 85 

104 118 

Results of the facial feature data found for adult and senior classes. 

oval le ye re ye nose mouth -----9lliL oval 

x y x y x y x y x y 

131 117 97 115 159 119 128 65 128 49 

131 137 103 144 155 144 129 114 

96 138 

114 151 

123 128 101 129 

131 157 

132 147 113 154 

128 149 105 158 

131 128 104 139 

134 107 107 125 

115 111 87 129 

119 132 

120 142 94 158 

129 

126 

125 

132 

139 

126 

136 95 147 

112 106 129 

104 146 

137 103 152 

140 110 153 

132 118 152 

123 136 

153 107 170 

123 111 123 89 

164 147 139 114 139 96 

143 131 122 105 122 87 

134 126 134 107 

159 155 134 

155 152 

147 160 

166 139 135 

163 125 135 

141 129 114 

175 130 147 

152 156 123 

116 134 97 

134 111 

126 100 

85 135 63 

87 135 65 

89 114 67 

92 147 72 

119 123 95 

163 149 129 100 129 70 

152 127 129 92 

144 146 124 112 

147 148 125 116 

150 155 130 121 

158 152 138 116 

159 132 141 104 

151 168 129 142 

129 70 

124 98 

125 103 

130 111 

138 103 

141 92 

129 124 

TABLE 3 
50 

x y f, 

73 103 

67 83 

50 66 

54 76 

51 71 

60 84 

73 103 

146 31 59 81 

102 38 55 73 

120 61 60 82 

131 20 81 113 

126 37 60 74 

123 69 45 59 

127 73 47 63 

133 80 49 59 

140 76 41 53 

128 94 47 59 

14 

TABLE 3-continued 

Results indicating how well the facial feature fits were for the baby 

class. The quality of these fits were judged by human inspection. 

An automatic procedure for this appears to be difficult to design. 

Results indicating how well the facial feature fits were for the baby 

class. The quality of these fits were judged by human inspection. 

An automatic procedure for this appears to be difficult to design. 

subject 

baby01 

baby02 

baby03 

baby04 

baby05 

baby08 

babylO 

baby12 

baby13 

baby14 

baby15 

baby16 

oval 

VG 
VG 
VG 
VG 
VG 

VG 

p 

VG 
VG 
VG 
p 

p 

le ye 

VG 
VG 
VG 
VG 
G 

VG 

VG 

VG 

VG 

VG 

VG 

VG 

reye nose 

VG VG 
VG VG 
VG VG 
VG VG 
G VG 

VG VG 

VG VG 

VG VG 

VG VG 

VG VG 

VG VG 

VG VG 

mouth 

VG 
VG 
VG 
VG 
VG 

VG 

VG 

VG 
VG 
VG 

VG 
VG 

chin 

VG 
VG 
VG 
VG 
VG 

VG 

p 

CNF, UO 

CNF, UO 

G 

p 

p 

comments 

None 

None 

None 

None 

None 

+5 deg, 

OMF 

None 

Expr, OMF 

OMF 

None 

None 

+2 deg 

55 subject 

baby17 

baby18 

baby19 

baby20 
60 

baby21 

baby22 

baby24 

baby25 

b02 

65 b06 

b07 

oval 

VG 

VG 
p 

VG 
p 

G 

G 

p 

p 

p 

VG 

le ye 

VG 

VG 

VG 

VG 

G 

VG 

VG 

G 

G 

G 

VG 

re ye 

VG 

VG 

VG 

VG 

G 

VG 

VG 

VG 

VG 

G 

VG 

nose 

VG 

VG 

VG 

VG 

VG 

VG 

VG 

VG 

VG 

VG 

VG 

mouth 

VG 

VG 

VG 

VG 

VG 

VG 

VG 

VG 

VG 

VG 

VG 

chin 

CNF, UO 

G 

p 

G 

p 

CNF, UO 

G 

p 

p 

VG 

P, UO 

comments 

+2 deg 

None 

None 

None 

None 

None 

+3 deg 

+3 deg 

None 

+1 deg 

+1 deg 
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TABLE 3-continued 

Results indicating how well the facial feature fits were for the baby 

class. The quality of these fits were judged by human inspection. 

An automatic procedure for this appears to be difficult to design. 

subject 

b09 

b18 

oval leye reye nose 

P VG VG VG 

P VG VG VG 

VG ~ Very Good, 

G ~Good, 

P =Poor, 

UO ~ Use Oval to compute chin, 

CNF ~ Chin Not Found 

OMF ~ Oval Manually Found 

+x deg = amount of rotation of the face 

mouth 

VG 

VG 

TABLE 4 

chin 

p 

p 

comments 

+1 deg 

+2 deg 

Results indicating how well the facial feature fits were for the adult and 

senior classes. The quality of these fits were judged by human inspec­

tion. An automatic procedure for this appears to be difficult to design. 

subject oval le ye reye nose mouth chin comments 

snr01 VG VG VG G VG CNF, UO None 

snr02 VG VG VG VG p CNF, UO None 

snr03 p VG p VG VG p None 

snr05 p VG G VG VG p +2 deg 

snr06 VG VG VG VG VG CNF, UO None 

snr07 VG p p VG VG CNF, UO None 

snrlO p p G VG VG p None 

snrll G G VG p VG CNF, UO Expr 

snr15 VG VG G p VG CNF, UO None 

snr18 VG VG G G VG CNF, UO None 

s01 VG VG G VG VG G None 

slO G VG VG VG VG G None 

sll p VG VG VG VG p Expr 

s12 VG G VG VG VG G None 

adult01 G VG VG VG VG VG None 

adult04 VG VG VG VG VG VG None 

a01 p VG VG VG VG VG None 

a02 G VG VG VG VG VG None 

a04 VG VG VG VG VG VG Expr 

a06 G G G G VG VG None 

a12 p VG VG G VG p Expr 

a19 VG VG VG VG VG VG None 

VG ~ Very Good, 

G ~Good, 

P =Poor, 

UO ~ Use Oval to compute chin, 

CNF ~ Chin Not Found 

OMF ~ Oval Manually Found 

+x deg = amount of rotation of the face 

After the primary facial features have been located, they 

can be used to compute the ratios for age classification: Six 

ratios are evaluated as shown in FIGS. 15a through 15b. The 

term "absQ signifies the absolute value within. 

In FIG. 15a, RATIO 1 is 
abs(leye(x) - reye(x)) 

abs ( 
leye(!:) + reye(!:) 

- nose(y)) 
2 

In FIG. 15b, RATIO 2 is 
abs(leye(x) - reye(x)) 

abs ( 
leye(!:) + reye(!:) 

- mouth(y)) 
2 
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60 
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-continued 

In FIG. 15c, RATIO 3 is abs(leye(x) - reye(x)) 

abs ( leye(y) ~ reye(y) - chin(y) ) 

abs ( leye(y) ~ reye(y) - nose(y) ) 

In FIG. 15d, RATIO 4 is-------------­

abs ( leye(y) ~ reye(y) - mouth(y) ) 

abs ( leye(y) ~ reye(y) - mouth(y) ) 

In FIG. 15e, RATIO 5 is-------------­

abs ( leye(y) ~ reye(y) - chin(y) ) 

abs ( leye(y) ; reye(y) - chin(y) ) 

In FIG. 15f, RATIO 6 is ___ a_b_s-(t-op_h_e-ad_(y_)---ch_i_n_(y-)) __ _ 

The measurements used in the ratio are presented in 

Tables 5 and 6. In these tables, "ochin" refers to oval-chin, 

which is calculated as the base of the initial oval. The term 

"ochin" refers to the chin position (x,y) gotten from the oval, 

where the x value is the same as the value of the oval _center 

(x) and the y value is computed by oval_center(y)-fb. For 

Tables 5 and 6, the vertical columns are calculated as 

follows: 

eye_avg_y 
leye(y) + reye(y) 

2 

oval_chin_y=oval_center(y )-fb 

leye-reye=abs(leye( x )-re ye( x)) 

eye-nose= abs( eye_avg_y-nose(y)) 

eye-mouth=abs( eye_avg_y-mouth(y)) 

eye-chin=abs( eye_avg_y-chin(y)) 

eye-ochin =abs( eye _avg_y-oval_chin_y) 

In the case of babyOl, the vertical columns from table 5 

is as follows: 

eye_avg_y=(106+ 110)/2=108 

oval _chin_y=105-85=20 

leye-reye=abs(113-165)=52 

eye-nose=abs(108-73)=35 

eye-mouth=abs(108-52)=56 

eye-chin=abs(108-19)=89 

eye-ochin=abs(108-20)=88 
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TABLE 5 

Intermediate calculations for the ratio calculations for baby class. 

subject 

baby01 

baby02 

baby03 

baby04 

baby05 

baby08 

babylO 

baby12 

baby13 

baby14 

baby15 

baby16 

baby17 

baby18 

baby19 

baby20 

baby21 

baby22 

baby24 

baby25 

b02 

b06 

b07 

b09 

b18 

eye_avg_y oval_chin_y leye-reye eye-nose 

108 20 52 35 

137 41 60 39 

152 88 34 24 

137 65 42 28 

131 54 44 34 

120 22 54 40 

115 56 36 

102 11 50 32 

139 65 46 29 

156 84 42 29 

113 50 33 

1~ M W 

117 27 54 35 

137 40 52 38 

1~ ~ u 
120 51 44 27 

1~ ~ ~ 

148 72 40 28 

130 44 52 30 

1n ~ ~ 

128 48 31 

lM % TI 

117 

136 

158 

31 48 

54 

40 

TABLE 6 

33 

31 

23 

eye-mth 

56 

61 

38 

45 

47 

62 

57 

53 

48 

46 

53 

45 

59 

62 

53 

46 

53 

43 

46 

55 

55 

51 

53 

51 

40 

eye-chin 

89 

97 

59 

73 

76 

99 

70 

100 

66 

86 

89 

eye-ochin 

88 

96 

64 

72 

77 

98 

91 

74 

72 

90 

97 

69 

76 

86 

86 

Intermediate calculations for the ratio calculations for adult and senior classes. 

subject eye_avg_y oval_chin_y leye-reye eye-nose eye-mth eye-chin eye-ochin 

snr01 

snr02 

snr03 

snr05 

snr06 

snr07 

snrlO 

snrll 

snr15 

snr18 

s01 

slO 

sll 

s12 

adult01 

adult04 

a01 

a02 

a04 

a06 

a12 

a19 

117 

144 

149 

130 

153 

159 

139 

125 

129 

131 

157 

148 

128 

146 

150 

154 

152 

134 

169 

14 

54 

62 

81 

76 

65 

25 

26 

38 

60 

23 

38 

74 

81 

79 

94 

62 

52 

50 

42 

42 

42 

62 

56 

54 

56 

58 

68 

46 

40 

44 

40 

40 

36 

44 

52 

30 

35 

25 

54 

38 

40 

39 

38 

48 

36 

34 

34 

33 

36 

30 

27 

68 

53 

43 

42 

59 

76 

60 

62 

59 

62 

78 

58 

48 

47 

43 

49 

42 

45 

55 

Tables 7 and 8 show the calculated ratios. Ratio 6 is not 
included here but is discussed later. Ratios 3 and 5 use the 
chin and thus have corresponding ratios 3b and Sb for when 
the chin is obtained from the initial oval. In these tables, 
"ochin" refers to oval-chin. For Tables 7 and 8, the Ratios 60 

are calculated as described in the FIG. 15 equations. 
In the case of baby 01, the vertical columns from Table 7 

are calculated as follows: 

Ratio 1=52/35=1.4857 

94 

91 

96 

128 

91 

77 

77 

74 

76 

75 

103 

90 

68 

77 

94 

114 

99 

91 

97 

125 

90 

76 

73 

73 

75 

Ratio 2=52 /56=0.9286 

Ratio 3a=52/89=0.5843 

Ratio 3b=52/88=0.5909 

Ratio 4=35/56=0.6250 

Ratio5a=56/89=0.6292 

Ratio 5b=56/88=0.6394 

18 



subject 

baby01 

baby02 

baby03 

baby04 

baby05 

baby08 

babylO 

baby12 

baby13 

baby14 

baby15 

baby16 

baby17 

baby18 

baby19 

baby20 

baby21 

baby22 

baby24 

baby25 

b02 

b06 

b07 

b09 

b18 

Sum 

Num Elements 

Average 

Std Deviation 

Variance 

5,835,616 
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TABLE 7 

Results of the ratio computation with real images for baby class. 

Ratiol 

nose-T 

1.4857 

1.5385 

1.4167 

1.5000 

1.2941 

1.3500 

1.5556 

1.5625 

1.5862 

1.4483 

1.5152 

1.5172 

1.5429 

1.3684 

2.0769 

1.6296 

1.7333 

1.4286 

1.7333 

1.8000 

1.5484 

1.3939 

1.4545 

1.7419 

1.7391 

38.9609 

25 

1.55844 

0.16851 

0.02840 

Ratio2 

mth-T 

0.9286 

0.9836 

0.8947 

0.9333 

0.9362 

0.8710 

0.9825 

0.9434 

0.9583 

0.9130 

0.9434 

0.9778 

0.9153 

0.8387 

1.0189 

0.9565 

0.9811 

0.9302 

1.1304 

0.9818 

0.8727 

0.9020 

0.9057 

1.0588 

1.0000 

23.7579 

25 

0.95032 

0.06086 

0.00370 

Ratio3a 

chin-T 

0.5843 

0.6186 

0.5763 

0.5753 

0.5789 

0.5455 

0.6000 

0.5200 

0.6667 

0.6047 

0.5169 

6.3870 

11 

0.58064 

0.04138 

0.00171 

Ratio3b 

ochin-T 

0.5909 

0.6250 

0.5313 

0.5833 

0.5714 

0.5510 

0.5495 

0.6216 

0.5833 

0.6000 

0.5361 

0.6377 

0.5263 

0.6047 

0.5581 

8.6702 

15 

0.57801 

0.03434 

0.00118 

TABLE 8 

Ratio4 

e-n-m 

0.6250 

0.6393 

0.6316 

0.6222 

0.7234 

0.6452 

0.6316 

0.6038 

0.6042 

0.6304 

0.6226 

0.6444 

0.5932 

0.6129 

0.4906 

0.5870 

0.5660 

0.6512 

0.6522 

0.5455 

0.5636 

0.6471 

0.6226 

0.6078 

0.5750 

15.3384 

25 

0.61354 

0.04352 

0.00189 

Ratio5a Ratio5b 

e-m-c e-m-ochin 

0.6292 0.6364 

0.6289 0.6354 

0.6441 0.5938 

0.6164 0.6250 

0.6184 0.6104 

0.6263 0.6327 

0.5824 

0.6486 

0.6571 0.6389 

0.6556 

0.6200 0.6392 

0.6970 0.6667 

0.5658 

0.5349 0.5349 

0.5730 

0.6163 

6.8453 9.2819 

11 15 

0.62230 0.61879 

0.03988 0.03469 

0.00159 0.00120 

Results of the ratio computation with real images for adult and senior classes. 

Ratiol 

nose-T 

Ratio2 

mth-T 

Ratio3a 

chin-T 

Ratio3b 

ochin-T 

Ratio4 

e-n-m 

Ratio5a Ratio5b 

subject e-m-c e-m-ochin 

snr01 

snr02 

snr03 

snr05 

snr06 

snr07 

snrlO 

snrll 

snr15 

snr18 

s01 

slO 

sll 

s12 

adult01 

adult04 

a01 

a02 

a04 

a06 

a12 

1.1923 

1.7333 

1.4286 

1.6800 

1.1481 

1.4737 

1.3500 

1.4359 

1.5263 

1.4167 

1.2778 

1.1765 

1.2941 

1.2121 

1.1111 

1.2000 

0.9118 

0.9434 

0.9767 

1.0000 

0.7119 

0.8158 

0.9333 

0.8710 

0.9492 

0.9355 

0.8718 

0.7931 

0.8333 

0.9362 

0.9302 

0.8163 

0.8571 

0.5957 

0.5934 

0.6042 

0.5313 

0.5055 

0.5195 

0.5714 

0.5405 

0.5263 

0.6019 

0.5778 

0.6176 

0.5455 

0.4468 

0.5439 

0.5657 

0.5934 

0.5979 

0.5440 

0.5111 

0.5789 

0.5479 

0.5479 

0.7647 

0.6604 

0.5814 

0.7105 

0.6333 

0.6452 

0.6610 

0.6129 

0.6154 

0.6207 

0.7083 

0.7234 

0.7674 

0.7347 

0.7143 

0.6383 

0.6813 

0.6458 

0.6094 

0.6374 

0.6234 

0.6104 

0.5811 

0.6447 

a19 1.6296 0.9778 0.5867 0.5867 0.6000 0.6000 

Sum 23.2862 16.0644 5.5745 8.4071 10.7537 6.2718 

Num Elements 17 18 10 15 16 10 

Average 1.36977 0.89247 0.55745 0.56047 0.67210 0.62718 

Std Deviation 0.15074 0.05675 0.03475 0.02681 0.05445 0.02700 

Variance 0.02272 0.00322 0.00121 0.00072 0.00296 0.00073 

0.6602 

0.6324 

0.5455 

0.6277 

0.6667 

0.6061 

0.6813 

0.6392 

0.6240 

0.6444 

0.6184 

0.5890 

0.6712 

0.6000 

8.8060 

14 

0.62900 

0.02971 

0.00088 

20 
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Each ratio can now be evaluated individually for the 

normalicy check and if desired for use in age classification. 
In Tables 7 and 8, Ratio 6 was not tabulated. For the other 
five ratios, the ratios were recomputed after dropping the 
data which was evaluated as unfavorable due to facial 5 
expression or rotation of the head. The subjects that were 
dropped are: baby08, baby24, baby25, b18, snrOS, snrll, 
sll, a04, and a12. 

For the five ratios, the individual column data from Tables 
7 and 8 are used to obtain classification thresholds. These 

10 
thresholds are calculated using to the following algorithm of 
Ohzu N. (1980), "An Automatic Threshold Selection 
Method Based on Discriminant and Least Squares Criteria", 
The Transactions of The Institute of Electronics, Informa­

tion and Communication Engineers, vol. 163-D no. 4., for 
automatic threshold detection in bi-modal distribution 

Assume the histogram levels 1, 2, ... , L. There exists an threshold 

value k which will optimally segement two groups of histogram. Now, we 

assume the resulting statistics of these two groups as follows: 

Accumulated histogram values: 

(total no. of pixel in each group) 

Mean of the intensities/group: 

Group 1 

n_1(k) 

m_1(k) 

Group 2 

n_2(k) 

m_2(k) 

15 

20 

22 
FIG. 3 are used for this ratio. Table 10 shows th results of 

the ratio computation with real images, indicating that it is 

possible to computationally distinguish between baby and 

non-baby images. 

TABLE 10 

Results of the ratio computation with real images, indicating that it is 

possible to computationally distinguish between baby and non-baby 

ima es. 

Ratio 2 Baby Adult 

Sum 19.7747 11.3845 

Num of Elements 21 13 

Average 0.94165 0.87573 

Std Deviation 0.00232 0.05992 

Variance 0.00232 0.00359 

The threshold found by the method of the algorithm for 

automatic threshold detection in bi-modal distribution, for 

Ratio 2 is 0.91. This threshold correctly classifies 16 out of 

21 babies (76%) and 7 out of 13 adults (54%). This appears 

to be the ratio that can be measured reliably and also in 

25 providing reliable classification. 

Variance of each group: V_1(k) V_2(k) 

The mean of the whole image: m_t 

Then the total inner variance: V _inner = n_1 * V _1 + n 2 * V 2 

the total intra variance: V _intra = 

n_1 * (m_1 - m-1)2 + n_2 * (m_2 - m-1)2 

Obtain the "max(V _intra/V _inner)", the best k values will be solved. 

The use of these thresholds for each ratio is now to be 
discussed. 
RATIO 1; nose-T 

Ratio 1 is (distance between two eyes:nose to midway 
point of eyes). Features found from stages 210 through 270 

30 

RATIO 3: chin-T 

Ratio 3 is (distance between two eyes:chin to midway 

point of eyes). This ratio makes use of features found by 

stages 1 through 5 of FIG. 3. Table 11 shows the results of 

the ratio computation with real images, indicating that it is 

possible to computationally distinguish between baby and 

35 non-baby images. 

TABLE 11 

of FIG. 3 are used for this ratio. Table 9 shows the results of 

the ratio computation with real images, indicating that it is 40 

possible to find ratios that span the range of babies to adults, 

and also to computationally distinguish between baby and 

non-baby images. 

Results of the ratio computation with real images, indicating that it is 

possible to computationally distinguish between baby and non-baby 

ima es. 

Ratio 3a Baby Adult 

Sum 5.2369 5.0340 

TABLE 9 

Results of the ratio computation with real images, indicating that it is 

possible to computationally distinguish between baby and non-baby 

ima es. 

Ratio 1 Baby Adult 

Sum 32.3384 18.0096 

Num of Elements 21 13 

Average 1.53993 1.38535 

Std Deviation 0.16001 0.15751 

Variance 0.02560 0.02481 

The threshold found by the method of the algorithm listed 

above for Ratio 1 is 1.48. The threshold correctly classifies 

14 out of 21 babies ( 67%) and 9 out of 13 adults ( 69% ). The 

location of the nose position is tricky because of the nose 

protrusion. Nevertheless, a good nose position is acquired 

consistently for the faces in our database. Although a higher 

classification percentage is desired, this ratio provides a 

reasonably reliable classification. 

RATIO 2: mouth-T 

Ratio 2 is (distance between two eyes:mouth to midway 

point of eyes). Features found from stages 1 through 6 of 

45 

50 

Num of Elements 9 9 

Average 0.58188 0.55933 

Std Deviation 0.04347 0.03614 

Variance 0.00189 0.00131 

The threshold found by the method of the algorithm for 

automatic threshold detection in bi-modal distribution, for 

Ratio 3a is 0.57. This threshold correctly classifies 7 out of 

9 babies (78%) and 4 out of 9 adults ( 44%). Localizing the 

55 chin is difficult to perform with consistency, due to changes 

in shading and shadowing, multiple chins, the possibility of 

an open jaw, and the possibility of facial hair. The classifi­

cation result based on this ratio should not be ruled out as a 

possible candidate. Several factors could have contributed to 
60 this result. The shape of the chin varies greatly from a person 

to person which allows diverse results in the measurements 

of this ratio. 

65 Table 12. shows the results of the ratio computation with 

real images, indicating that it is possible to computationally 

distinguish between baby and non-baby images. 
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TABLE 12 

Results of the ratio computation with real images, indicating that it is 

possible to computationally distinguish between baby and non-baby 

ima es. 

Ratio 3b Baby Adult 

Sum 7.514S 7.3137 

Num of Elements 13 13 

Average 0.57804 0.562S9 

Std Deviation 0.03S3S 0.02781 

Variance 0.0012S 0.00077 

The threshold found by the method of the algorithm for 

automatic threshold detection in bi-modal distribution, for 

Ratio 3b is 0.53. This threshold correctly classifies 12 out of 

13 babies (92%) and 2 out of 13 adults (15%). Although the 

chin is more difficult to find, the oval that fits the face is 

found more easily. The drawback to the oval is that the chin 

position found from the oval may not be an exact fit because 

the oval finds the best fit including the sides of the face. The 

data supports the fact that ratio 3b is not bimodal; even the 

averages are very similar. 

RATIO 4: eye-nose: eye-mouth 

Ratio 4 is (Nose to midway point of eyes: mouth to 

midway point of eyes). This ratio uses features from stages 

1 through 7 of Fig. Table 13 shows the results of the ratio 

computation with real images, indicating that it is possible 

to computationally distinguish between baby and non-baby 

images. 

TABLE 13 

Results of the ratio computation with real images, indicating that it is 

possible to computationally distinguish between baby and non-baby 

ima es. 

Ratio 4 Baby Adult 

Sum 12.9206 7.9SOS 

Num of Elements 21 12 

Average 0.61S27 0.662S4 

Std Deviation 0.04292 0.04942 

Variance 0.00184 0.00244 

The threshold found by the the method of the algorithm 

for automatic threshold detection in bi-modal distribution, 

for Ratio 4 is 0.62. This threshold correctly classifies 8 out 

of 21 babies (38%) and 8 out of 12 adults (67%). 

RATIO 5: eye-mouth: eye-chin 

Ratio 5 is (mouth to midway point of eyes:chin to midway 

point of eyes). This ratio uses features from stages 1 through 

6 of FIG. 3. Table 14 shows the results of the ratio compu­

tation with real images, indicating that it is possible to 

computationally distinguish between baby and non-baby 

images. 

TABLE 14 

Results of the ratio computation with real images, indicating that it is 

possible to computationally distinguish between baby and non-baby 

ima es. 

Ratio Sa 

Sum 

Num of Elements 

Average 

Baby 

S.6842 

9 

0.631S7 

Adult 

S.6907 

9 

0.63230 

s 

10 

24 

TABLE 14-continued 

Results of the ratio computation with real images, indicating that it is 

possible to computationally distinguish between baby and non-baby 

ima es. 

Ratio Sa 

Std Deviation 

Variance 

Baby 

0.03173 

0.00101 

Adult 

0.02341 

o.oooss 

The threshold found by the method of the algorithm for 
automatic threshold detection in bi-modal distribution, for 
Ratio Sa is 0.64. This threshold correctly classifies 6 out of 
9 babies (67%) and 3 out of 9 adults (33%). This ratio also 

lS has the chin location problem. This ratio can best be used 

when the chin is located in a more accurate manner. The data 
supports the fact that ratio 3b is not bimodal; even the 
averages are very similar. 

Table 15 shows the results of the ratio computation with 
20 real images, indicating that it is possible to computationally 

distinguish between baby and non-baby images. 

TABLE 15 

25 Results of the ratio computation with real images, indicating that it is 

30 

possible to computationally distinguish between baby and non-baby 

ima es. 

Ratio Sb Baby Adult 

Sum 8.1143 7.671S 

Num of Elements 13 12 

Average 0.62418 0.63929 

Std Deviation 0.02833 0.02743 

Variance 0.00080 0.0007S 

3S The threshold found by the method of the algorithm for 

40 

4S 

automatic threshold detection in bi-modal distribution, for 

Ratio Sb is 0.63. This threshold correctly classifies 6 out of 

13 babies ( 46%) and 7 out of 12 adults (58%). The oval chin 

is more consistently acquired but also suffers from the 

overall initial oval fitting. The data supports the fact that 

ratio 3b is not bimodal; even the averages are very similar. 

The classification from this ratio with a better oval fit will 

improve its performance. 

RATIO 6: eye-chin: top_head-chin 

Ratio 6 is the height of the eyes within the top and bottom 

head-margins. For this ratio, it is not practical to obtain the 

true top of the head, hence, the virtual top of the head is used. 

This ratio makes use of features found in stages 1 through 5 

of FIG. 3. This is the most reliable of the ratios, if the top of 

so the head could be found. It has low intraclass variance, and 

high interclass variance. However, our method of measure­

ment of the virtual top of the head is not consistently correct 

when the hair lies around the ears, whether or not the person 

is bald, and to variation in the actual shape of the lower part 

ss of the head. This measurement could be improved with 

better methods to estimate hair configurations. 

Between all the ratios, ratio 1 is the most promising ratio. 

This ratio uses features which are not affected by any facial 

expressions or facial motions. However, it too is subject to 

60 imprecise localization. If made robust to shading, 

shadowing, and occlusion effects, this ratio can be improved 

to serve as a good classifier. 

Ratios 1, 2, and 3 can suffer if the face is rotated in depth, 

and as such some measure may need to be adopted to 

6S compensate for this rotation, before the ratios are computed. 

Ratios 4, 5, and 6 are more consistently correct when this 

occurs. Enhancement can occur by combining several ratios 
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to make the final ratio classification. Such combination 
could be based on statistical analysis. 

26 
While the invention has been described, disclosed, illus­

trated and shown in various terms of certain embodiments or 

modifications which it has presumed in practice, the scope 

of the invention is not intended to be, nor should it be 

Referring to FIG. 3, stage seven, 270, is to verify that 
facial features are normal as expected to what a face should 
have. For detection and recognition, reference ratios of 
digital images can be initially stored in a digital computer 
and subsequently compared to a newly detected digital 
image including a margin for error. The stored reference 
ratios can include but are not limited to specific age groups, 

5 deemed to be, limited thereby and such other modifications 

or embodiments as may be suggested by the teachings herein 

are particularly reserved especially as they fall within the 

breadth and scope of the claims here appended. 

gender groups, specific individuals and the like. 
10 

For example, the various ratio categories for three general 
age classes was determined in the inventors patent applica­
tion 08/198,816, which has been incorporated by reference. 
For instance, in actual application, a digital camera can be 
preprogamed with a reference ratio for babies up to the age 
of three years old. In operation the described invention will 15 

compare a newly received digital image to compute a ratio 
and compare this new ratio to the reference ratio in order to 
locate and identify a baby from individuals of different age 
groups in the image. 

The invention described herein is intended to allow for a 20 

computer to automaticly detect a single facial image from a 
digital image that includes extraneous facial and/or nonfa­
cial images, to at least the same degree as having a human 
to find a face in the digital image. Similarily, the invention 
further allows for recognition of different facial expressions 25 
by a computer to at least the same degree as having a human 
interprett another person's facial expression. 

Other facial features can also be examined. Skin and eye 
color restrictions can also be loosened. Then, the confirma­

tion of facial features in the presence of eye patches and dark 
30 

glasses, and other occlusions and shadowing effects can be 
compensated for. Confirmation of facial features can also be 
made robust to varieties of moustaches and facial scars, and 
dishevelled hair. Finally, an accurate estimation of the top of 
the skull may be able to be computed to aid in enhancing the 
accuracy facial feature confirmation. 35 

Further, additional age related information can also be 
used to enhance facial feature confirmation. Additional 
information incorporated for age-based facial-finding, 
includes but is not limited to the growth of the nose and the 

nose-bridge, the relative shrinking of the iris-size over time, 40 

and changes to the outline of the face. 

While the preferred embodiment describes detection of 

human faces, the invention is not limited to detection and 

recognition of only human faces. For example, the invention 

would be applicable to be used to detect and center in on 45 

other pre-programmed objects, such as but not limited to 

animals, plants, and artificial objects such as but not limited 

to automobiles and buildings. Thus, other reference ratios 

can be calculated and used for subsequent comparison. 

The invention is not limited to detecting only from a 50 

digitized image. For example, an analog based image can be 

converted by well known analog to digital converters into a 

digitized image. Furthermore, the image can itself be based 

on any known method that quantifies the amount of light 

coming in at points in space, such as but not limited to pixel 55 

points. 

We claim: 

1. A method of detecting a single human face from a two 

dimensional digital image comprising the steps executed by 

a computer of: 

(a) locating a single human face in a two-dimensional 

digital image by: 

(i) blurring the digital image with a blurring filter; 

(ii) enhancing edges of the digital image with an edge 

enhancer; 

(iii) dropping first snakelet-curves onto the digital 

image , the first snakelet-curves using a Hough 

Transform voting process to find exterior oval­

curves representing a single candidate face-location; 

(iv) dropping second snakelet-curves inside the exterior 

oval-curves on the single candidate face-location, the 

second snakelet-curves using a Hough Transform 

voting process to determine positions of the chin and 

positions of sides of a single face; and 

(b) confirming existence of additional facial features 

inside the exterior oval curves by: 

(i) positioning a template outline on the chin positions 

and sides of the face positions to determine left and 

right eyes, mouth and nose of a face, the template 

outline having a single preselected configuration of a 

template left eye within a first preselected region, a 

template right eye within a second preselected 

region, a template mouth within a third preselected 

region and a template nose within a fourth prese­

lected region; 

(ii) determining positions of the left eye, the right eye, 

the nose, and the mouth with the template outline; 

(iii) determining facial feature ratios between the left 

eye position, the right eye position, the nose position, 

the mouth position, the sides of face positions, and 

the chin position; and 

(iv) verifying the facial feature ratios to be within 

selected value ranges. 

2. The method of detecting the human face of claim 1, 

wherein the digital image is formed from: 

a digital camera. 

3. The method of detecting the human face of claim 1, 

wherein the digital image is formed from: 

an analog signal converted to a digital image. 

* * * * * 
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