Face Detection Using Templates

Niels Da Vitoria Lobo
University of Central Florida
Young Ho Kwon
University of Central Florida

Find similar works at: https://stars.library.ucf.edu/patents University of Central Florida Libraries http://library.ucf.edu

This Patent is brought to you for free and open access by the Technology Transfer at STARS. It has been accepted for inclusion in UCF Patents by an authorized administrator of STARS. For more information, please contact STARS@ucf.edu.

Recommended Citation

Da Vitoria Lobo, Niels and Kwon, Young Ho, "Face Detection Using Templates" (1998). UCF Patents. 182. https://stars.library.ucf.edu/patents/182

Lobo et al.

Inventors: Niels da Vitoria Lobo; Young Ho

Kwon, both of Orlando, Fla.
[73]
Assignee: University of Central Florida, Orlando, Fla.

Appl. No.: 261,947
Filed: Jun. 17, 1994

Related U.S. Application Data

[63] Continuation-in-part of Ser. No. 198,816, Feb. 18, 1994, abandoned.
[51] Int. Cl. ${ }^{6}$ \qquad G06K 9/00
[52] U.S. Cl. \qquad 382/118; 382/115
[58] Field of Search 382/115, 117, 382/118, 190, 199; 235/382, 380; 340/825.34

References Cited
U.S. PATENT DOCUMENTS

3,805,238	4/1974	Rothjell 340/146.3 E
4,516,262	5/1985	Sakurai 382/18
4,792,900	12/1988	Sones et al. 382/131
4,858,000	8/1989	Lu .. 358/84
4,975,969	12/1990	Tal ... 382/2
5,008,946	4/1991	Ando 382/117
5,012,522	4/1991	Lambert 382/2
5,163,094	11/1992	Prokoski et al. 382/2
5,164,992	11/1992	Turk et al. 382/2
5,339,367	8/1994	Roth 382/199
5,432,864	7/1995	Lu et al. 382/118
5,432,866	7/1995	Sakamoto 382/117

Primary Examiner-Yon J. Couso
Attorney, Agent, or Firm-Brian S. Steinberger

Abstract

Disclosed is a two step process for automatically finding a human face in an electronically digitized image (for example, taken by handheld digital cameras and digital video-cameras such as cam-corders), and for confirming the existence of the face by examining facial features. Step 1 is to detect the human face and is accomplished in stages that include enhancing the digital image with a blurring filter and edge enhancer in order to better set forth the unique facial features such as wrinkles, and curved shapes of a facial image. After prefiltering, preselected curves sometimes referred to as snakelets are dropped on the image where they become aligned to the natural wrinkles and curves of a facial image. Step 2 is to confirm the existence of the human face in seven stages by finding facial features of the digital image encompassing the chin, sides of the face, virtual top of the head, eyes, mouth and nose of the image. Ratios of the distances between these found facial features can be compared to previously stored reference ratios for recognition. This method for detecting facial features of an image can be used in applications such as but not limited to detecting human faces for the gathering of population age-statistics from patrons at entertainment/amusement parks and television network viewer-rating studies. Such gathering can include counting the patrons, distinguishing certain age and gender groups, and/or identifying specific people. Computer vision with this capability can further have application in such fields as automated surveillance systems, demographic studies, automated photography for point-and-shoot cameras and human computer interactions. Automated photography can eliminate the manual adjustment problems that result in poor quality from lack of focused subjects. Computer systems can utilize this system to recognize and respond to the specific needs of a user, and further translate for human users.

3 Claims, 19 Drawing Sheets

Fig. 1

Step A Find Facial Features	100
Step B Confirm Existence of Facial Features	

Fig. 2

Fig. 3

Fig. 4

Fig $5(0)$

Ty $5(\mathrm{c})$

Fig $b(b)$

$\operatorname{Tg} 5(d)$

Fig. 6

Head Template

Fg $8(\mathrm{~d})$

Fsg (d)

Fig $8\}$

Fig $8(\mathrm{e})$

Fes (9)

Fig 8 (A$)$

Fig. 9 (a)

Fig. 9 (b)

Fgg $10(a)$

$\operatorname{Rg} 10(d)$

Fg 10 (b)

$\operatorname{mig} 10(\mathrm{o})$

Fse 10 (c)

Fig. 12

$\operatorname{Fg} 13(a)$

Tyg $13(\mathrm{~d})$

Fig $13(\mathrm{~s})$

mg 13 (b)

Fg 13 (e)

Fis 15 (b)

Fig $13(\mathrm{c})$

Fig 13 ()

Fg 13 (i)

$\operatorname{Fg} 14(a)$

Ays (b)

Fse 14 (d)

Fig 14 (c)
left_eye - right_eye

Fig. 15 (a) ratio 1
left_eye - right_eye

Fig. 15 (b) ratio 2
left_eye - right_eye

Fig. 15 (c) ratio 3

Fig. 15 (d) ratio 4
Fig. 15 (e) ratio 5

Fig. 15 (f) ratio 6

(babyel)
Fig 16 名

(bsbybs\}
Fge 161

(babyly)
Fg Mk

(baby m)
Fig 18 p

(b02)
Fig $16:$

(baby0:
Fis 106

babylys
6y 18 g

(Sxbybi)
Fig ibl

(babyza)
Fy 16 c

(bib)
Fg 16%

(Bxyy03)
Fig 16 e

(babyle)
FA 16

(beby?
Ey 36 m

(babyiz2)
Feg 16

(607)

Fis 16

(babyas)
He 10 a

(babyly)
Fig 16

(buby?
Fig 36

(babyed)
Fig 16:

(b)

Fig 16x

(baby03)
Fis 106

(baby14)
Fems

(babyly)
Fig 160

(baby20)
Fig 164

(b)

Fig $16 y$

(bsky01)
big 17 a

(babyos)
Fy 176

(babyld)
Figlek

(baby20)
Ny 27

(002)

Fige

(babyoz) Fig 176

(babyl0)
Fig 17 g

(babylb)
Fget

(baby2l)
Fig 174

(b00)
mg 17%

(wabyob)
Fig 176

(babyl)
Fxy

(babyl)
Ftg 17 m

(baby22)
Pigl? x

(b07)
Fig law

(baby0 $)$
Fig 17 k

(baby)
Fig 17

(6xbyls)
Fxatx

(baby24)
Figks

(W)

Figlt x

(bably 4)
Fis 47

(babyig)
Fig 170

(bxaby25)
Fig 17

(b) 8)
magy

(ablytha)
Feg $18=$

\{a0
Fge 18

(smod)
Fig 15 k

(max1l)
Fig 18)

(s1)
Fis 18 a

(adntol)
Te 18 b

(a12)
Wig 18

(samb)
Feg IS

(smenc)
Fig189

(s2)
Fig 18 x

(ail)
Fig 38 e

(ang\}
Fis 8 g

(sar0b)
Tig 18 m

(ma18)
Feg 18

(202)
Fig 18d

(ल3m0)
Ftgis

(kery)
Fig 18 B

(601)

Ferss

($\mathrm{a} \mathrm{\omega}$)
Fage 180

($\operatorname{man} 2$ 2)
Fy 18 j

(mmin)
Figiso

(s10)
Fs 18

FACE DETECTION USING TEMPLATES

This invention relates to detecting human faces, and in particular to a process for automatically finding and detecting a human face from digital images. This application is a continuation-in-part to application Ser. No. 08/198,816 filed on Feb. 18, 1994 now abandoned entitled Automatic Feature Detection and Age Categorization of Human Faces in Digital Images.

BACKGROUND AND PRIOR ART

Humans are generally able to categorize a person to a precise age group based on an image of the person's face. Humans also have the capability of recognizing familiar faces as well as recognizing facial expressions. For computers to have these visual capabilities would represent a major commercial advantage. However, current computer vision systems lack the ability of finding faces in images and completing facial analysis.
U.S. Pat. No. $3,805,238$ to Rothjell describes a method of identifying human beings using selected facial body curves. However, this patent is limited to the facial side profiles and does not analyze minute detailed curves such as the facial wrinkles which are unique to each human being and is not specifically concerned with digitally created images. U.S. Pat. No. 4,975,969 to Tal describes analyzing facial parameters. However, this patent also does not analyze the unique facial features of the subject being examined. U.S. Pat. No. $5,163,094$ to Prokoski et al. describes a system for identifying individuals from images. However, this patent restricts the detected image to that taken by a thermogram. The thermogram pictures used in Prokoski et al. generally center on various heat levels that are broadly generated by a face but the thermograph pictures themselves do not recognize or show the specific wrinkles that are unique to each individual's face.
Using computer vision to analyze for faces and to interpret facial-expressions, can be used in various application areas such as but not limited to the gathering of population and age-statistics from patrons at entertainment/amusement parks and television network viewer-rating studies. Computer vision with this capability can further have application in such fields as automated security/surveillance systems, demographic studies, safety monitoring systems, human interfaces to computers, and automated photography.

Current problems exist with manual operated cameras. In photography, one may wish to aim the camera in the vicinity of a subjects face and have the camera center itself on that face automatically. Normally, users must take time to manually adjust the camera lens and the body of the camera itself. Such manual adjustments would also be needed if the person taking a picture must search for a single recognized face from multiple faces in a scene. With manual adjustments, the quality of the pictures can than depend upon the skill of the user. The manual adjustments usually results in different users taking nonuniform pictures of dissimilar quality if they all use the same camera at different times. An automated point-and-shoot camera and camcorder would eliminate the adjustment problems prevalent from making manual adjustments. None of the prior art listed above allows for detecting a facial image that would allow for a camera to automatically align itself to point and shoot a subject Automated point-and-shoot cameras using face detection technology can create pictures of a uniform quality by different users.
Another problem exists where computers are interacting and responding to human users. While computers may be

FIG. 3 illustrates the seven stages followed in step two of FIG. 1.

FIG. 4 shows the directional derivative orthogonal to the snakelet curve for each side of the snakelet used in stage 3 of FIG. 2.
FIGS. $5 a$ through $5 d$ illustrate the resultant images using the five stages of FIG. 2.
FIG. 6 shows a face template with the parameters used for oval-fitting and eye fitting.
FIGS. $7 a$ through $7 f$ illustrates the process followed in the oval fitting stage of FIG. 3.
FIGS. $8 a$ through $8 f$ illustrates the various stages followed in a chin finding procedure of FIG. 3.

FIGS. $9 a$ and $9 b$, respectively shows the right and left open-ended parabolas.
FIGS. $10 a$ through $10 e$ illustrates the changes followed in locating the left and right sides of the face used in FIG. 3.

FIGS. $11 a$ through $\mathbf{1 1} f$ shows the outcome for finding a virtual head of FIG. 3 from an original image.

FIG. 12 shows the snakelets and chin-point that is used in the virtual top of head finding algorithm used in one of the stages of FIG. 3.
FIGS. $13 a$ through $\mathbf{1 3} i$ shows the various levels of the Iris-attracting and fitting stage.

FIGS. $14 a$ through $14 d$ shows the outcome of locating the center of the mouth, and the bottom of the nose.
FIGS. $15 a$ through $15 f$ illustrates the six ratios that are to be evaluated for age classification for Step 2 of FIG. 2.
FIGS. $16 a$ through $16 y$ shows the original images for the baby class.
FIGS. $17 a$ through $17 y$ shows the final fit for the baby class of FIGS. $16 a$ through $16 y$.

FIGS. 18 a through $18 v$ shows the original image for the adult and senior class.
FIGS. $19 a$ through $19 v$ shows the final fit for the adult and senior class of FIGS. $18 a$ through $18 v$.

DESCRIPTION OF THE PREFERRED EMBODIMENT

Before explaining the disclosed embodiment of the present invention in detail it is to be understood that the invention is not limited in its application to the details of the particular arrangement shown since the invention is capable of other embodiments. Also, the terminology used herein is for the purpose of description and not of limitation.

FIG. 1 is a flow chart overview of the two step process used in the preferred embodiment for the invention. The first step $A, 100$, covers finding a candidate face from a digital image. The details of this step are illustrated in FIG. 2. The second step B, 200, is to confirm that facial features exist from the candidate face.

FIG. 2 illustrates the five stages followed in step one of FIG. 1, and are broadly discussed as follows. In stage one, 110 , the image is convolved with a blurring filter and edge enhancer. In stage two, 120, snakelets are dropped onto the image. In stage three, 130, snakelets are eliminated from plateaus. In stage four, 140 , snakelet nodes vote for face ovals. In stage five, 500, there occurs a non-maximal suppression of votes.

FIG. 3 illustrates the seven stages followed in step two of FIG. 1, where facial features in a candidate face are confirmed to exist and are broadly discussed as follows. Stage one, 210 , is to find a initial rough oval about the face. Stage two, 220 , is to find the chin and adjust the oval accordingly. Stage three, 230, is to find the sides of the face. Stage three,

240 , is to find the eyes of the face. Stage four, 250 , is to find the mouth of the face. Stage five, 260 , is to find the nose of the face. Stage seven, 270, is to verify that facial features are located in typical positions.

STEP A: FIND CANDIDATE FACES

Digital images are generally two dimensional arrays of numbers that each represent the level of brightness at each pixel in the image. Referring to FIG. 2, in stage one, 110, of Step A, the digital image is prefiltered with a blurring filter and edge enhancer. A blurring filter is when you take a region of pixels from the image and take their weighted sum value and assign that result to the center of that region and do this to every possible center of a region in the image. An example is assigning all the weights to be $1 / \mathrm{n}$ where n is the number of pixels in the region. An edge enhancer is a filter that will increase the intensity variation near an actual edge in the image. An edge in an image is a discontinuity in the intensity of the image or in its rate of change. An example of combining both a blurring filter with an edge enhancer is described in parent application Ser. No. 08/198,816 now abandoned which is incorporated by reference, which uses a exponential filter and a morphological operator as a blurring filter and edge enhancer, respectively. Thus, the digital image is prefiltered at step one, 110 of FIG. 1, in order to enhance the edges of the image.

Referring to FIG. 2, in stage two, 120, small preselected curves sometimes referred to as snakelets, are dropped onto the image. This process has sometimes been referred to as snakes. Snakes is a method for matching a model of a curve to an actual curve in a general image. Kass M., Witkin A. and Terzopoulos D. (1988), "Snakes: Active Contour Models", International Journal of Computer Vision, pp. 321-331.

We use snakes to find pieces of curves, such as a piece of a wrinkle or a piece of a chin, or a piece of a side of a face and the like. These pieces of snakes, we call snakelets. In a digital image where intensity values in that image can be interpreted as height, a snake is a curve, representing a string of connected pixels, such that this curve will tend to adjust itself so that it falls into a local valley. Hence, such a curve is first dropped somewhere (fitting over certain pixels), then the connected curve will tend to slither down the intensity valley till it stabilizes and slithers no more. The manner in which stabilization is evaluated by adding together the intensity values beneath a snake. See FIG. 4. Then if by moving one of the points to a neighboring pixel, the sum can be decreased, the movement is carried out If the movement will increase the overall sum, it is not carried out. After all possibilities have been examined, the snake is said to be stabilized, when no more movement occurs amongst the connected pixels, and the snakes become aligned to and generally match a natural curve in the image. See FIGS. $5 a-5 d$.

In stage two, 120, of FIG. 2, multiple snakelets are dropped in random orientations in a grid, one per grid point, in a rectangular region that spans the whole image until the snakelets have stabilized. Those snakelets that have found shallow type valleys also referred to as plateaus are eliminated in the next step.

In stage three, 130, of FIG. 2, snakelets are eliminated from plateaus. In order to eliminate snakelets that do not correspond to intensity edges, shallow potential valleys in which snakelets have settled are detected. A shallow valley is detected according to the following: For each point in a snakelet, the directional derivative (of the raw image intensity) taken orthogonal to the snakelet curve is calculated. FIG. $\mathbf{4}$ shows the directional derivative orthogonal to the snakelet curve for each side of the snakelet.

Referring to FIG. 4, the snakelet points are summed separately for each side of the snakelet and normalized for the number of points in the snakelet, to obtain two sums that indicate the steepness of the valley the snakelet is occupying. If these steepness sums do not exceed some preselected threshold, the snakelet is then eliminated. In this process, only those snakelets that lie in a deep enough edge-potential valley survive. By "deep enough", we mean valleys that are not shallow.
In stage four, 140, of FIG. 2, snakelets vote for oval curves of a facial image by using a Hough Transform function. The snakelet survivors, (that is those that are in deep-enough valleys) then are used to obtain a Hough Transform for the ovals (ellipses) that the curves belong to. The Hough Transform which is used for overall voting is implemented in two stages. First, the two end-points of each snakelet vote for a center of the oval. The equations (1) and (2) for two points \#($\left.\mathrm{x}_{1}, \mathrm{y}_{1}\right) \#$ and $\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ on an oval centered at ($\mathrm{x}_{c}, \mathrm{y}_{c}$), as follows,

$$
\begin{align*}
& \frac{\left(x_{1}+x_{c}\right)^{2}}{a^{2}}+\frac{\left(y_{1}+y_{c}\right)^{2}}{b^{2}}=1 \tag{1}\\
& \text { and } \\
& \frac{\left(x_{2}+x_{c}\right)^{2}}{a^{2}}+\frac{\left(y_{2}+y_{c}\right)^{2}}{b^{2}}=1
\end{align*}
$$

where;
x_{1} is the horizontal coordinate of the first of two points. y_{1} is the vertical coordinate of the first of two points.
x_{2} is the horizontal coordinate of the second of two points.
y_{2} is the vertical coordinate of the second of two points.
x_{c} is the horizontal coordinate of the center of the oval.
y_{c} is the vertical coordinate of the center of the oval.
a is the first oval parameter.
b is the second oval parameter.
Equations (1) and (2) are combined to form equation (3) as follows:

$$
b= \pm \sqrt{\frac{\left(y_{2}+y_{c}\right)^{2}\left(x_{1}+x_{c}\right)^{2}-\left(y_{1}+y_{c}\right)^{2}\left(x_{2}+x_{c}\right)^{2}}{\left(x_{1}+x_{c}\right)^{2}-\left(x_{2}+x_{c}\right)^{2}}}
$$

Thus, for every pair of snakelet end-points or nodes and given a particular value for $\left(\mathrm{x}_{c}, \mathrm{y}_{c}\right)$. a value for "b" is computed. By dividing the possible values of " b " into several intervals, support for coarsely binned (intervals are called bins) values, of b is computed across all possible values of the center $\left(\mathrm{x}_{c}, \mathrm{y}_{c}\right)$. In other words, snakelet nodes vote for a face oval. After which stage five of FIG. 2 occurs

In Stage five, 150, FIG. 2, non-maximal suppression is then performed on values of b. This means that for a range of possible values of b only local peaks in the votes(most popular values of "b") are recorded for subsequent processing.

The next part of the Hough Transform which is a voting procedure, is performed on all component points \# $\left(\mathrm{x}_{i}, \mathrm{y}_{i}\right)$ \# to obtain the parameter a, according to equation (4).

$$
\begin{equation*}
a= \pm \sqrt{\frac{b^{2}\left(x_{i}+x_{c}\right)^{2}}{b^{2}-\left(y_{i}+y_{c}\right)^{2}}} \tag{4}
\end{equation*}
$$

where:
x_{1} is the horizontal coordinate of the i th point.
y_{1} is the vertical coordinate of the i th point.
intensity of the image or in its rate of change. In FIG. 6, the potential image for the edge $\phi_{\text {edge }}$ was generated by first
applying a morphological operator of close(21) and then blurring it by using an exponential filter $\mathrm{e}^{-a}\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)^{1 / 2}$ with an α of 0.8. A morphological operator applies an operator to an image in three steps: first the image has its similarintensity regions broadened; second another version has its similar-intensity regions narrowed; and third, the second version is substracted from the first. The potential image for the valley (which is the region of lowest intensity in the image) was generated by first applying a morphological operator which first broadens the similar-intensity regions, and then narrows them, and then blurring it by using an exponential filter with an α value of 0.4.

The eye potential image is the potential image to assist finding the eye; this potential image is generated by a first difference operator of size 3 , in both X and Y directions. The symbols in FIG. 6 breakdown as follows:
Oval Center ($\mathbf{x} \mathbf{0}, \mathrm{y} \mathbf{0}$) is the center of the oval.
fa is half the horizontal width of the oval through its center fb is half the vertical height of the oval through its center r is the radius of the left iris; it is also the radius of the right iris.
leye (x, y) is the center position of the left iris
reye (x, y) is the center position of the right iris
nose (x, y) is the position of the base of the nose
mouth (x, y) is the center of the mouth
chin (x, y) is the lowest point of the chin

FIND INITIAL ROUGH OVAL

The initial oval-finding stage 210 uses the edge-image potential to find the best oval that fits the image.

$$
E_{\text {oval_rotal }}=E_{\text {edge }}+E_{\text {iniernal }}
$$

$$
E_{\text {edge }}=\frac{c_{2}}{\text { length }} \int_{\text {face_edge }} \Phi_{e d g e}(\vec{x}) d s
$$

$$
E_{\text {internal }}=k_{1}\left(X_{e}-X_{c}\right)+k_{1}\left(Y_{e}-Y_{c}-(0.1) f_{b}\right)+k_{2}\left(f_{a}-0.7 f_{b}\right)+k_{3} e^{-\beta 1 f_{a}}+k_{3} e^{-\beta_{3} r}
$$

40 The coefficients used are: $\mathrm{c}_{2}=200, \mathrm{C}_{3}=100, \mathrm{k}_{1}=100, \mathrm{k}_{2}=100$ $000, \beta_{1}=0.04, \beta_{2}=0.028$.

The oval axes half-lengths $\left(\mathrm{f}_{a}, \mathrm{f}_{b}\right)$, are initialized with a value and the oval is positioned inside the face perimeter. The k_{1} term force draws the oval center downward because the oval center found in-stage 1 is biased towards the top due to the inclusion of hair in stage 1 . The k_{1} term also maintains the horizontal component of the center close to where it was initially dropped. The k_{3} terms are an outward forcing term of each half-length to prevent the oval from becoming too small. The k_{3} term also helps to overcome the possibility of the lower edge of the oval stabilizing around the mouth. The k_{2} term tries to maintain a ratio that is reasonable for a face.

The fitting of the oval is performed by iteratively updating the oval center position and the oval axes half-lengths (f_{a}, f_{b}), The update formula is obtained by gradient descent with respect to these four parameters. The stage is complete when the total energy stabilizes around a minimum value. FIG. 7 illustrates the process followed in the oval fitting stage. FIG. $7 a$ shows an original image. FIG. $7 b$ shows the image with a negative edge potential. FIGS. $7 c$ through $7 f$ show the various stages of fitting the oval until a final fit has been reached.

CHIN-FINDING STAGE

The chin-finding stage 220 of FIG. 3, uses the edge-image potential to find the bottom of the chin. First, multiple snakelets are dropped in random orientations in a grid, one per grid point, in a rectangular region of width $3 / 2 \mathrm{~F}_{a}$
centered at the vertical axis of the oval center, and of height $1 / 4 \mathrm{f}_{b}$ to the top and $1 / 8 \mathrm{f}_{b}$ to the bottom positioned from the horizontal axis tangent to the bottom of the oval.
Snakes is a method for matching a model of a curve to a curve in a general image. Kass M., Witkin A. and Terzopoulos D. (1988), "Snakes: Active contour models", International Journal of Computer Vision, pp. 321-331. We use snakes to find pieces of curves, such as a piece of a wrinkle or a piece of a chin, or a piece of a side of a face. These pieces of snakes, we call snakelets.
After all the snakelets have stabilized, they are used to obtain a voting scheme for the strongest parabola in that region. The voting scheme is implemented in two stages. First, each snakelet votes for a coarse candidate position for the base of the parabola. Non-maximal suppression is performed on these votes, and the best five are chosen. Amongst these five, the one that is located in the highest position on the face (to eliminate parabolas corresponding to necklines of clothing, or of the shadow formed by the chin) is chosen. Then, the snakelets that voted for this winning position of the base are identified, and a finer search of the base is performed in a similar manner.
This leads to detection of the chin, when it is delineated in the raw image. If the image quality is poor, or illumination conditions are bad, the correct position of the chin is very difficult to find.
Determination of whether a chin is found is currently done by human visual inspection. If it has been found, it is used in three places: to refine the initial oval; to find the virtual top of the head using also the sides of the face (see upcoming sections on "Face Side-finding stage" and "Finding the virtual top of the head"); and to be used in ratios 3a and $5 a$. If it is determined that it is not found, the bottom of the initial oval is used in the ratios, thus requiring ratios $3 b$ and 5 b . In these ratios, the chin is referred as "ochin" (for oval-chin).

FIG. 8 illustrates the various stages followed in a chin finding procedure. FIG. $8 a$ shows an original image. FIG. $8 b$ shows the image with a negative of edge potential. FIG. $8 c$ shows the image after snakelets have been dropped. FIG. $8 d$ shows the image with snakelets at an intermediate stage. FIG. $8 e$ shows the snakelets in a stabilized form. FIG. $\mathbf{8} f$ shows the winner in Hough space marked with and "X", which signifies the chin in the image.

FACE SIDE-FINDING STAGE

The face side-finding stage 230 of FIG. 3, uses the edge-image potential to find the left and right sides of the face. This stage uses the parabola-fitting algorithm, except that the parabola equations are modified to suit the left and right open-ended parabolas. FIGS. $9 a$ and $9 b$ shows the right and left open-ended parabolas. FIG. $9 a$ shows a right open-ended parabola used to fit the left side of a face. FIG. $9 b$ shows a left open-ended parabola that is used to fit the right side of a face. The parabola-fitting algorithm is as follows:

$$
\begin{aligned}
& \text { for all snakelets \{ } \\
& \qquad \begin{array}{l}
\text { for } h=h_{\min } \text { to } h_{\max }\{ \\
\quad /^{*}\left(x_{1}, y_{I}\right) \text { and }\left(x_{2}, y_{2}\right) \text { are two end points of the snakelet; */ } \\
\quad\left(x_{2}-h\right)^{2} y_{I}-\left(x_{I}-h\right)^{2} y_{2} /\left(x_{2}-h\right)^{2}-\left(x_{I}-h\right)^{2} \\
\operatorname{BIN}[h, c]++; /^{*} \text { Increment bin */ } \\
\}
\end{array}
\end{aligned}
$$

where
($\mathrm{x}_{0}, \mathrm{y}_{0}$)=oval-center,
(x, y)=point on the oval-edge,
Select the winning bin, which is $\operatorname{BIN}[h, c]$; equation is:

$$
x=k(y-c)^{2}+h
$$ equation is:

$$
x=-k(y-c)^{2}+h
$$ base point of the parabola for that side of the face.

FINDING THE VIRTUAL TOP OF THE HEAD head. Hence, an alternative strategy is used here. is too close to the side of the face. top of the oval shown in FIG. 11f. parametric form of the oval equation is as follows:

$$
\begin{aligned}
& x=f_{a}^{*} \cos \theta+x_{0} \\
& y=f_{b}^{*} \sin \theta+y_{0}
\end{aligned}
$$

$\theta=$ angle from the x -axis,
-continued
Perform Non-Maxima suppression;
(keep only the local peaks)
Select the 5 local maxima and rank them in descending order;

Extract the snakelets that voted for the winning bin, for later use;
For the right open-ended parabola of FIG. 9 a, the parabola

For the left open-ended parabola of FIG. $9 b$, the parabola

FIG. 10 illustrates the changes followed in locating the left and right sides of the face. This process works even under conditions that are not ideal, except when the ear is too close to the side of the face, or when there is dishevelled hair below the lower half of the face. FIG. $10 a$ shows the original image. FIG. $10 b$ shows the negative of the edge-image potential. FIG. 10c shows a rectangular grid of randomly oriented snakelets dropped on each side of the initial oval. FIG. $10 d$ shows the image with the snakelets settling down. FIG. 10e shows the symbol " X " on each side that marks the

Computing the virtual top of head in stage 240 of FIG. 3 is very difficult to estimate when the person has hair on their

At this stage, the three pools of snakelets that voted for winning parabolas in FIG. $10 e$ are pooled, and a single oval is fit to all the snakelets' points. The oval is used to find the virtual top of the head, as confined by the snakelets that supported the parabolas of the chin and sides of the face. The purpose of this is to have an estimate of the ratio of the height of the eyes from the chin, relative to the virtual top of the head. This process can be affected by the errors in finding the sides of the face, which in turn are affected by dishevelled hair in the lower half of the face, and a ear that

FIGS. $11 a$ through $11 f$ shows the outcome for one of the successful cases. FIG. $11 a$ shows an original image. FIG. $11 b$ shows the negative of edge potential of that image. FIG. $11 c$ shows original snakelets dropped for the chin and the sides of face. FIG. $11 d$ shows the snakelets after they have settled down. FIG. 11e shows snakelets that support the three parabolas. FIG. $\mathbf{1 1} f$ shows that the fit of the face-oval has been refined. Wherein the virtual top of the head is the

The following is a numerical description of the process of estimating the oval for the virtual top of the head. The
$\left(\mathrm{f}_{a}, \mathrm{f}_{b}\right)=$ the respective x and y distances from the ovalcenter

Given (x, y), $\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$ and f_{b}, we can solve for f_{a} :

$$
\begin{aligned}
& \theta=\sin ^{-1}\left[\left(y-y_{0}\right) / f_{b}\right] \\
& f_{a}=\left(x-x_{0}\right) / \cos \theta
\end{aligned}
$$

FIG. 12 shows the snakelets and chin_point that is used in the virtual top of head finding algorithm used in one of the stages of FIG. 3. FIG. 12 shows the resulting snakelets of the parabola-fitting for the three groups. These snakelets are then used as an input to the virtual top of the head finding algorithm. The algorithm for finding the virtual top of the head is as follows:

Perform parabola fitting for chin, left and right sides of the face;
/* As a result from parabola fitting, we have all the snakelets that
contributed to the three parabola groups and a chin point (x, y) from
the chin parabola. */
/* The chin point (x, y) serves as the base of the oval */
for all snakelets \{
for each snakelet point $S P_{i}$ \{
$/^{*} S P_{i}(x, y)=$ current point under consideration (known) */
$f^{*} x_{0}=x$ from the chin point $(x, y)^{* /}$
for $y_{o}=y_{\min }$ to $y_{\max }\{$
$f_{b}=y_{o}-\operatorname{chin}(y) ; /^{*} y$ from the chin point $(x, y)^{* /}$
$\theta=\sin ^{-1}\left[\left(y-y_{o}\right) / f_{b}\right] ;$
$f_{a}=\left(x-x_{o}\right) / \cos (\theta) ;$
$\operatorname{BIN}\left[y_{o}, f_{a}\right]++; / *$ increment bin */
\}
\}
\}

Perform Non-Maxima suppression;
Select the 5 local maxima and rank them in descending order;
Select the winning bin $-\operatorname{BIN}\left[y_{o}, f_{a}\right]$;

EYE-FINDING STAGE

The eye-finding stage 250 of FIG. 3 consists of an iris-attracting sub-stage and an iris-fitting substage.
The iris-attracting sub-stage places both the left and the right iris center of the template (FIG. 6) near the respective iris centers in the image specified by the oval parameter.

Using the parameters from the refined oval (or the initial 55 oval), both the left and the right iris centers of the template are placed near the respective irises in the image. The left iris center is placed $1 / 10 \mathrm{f}_{b}$, above oval center for y and $1 / 2 \mathrm{f}_{a}$ left of the oval center for x. Similarly, the right iris center is placed $1 / 10 \mathrm{f}_{b}$ above oval center for y and $1 / 2 \mathrm{f}_{a}$ right of the oval center for x . The iris-attracting stage uses the valley image potential $\phi_{\text {valley }}$ and the intensity image potential $\phi_{\text {ineensiy }}$ to attract both left and right iris centers to their true positions.

$$
E_{\text {eye_Joala }}=E_{\text {intensity }}+E_{\text {valley }}+E_{\text {eye }}
$$

5

-continued

$$
\begin{aligned}
& E_{\text {intensity }}=-\frac{c_{5}}{\text { area }} \iiint_{\text {left_ iris_area }} \Phi_{\text {intensity }}(\vec{x}) d A \\
& -\frac{c_{5}}{\text { area }} \iiint_{\text {right_iris_area }} \Phi_{\text {intensiy }(\vec{x})} d A \\
& E_{\text {valley }}=\frac{c_{5}}{\text { area }} \iint{ }_{\text {left_iris_area }} \Phi_{\text {valley }}(\vec{x}) d A \\
& \frac{c_{5}}{\text { area }} \iint \text { right_iris_area } \Phi_{\text {valley }}(\vec{x}) d A \\
& E_{\text {eye }}=\frac{c_{4}}{\text { length }} \int_{\text {left_ iris_ edge }} \Phi_{\text {eye }}(\vec{x}) d s+ \\
& \frac{c_{4}}{\text { length }} \int \text { right_iris_edge } \Phi_{\text {eye }}(\vec{x}) d s
\end{aligned}
$$

The coefficients used are: $\mathrm{c}_{4}=100, \mathrm{c}_{5}=300$.
The iris centers are initially positioned, guided by the oval parameters. The valley potential is strong around the actual iris area and it draws the iris/eye template over a substantial distance. The update is by gradient descent which is a procedure that changes the parameters in such a manner that causes the strongest possible decrease in the $\mathrm{E}_{\text {eye }}-{ }_{\text {total }}$. The oval parameters are not allowed to change in this stage. Thus, only a change in the iris parameters will update the total energy value.

For the his-fitting substage, the equations from the Irisattracting stage and additional equations for each of the energy potentials are used. Also an internal energy term is introduced to prevent the iris radius from collapsing to a point. The equations used are as follows:

$$
\begin{aligned}
& E_{\text {iris_roual }}=E_{\text {intensity_foral }}+E_{\text {valley_foral }}+E_{\text {eye_orour }} E_{\text {inemal }} \\
& E_{\text {intensiliy_Lotal }}=E_{\text {inrensily_eye }}+E_{\text {ininensily_iris }} \\
& E_{\text {valley_loald }}=E_{\text {valley_ceye }}+E_{\text {valley_iris }} \\
& E_{\text {eye_toial }}=E_{\text {eyc_eye }}+E_{\text {eyc_iris }}
\end{aligned}
$$

$\mathrm{E}_{\text {intensity }}{ }^{\text {eye }}$ - same as in Iris-attracting stage

$$
\begin{aligned}
& E_{\text {inensity_iris }}=-\frac{2 \times c 9}{r \times \text { length }} \int_{\text {left_ iris_edge }} \Phi_{\text {intensiviv }}(\vec{x}) d s+ \\
& \frac{2 \times c_{9}}{r \times \text { area }} \iint_{\text {left_ iris_area }} P h_{i_{\text {ineresity }}(\vec{x}) d A}
\end{aligned}
$$

$\mathrm{E}_{\text {valley }}{ }^{-}$eye same as Iris-attracting stage
$E_{\text {ralley } _ \text {iris }}=-\frac{2 \times c_{8}}{r \times \text { length }} \int_{\text {left_ iris_ edge }} \Phi_{\text {valle } y}(\vec{x}) d s-$

$$
\frac{2 \times c_{8}}{r \times \text { area }} \iiint_{\text {left_ iris_ area }} P h_{\text {rades }}(\vec{x}) d A
$$

$\mathrm{E}_{\text {eye }}{ }^{-}$eye same as in Iris-attracting stage

$$
\begin{aligned}
& E_{\text {eye_iris }}=\frac{c_{7}}{\text { length }} \int{ }_{\text {left_iris_edge }} \Phi_{e y y}(\vec{x}) d s \\
& E_{\text {internal }}=k_{4} \mathrm{e}^{-\beta_{31}}
\end{aligned}
$$

The coefficients used are: $\mathrm{c}_{4}=100, \mathrm{c}_{5}=300, \mathrm{C}_{7}=200, \mathrm{c}_{8}=100$, $\mathrm{c}_{9}=150, \mathrm{k}_{4}=80000, \beta_{3}=0.6$.
The iris-fitting sub-stage uses the intensity image potential $\phi_{\text {intensity }}$, the valley image potential $\phi_{\text {vallev }}$, the eye image potential $\phi_{\text {eye }}$ to fit the iris template to the actual image. The k_{4} term is an outward force that prevents the radius of the iris from becoming too small. The darkness of the iris area from the intensity image and the brightness of the iris area from the valley image potential along with the iris edge information from the eye image potential will guide the fitting of the iris template to the image. The eye parameters $\mathrm{a}, \mathrm{b}, \mathrm{c}$ (these are constants controlling the boundary of the eye) are scaled with respect to the radius of the iris and these parameters are used to clip the iris disc to a partial disc. The only parameters allowed to change in this stage are both the iris centers and the scale of the iris template. The parameters are updated by gradient descent.
FIG. $13 a$ through $13 i$ shows the outcome of the irisattracting and fitting substages. FIG. $13 a$ shows an original image. FIG. $13 b$ shows an edge potential of that image. FIG. $13 c$ shows the valley potential. FIG. $13 d$ shows the edge potential shown just for eyes. FIGS. $13 e$ through $13 g$ shows the iris attracting sub-stage. FIGS. $13 h$ through $13 i$ shows the substage for iris-fitting.

FINDING THE MOUTH

Stage 250 of FIG. 3 covers finding the mouth (as shown in the template of FIG. 6) as the next stage. After finding both iris centers, a vertical axis half way between the two irises is computed. The search area for the mouth is determined by a rectangular region of width $4 / 3 \mathrm{f}_{a}$, centered at the vertical axis, and of height $0.5 \mathrm{f}_{b}$ centered at $0.5 \mathrm{f}_{b}$ from the bottom of the oval. This area is large enough so that the mouth is guaranteed to be within this region. An averaging filter which takes the average of the numbers it is processing, with mask size of (31×5) is convolved with the mouth area to produce the mouth image potential $\phi_{\text {mouth }}$ which is just the output from applying the averaging filter above. From the mouth image potential, each horizontal line is summed and the one with the maximum sum is selected as the position of the center of the mouth. FIG. 14 to be discussed in the next section details the outcome of locating the center of the mouth.

FINDING THE NOSE

After the mouth is found, the next stage is finding the nose 260 FIG. 3. Here, an area for the nose (as shown in the template of FIG. 6) is determined guided by the vertical axis, the mouth, and the eye. The nose is searched for in a rectangular region bounded vertically by the middle 60% of the distance between the eyes and the mouth, and horizontally by the 2 eye-centers. Similar to the mouth stage, an averaging filter with mask size (31×5)) is applied to the nose area to produce a nose image potential \# From the nose image potential, each horizontal line is summed and the one with the maximum is selected as the position of the bottom of the nose. The mask size will vary with the oval size.

FIGS. $14 a$ through $14 d$ shows the outcome of locating the center of the mouth, and the bottom of the nose. FIG. $14 a$ shows an original image. FIG. $14 b$ shows a final mouth and nose-fit over the original image. FIG. $\mathbf{1 4} c$ shows an enlarged mouth potential from the image. FIG. $14 d$ shows an enlarged nose potential from the image.
VERIFY NORMALICY OF FACIAL FEATURE STAGE:
The results obtained from facial feature detection, which encompass stages 210 through 270 in FIG. 3 are categorized in tables. Tables I and 2 show the positions detected for the various primary facial features. For the columns labelled oval, leye, reye, nose, mouth, chin, the values of x and y represent the coordinates that are measured in pixel units. The values of fa and fb in the column labelled oval represent the measured half-lengths of the oval in pixel units. Tables 3 and 4 indicate human evaluation of these results. All the faces used in these experiments are shown with their facial feature fits in FIGS. 16 through 19. FIGS. 16a through $16 y$ show the original images for the baby class. FIGS. 17a through $17 y$ show the final fit for each of the images of FIGS. $16 a$ through $16 y$. FIGS. $18 a$ through $18 v$ show the original images for the adult and senior class. FIGS. 19a through $19 v$ show the final fit for each of the images of FIGS. 18 a through 18v. These evaluations are used to decide which data to include in evaluating whether a ratio is appropriate for classification. Here, the candidate face is judged for its facial feature ratios, to see if these ratios fall into the range acceptable for the range of babies to adults. If the computed ratios agree with the pre-known ratios, then the candidate face is accepted.

TABLE 1

subject	Results of the facial feature data found for baby class.													
	oval		leye		reve		nose		mouth		chin		oval	
	x	y	x	y	x	y	x	y	x	y	x	y	f_{a}	f_{b}
baby01	140	105	113	106	165	110	139	73	139	52	146	19	61	85
baby02	143	118	114	139	174	135	144	98	144	76	142	40	59	77
baby03	134	145	117	152	151	152	134	128	134	114	132	93	43	57
baby04	131	125	109	138	151	136	130	109	130	92	131	64	46	60
baby05	140	119	120	131	164	131	142	97	142	84	142	55	49	65
baby08	122	122	92	120	146	120	119	80	119	58	113	21	72	100
baby10	-	-	110	115	166	115	138	79	138	58	-	-	-	-
baby12	129	95	104	104	154	100	129	70	129	49	-	-	64	84
baby13	131	127	107	139	153	139	130	110	130	91	-	-	52	62
baby14	95	149	73	157	115	155	94	127	94	110	83	86	49	65
baby15	-	-	107	112	157	114	132	80	132	60	-	-	-	-
baby16	-	-	114	135	158	133	136	105	136	89	-	-	-	-
baby17	133	118	109	118	163	116	136	82	136	58	-	-	67	91
baby18	142	125	116	137	168	137	142	99	142	75	144	37	61	85

TABLE 1-continued

subject	Results of the facial feature data found for baby class.													
	oval		leye		reve		nose		mouth		chin		oval	
	x	y	x	y	x	y	x	y	x	y	x	y	$\mathrm{f}_{\text {a }}$	f_{b}
baby19	-	-	113	141	167	141	140	115	140	88	-	-	-	-
baby 20	136	121	114	118	158	122	136	93	136	74	129	54	52	70
baby 21	-	-	100	137	152	139	126	108	126	85	-	-	-	-
baby 22	131	138	112	149	152	147	132	120	132	105	-	-	48	66
baby 24	142	123	125	129	177	131	151	100	151	84	152	44	57	79
baby 25	-	-	94	122	148	120	121	91	121	66	-	-	-	-
b02	-	-	106	128	154	128	130	97	130	73	-	-	-	-
b06	-	-	120	143	166	145	143	111	143	93	145	55	63	87
b07	145	119	131	117	179	117	155	84	155	64	-	-	72	88
b09	-	-	92	136	146	136	119	105	119	85	-	-	-	-
b18	-	-	84	157	124	159	104	135	104	118	-	-	-	-

TABLE 2

subject	Results of the facial feature data found for adult and senior classes.													
	oval		leve		reve		nose		mouth		chin		oval	
	x	y	x	y	x	y	x	y	x	y	x	y	f_{a}	f_{b}
snr01	131	117	97	115	159	119	128	65	128	49	-	-	73	103
snrO2	131	137	103	144	155	144	129	114	-	-	-	-	67	83
snr03	-	-	96	138	-	-	123	111	123	89	-	-	-	-
snr05	-	-	114	151	164	147	139	114	139	96	-	-	-	-
snr06	123	128	101	129	143	131	122	105	122	87	-	-	50	66
snr07	131	157	-	-	-	-	134	126	134	107	-	-	54	76
snr10	-	-	-	-	159	155	134	116	134	97	-	-	-	-
snr11	132	147	113	154	155	152	-	-	134	111	-	-	51	71
snr15	128	149	105	158	147	160	-	-	126	100	-	-	60	84
snr18	131	128	104	139	166	139	135	85	135	63	-	-	73	103
s01	134	107	107	125	163	125	135	87	135	65	146	31	59	81
s10	115	111	87	129	141	129	114	89	114	67	102	38	55	73
s11	-	-	119	132	175	130	147	92	147	72	-	-	-	-
s12	120	142	94	158	152	156	123	119	123	95	120	61	60	82
adult01	129	136	95	147	163	149	129	100	129	70	131	20	81	113
adult04	126	112	106	129	152	127	129	92	129	70	126	37	60	74
a01	-	-	104	146	144	146	124	112	124	98	123	69	45	59
a02	125	137	103	152	147	148	125	116	125	103	127	73	47	63
a04	132	140	110	153	150	155	130	121	130	111	133	80	49	59
a06	139	132	118	152	158	152	138	116	138	103	140	76	41	53
a12	-	-	123	136	159	132	141	104	141	92	-	-	-	-
a19	126	153	107	170	151	168	129	142	129	124	128	94	47	59

TABLE 3
Results indicating how well the facial feature fits were for the baby
class. The quality of these fits were judged by human inspection. class. The quality of these fits were judged by human inspection. An automatic procedure for this appears to be difficult to design.

50 TABLE 3-continued

subject	oval	leye	reye	nose	mouth	chin	comments	5
baby01	VG	VG	VG	VG	VG	VG	None	
baby02	VG	VG	VG	VG	VG	VG	None	
baby03	VG	VG	VG	VG	VG	VG	None	
baby04	VG	VG	VG	VG	VG	VG	None	
baby05	VG	G	G	VG	VG	VG	None	
baby08	VG	VG	VG	VG	VG	VG	+5 deg,	60
							OMF	
baby10	P	VG	VG	VG	VG	P	None	
baby12	VG	VG	VG	VG	VG	CNF, UO	Expr, OMF	
baby13	VG	VG	VG	VG	VG	CNF, UO	OMF	
baby14	VG	VG	VG	VG	VG	G	None	
baby15	P	VG	VG	VG	VG	P	None	65
baby16	P	VG	VG	VG	VG	P	+2 deg	

55	subject	oval	leye	reye	nose	mouth	chin
	comments						
baby17	VG	VG	VG	VG	VG	CNF, UO	+2 deg
baby18	VG	VG	VG	VG	VG	G	None
baby19	P	VG	VG	VG	VG	P	None
60	baby20	VG	VG	VG	VG	VG	G
baby21	P	G	G	VG	VG	P	None
baby22	G	VG	VG	VG	VG	CNF, UO	None
baby24	G	VG	VG	VG	VG	G	+3 deg
baby25	P	G	VG	VG	VG	P	+3 deg
b02	P	G	VG	VG	VG	P	None
65	b06	P	G	G	VG	VG	VG
b07	VG	VG	VG	VG	VG	P, UO	+1 deg

TABLE 3-continued

Results indicating how well the facial feature fits were for the baby class. The quality of these fits were judged by human inspection. An automatic procedure for this appears to be difficult to design.							

TABLE 4

Results indicating how well the facial feature fits were for the adult and senior classes. The quality of these fits were judged by human inspection. An automatic procedure for this appears to be difficult to design.

subject	oval	leye	reye	nose	mouth	chin	comments
snr01	VG	VG	VG	G	VG	CNF, UO	None
snr02	VG	VG	VG	VG	P	CNF, UO	None
snr03	P	VG	P	VG	VG	P	None
snr05	P	VG	G	VG	VG	P	+2 deg
snr06	VG	VG	VG	VG	VG	CNF, UO	None
snr07	VG	P	P	VG	VG	CNF, UO	None
snr10	P	P	G	VG	VG	P	None
snr11	G	G	VG	P	VG	CNF, UO	Expr
snr15	VG	VG	G	P	VG	CNF, UO	None
snr18	VG	VG	G	G	VG	CNF, UO	None
s01	VG	VG	G	VG	VG	G	None
s10	G	VG	VG	VG	VG	G	None
s11	P	VG	VG	VG	VG	P	Expr
s12	VG	G	VG	VG	VG	G	None
adult01	G	VG	VG	VG	VG	VG	None
adult04	VG	VG	VG	VG	VG	VG	None
a01	P	VG	VG	VG	VG	VG	None
a04	G	VG	VG	VG	VG	VG	None
a06	VG	VG	VG	VG	VG	VG	Expr
a12	G	G	G	G	VG	VG	None
a19	VG	VG	VG	G	VG	P	Expr
		VG	VG	VG	None		

VG = Very Good,
$\mathrm{G}=\mathrm{Good}$,
$\mathrm{P}=\mathrm{Poor}$,
$\mathrm{UO}=$ Use Oval to compute chin,
CNF = Chin Not Found
OMF = Oval Manually Found
+x deg $=$ amount of rotation of the face

After the primary facial features have been located, they can be used to compute the ratios for age classification: Six ratios are evaluated as shown in FIGS. $15 a$ through 15 b. The term "abs() signifies the absolute value within.

$$
\begin{aligned}
& \text { In FIG. 15a, RATIO } \left.1 \text { is } \frac{\operatorname{abs}(l \operatorname{leye}(x)-r e y e(x))}{a b s\left(\frac{\operatorname{leye}(y)+r e y e}{}(y)\right.} 2-\operatorname{nose}(y)\right) \\
& \text { In FIG. 15b, RATIO } 2 \text { is } \frac{a b s(\operatorname{leye}(x)-\operatorname{reye}(x))}{a b s\left(\frac{l \text { eye }(y)+\operatorname{reye}(y)}{2}-\operatorname{mouth}(y)\right)}
\end{aligned}
$$

$$
\begin{aligned}
& \text { In FIG. 15c, RATIO } 3 \text { is } \frac{\text {-continued }}{a b s(l \mathrm{leye}(x)-r e y e(x))} \\
& \text { In FIG. 15d, RATIO } 4 \text { is } \frac{a b s\left(\frac{l e y e(y)+r e y e(y)}{2}-\operatorname{chin}(y)\right)}{a b s\left(\frac{l e y e(y)+r e y e(y)}{2}-\operatorname{mouth}(y)\right)} \\
& \text { In FIG. 15e, RATIO } 5 \text { is } \frac{a b s\left(\frac{l e y e(y)+r e y e(y)}{2}-\operatorname{mose}(y)\right)}{a b s\left(\frac{l e y e(y)+r e y e(y)}{2}-\operatorname{chin}(y)\right)} \\
& \text { In FIG. 15f, RATIO } 6 \text { is } \frac{a b s\left(\frac{l e y e(y)-r e y e(y)}{2}-\operatorname{chin}(y)\right)}{a b s(\text { tophead }(y)-\operatorname{chin}(y))}
\end{aligned}
$$

The measurements used in the ratio are presented in Tables 5 and 6. In these tables, "ochin" refers to oval-chin, which is calculated as the base of the initial oval. The term "ochin" refers to the chin position (x, y) gotten from the oval, where the x value is the same as the value of the oval center (x) and the y value is computed by oval_center(y)-fb. For Tables 5 and 6 , the vertical columns are calculated as follows:

$$
\text { eye_avg_y }=\frac{\text { leye }(y)+r e y e(y)}{2}
$$

oval chin $\mathrm{y}=0 \mathrm{oval}$ center(y$)-\mathrm{fb}$
leye-reye=abs(leye(x)-reye(x))
eye-nose=abs(eye avg y-nose(y))
eye-mouth=abs(eye_avg_y-mouth(y))
eye-chin=abs(eye_avg_y-chin(y))
eye-ochin=abs(eye_avg y-oval_chin_y)
In the case of baby01, the vertical columns from table 5 is as follows:
eye_avg $y=(106+110) / 2=108$
oval_chin__ $\mathrm{y}=105-85=20$
leye-reye $=a b s(113-165)=52$
eye-nose $=$ abs $(108-73)=35$
eye-mouth $=\mathrm{abs}(108-52)=56$
eye-chin $=$ abs $(108-19)=89$
eye-ochin=abs $(108-20)=88$

TABLE 5
Intermediate calculations for the ratio calculations for baby class.

subject	eye_avg_y	oval_chin_y	leye-reye	eye-nose	eye-mth	eye-chin	eye-ochin
baby01	108	20	52	35	56	89	88
baby02	137	41	60	39	61	97	96
baby03	152	88	34	24	38	59	64
baby04	137	65	42	28	45	73	72
baby05	131	54	44	34	47	76	77
baby08	120	22	54	40	62	99	98
baby10	115	-	56	36	57	-	-
baby12	102	11	50	32	53	-	91
baby13	139	65	46	29	48	-	74
baby14	156	84	42	29	46	70	72
baby15	113	-	50	33	53	-	-
baby16	134	-	44	29	45	-	-
baby17	117	27	54	35	59	-	90
baby18	137	40	52	38	62	100	97
baby19	141	-	54	26	53	-	-
baby20	120	51	44	27	46	66	69
baby21	138	-	52	30	53	-	-
baby22	148	72	40	28	43	-	76
baby24	130	44	52	30	46	86	86
baby25	121	-	54	30	55	-	-
b02	128	-	48	31	55	-	-
b06	144	-	46	33	51	89	-
b07	117	31	48	33	53	-	86
b09	136	-	54	31	51	-	-
b18	158	-	40	23	40	-	-

TABLE 6

	Intermediate calculations for the ratio calculations for adult and senior classes.						
subject	eye_avg_y	oval_chin_y	leye-reye	eye-nose	eye-mth	eye-chin	eye-ochin
snr01	117	14	62	52	68	-	103
snr02	144	54	52	30	-	-	90
snr03	-	-	-	-	-	-	-
snr05	149	-	50	35	53	-	-
snr06	130	62	42	25	43	-	68
snr07	-	81	-	-	-	-	-
snr10	-	-	-	-	-	-	-
snr11	153	76	42	-	42	-	77
snr15	159	65	42	-	59	-	94
snr18	139	25	62	54	76	-	114
s01	125	26	56	38	60	94	99
s10	129	38	54	40	62	91	91
s11	131	-	56	39	59	-	-
s12	157	60	58	38	62	96	97
adult01	148	23	68	48	78	128	125
adult04	128	38	46	36	58	91	90
a01	146	-	40	34	48	77	-
a02	150	74	44	34	47	77	76
a04	154	81	40	33	43	74	73
a06	152	79	40	36	49	76	73
a12	134	-	36	30	42	-	-75
a19	169	94	44	27	45	75	75

55

Tables 7 and 8 show the calculated ratios. Ratio 6 is not included here but is discussed later. Ratios 3 and 5 use the chin and thus have corresponding ratios 3 b and $5 b$ for when the chin is obtained from the initial oval. In these tables, "ochin" refers to oval-chin. For Tables 7 and 8, the Ratios ${ }^{60}$ are calculated as described in the FIG. 15 equations.
In the case of baby 01, the vertical columns from Table 7 are calculated as follows:

Ratio $1=52 / 35=1.4857$

Ratio 2=52/56=0.9286
Ratio 3a=52/89=0.5843
Ratio 3b $=52 / 88=0.5909$
Ratio $4=35 / 56=0.6250$
Ratio5 $a=56 / 89=0.6292$
Ratio $5 \mathrm{~b}=56 / 88=0.6394$

TABLE 7

subject	Results of the ratio computation with real images for baby class.						
	Ratiol nose-T	Ratio2 mth-T	Ratio3a chin-T	Ratio3b ochin-T	Ratio4 e-n-m	Ratio5a $e-m-c$	$\begin{gathered} \text { Ratio5b } \\ \text { e-m-ochin } \end{gathered}$
baby01	1.4857	0.9286	0.5843	0.5909	0.6250	0.6292	0.6364
baby02	1.5385	0.9836	0.6186	0.6250	0.6393	0.6289	0.6354
baby03	1.4167	0.8947	0.5763	0.5313	0.6316	0.6441	0.5938
baby04	1.5000	0.9333	0.5753	0.5833	0.6222	0.6164	0.6250
baby05	1.2941	0.9362	0.5789	0.5714	0.7234	0.6184	0.6104
baby08	1.3500	0.8710	0.5455	0.5510	0.6452	0.6263	0.6327
baby10	1.5556	0.9825	-	-	0.6316	-	-
baby12	1.5625	0.9434	-	0.5495	0.6038	-	0.5824
baby13	1.5862	0.9583	-	0.6216	0.6042	-	0.6486
baby14	1.4483	0.9130	0.6000	0.5833	0.6304	0.6571	0.6389
baby15	1.5152	0.9434	-	-	0.6226	-	-
baby16	1.5172	0.9778	-	-	0.6444	-	-
baby17	1.5429	0.9153	-	0.6000	0.5932	-	0.6556
baby18	1.3684	0.8387	0.5200	0.5361	0.6129	0.6200	0.6392
baby19	2.0769	1.0189	-	-	0.4906	-	-
baby20	1.6296	0.9565	0.6667	0.6377	0.5870	0.6970	0.6667
baby21	1.7333	0.9811	-	-	0.5660	-	-
baby 22	1.4286	0.9302	-	0.5263	0.6512	-	0.5658
baby24	1.7333	1.1304	0.6047	0.6047	0.6522	0.5349	0.5349
baby 25	1.8000	0.9818	-	-	0.5455	-	-
b02	1.5484	0.8727	-	-	0.5636	-	-
b06	1.3939	0.9020	0.5169	-	0.6471	0.5730	-
b07	1.4545	0.9057	-	0.5581	0.6226	-	0.6163
b09	1.7419	1.0588	-	-	0.6078	-	-
b18	1.7391	1.0000	-	-	0.5750	-	-
Sum	38.9609	23.7579	6.3870	8.6702	15.3384	6.8453	9.2819
Num Elements	25	25	11	15	25	11	15
Average	1.55844	0.95032	0.58064	0.57801	0.61354	0.62230	0.61879
Std Deviation	0.16851	0.06086	0.04138	0.03434	0.04352	0.03988	0.03469
Variance	0.02840	0.00370	0.00171	0.00118	0.00189	0.00159	0.00120

TABLE 8

subject	esults of the ratio computation with real images for adult and senior classes.						
	Ratiol nose-T	Ratio2 mth-T	Ratio3a chin-T	Ratio3b ochin-T	Ratio4 e-n-m	$\begin{aligned} & \text { Ratio5a } \\ & \text { e-m-c } \end{aligned}$	Ratio5b e-m-ochin
snr01	1.1923	0.9118	-	0.6019	0.7647	-	0.6602
snrO 2	1.7333	-	-	0.5778	-	-	-
snr03	-	-	-	-	-	-	-
snr05	1.4286	0.9434	-	-	0.6604	-	-
snr06	1.6800	0.9767	-	0.6176	0.5814	-	0.6324
snr07	-	-	-	-	-	-	-
snr10	-	-	-	-	-	-	-
snr11	-	1.0000	-	0.5455	-	-	0.5455
snr15	-	0.7119	-	0.4468	-	-	0.6277
snr18	1.1481	0.8158	-	0.5439	0.7105	-	0.6667
s01	1.4737	0.9333	0.5957	0.5657	0.6333	0.6383	0.6061
\$10	1.3500	0.8710	0.5934	0.5934	0.6452	0.6813	0.6813
s11	1.4359	0.9492	-	-	0.6610	-	-
\$12	1.5263	0.9355	0.6042	0.5979	0.6129	0.6458	0.6392
adult01	1.4167	0.8718	0.5313	0.5440	0.6154	0.6094	0.6240
adult04	1.2778	0.7931	0.5055	0.5111	0.6207	0.6374	0.6444
a01	1.1765	0.8333	0.5195	-	0.7083	0.6234	-
a02	1.2941	0.9362	0.5714	0.5789	0.7234	0.6104	0.6184
a04	1.2121	0.9302	0.5405	0.5479	0.7674	0.5811	0.5890
a06	1.1111	0.8163	0.5263	0.5479	0.7347	0.6447	0.6712
a12	1.2000	0.8571	-	-	0.7143	-	-
a19	1.6296	0.9778	0.5867	0.5867	0.6000	0.6000	0.6000
Sum	23.2862	16.0644	5.5745	8.4071	10.7537	6.2718	8.8060
Num Elements	17	18	10	15	16	10	14
Average	1.36977	0.89247	0.55745	0.56047	0.67210	0.62718	0.62900
Std Deviation	0.15074	0.05675	0.03475	0.02681	0.05445	0.02700	0.02971
Variance	0.02272	0.00322	0.00121	0.00072	0.00296	0.00073	0.00088

Each ratio can now be evaluated individually for the normalicy check and if desired for use in age classification. In Tables 7 and 8, Ratio 6 was not tabulated. For the other five ratios, the ratios were recomputed after dropping the data which was evaluated as unfavorable due to facial expression or rotation of the head. The subjects that were dropped are: baby08, baby24, baby25, b18, $\operatorname{snr} 05, \operatorname{snr} 11$, s11, a04, and a12.

For the five ratios, the individual column data from Tables 7 and 8 are used to obtain classification thresholds. These thresholds are calculated using to the following algorithm of Ohzu N. (1980), "An Automatic Threshold Selection Method Based on Discriminant and Least Squares Criteria", The Transactions of The Institute of Electronics, Information and Communication Engineers, vol. J63-D no. 4., for automatic threshold detection in bi-modal distribution

Assume the histogram levels $1,2, \ldots, L$. There exists an threshold value k which will optimally segement two groups of histogram. Now, we assume the resulting statistics of these two groups as follows:

Accumulated histogram values: (total no. of pixel in each group)	Group 11 $n-1(k)$	Group 2 $n-2(k)$
Mean of the intensities/group:	$m_{-1}(k)$	$m_{-2}(k)$
Variance of each group:	$V_{-1(k)}$	$V_{-2(k)}$
The mean of the whole image:	$m-t$	

Then the total inner variance: $V _$inner $=n _1 * V _1+n _2 * V _2$ the total intra variance: V intra $=$
$n _1 *\left(m _1-m _t\right)^{2}+n _2 *\left(m _2-m _t\right)^{2}$
Obtain the " $\max \left(V _\right.$intra $/ V _$inner $)$", the best k values will be solved.
The use of these thresholds for each ratio is now to be discussed.

RATIO 1; nose-T

Ratio 1 is (distance between two eyes:nose to midway point of eyes). Features found from stages 210 through 270 of FIG. 3 are used for this ratio. Table 9 shows the results of the ratio computation with real images, indicating that it is possible to find ratios that span the range of babies to adults, and also to computationally distinguish between baby and non-baby images.

TABLE 9

Results of the ratio computation with real images, indicating that it is possible to computationally distinguish between baby and non-baby images.		
	Baby	Adult
Ratio 1	32.3384	18.0096
Sum	21	13
Num of Elements	1.53993	1.38535
Average	0.16001	0.15751
Std Deviation	0.02560	0.02481
Variance		

The threshold found by the method of the algorithm listed above for Ratio 1 is 1.48 . The threshold correctly classifies 14 out of 21 babies (67%) and 9 out of 13 adults (69%). The location of the nose position is tricky because of the nose protrusion. Nevertheless, a good nose position is acquired consistently for the faces in our database. Although a higher classification percentage is desired, this ratio provides a reasonably reliable classification.
RATIO 2: mouth-T
Ratio 2 is (distance between two eyes:mouth to midway point of eyes). Features found from stages 1 through 6 of

FIG. 3 are used for this ratio. Table 10 shows th results of the ratio computation with real images, indicating that it is possible to computationally distinguish between baby and non-baby images.

TABLE 10

Results of the ratio computation with real images, indicating that it is possible to computationally distinguish between baby and non-baby images.		
Ratio 2	Baby	Adult
Sum	19.7747	11.3845
Num of Elements	21	13
Average	0.94165	0.87573
Std Deviation	0.00232	0.05992
Variance	0.00232	0.00359

The threshold found by the method of the algorithm for automatic threshold detection in bi-modal distribution, for Ratio 2 is 0.91 . This threshold correctly classifies 16 out of 21 babies (76%) and 7 out of 13 adults (54%). This appears to be the ratio that can be measured reliably and also in providing reliable classification.

RATIO 3: chin-T

Ratio 3 is (distance between two eyes:chin to midway point of eyes). This ratio makes use of features found by stages 1 through 5 of FIG. 3. Table 11 shows the results of the ratio computation with real images, indicating that it is possible to computationally distinguish between baby and non-baby images.

TABLE 11

Results of the ratio computation with real images, indicating that it is possible to computationally distinguish between baby and non-baby images. Ratio 3a Sum Sum of Elements Nuby	Adult	
Average	5.2369	5.0340
Std Deviation	9	9
Variance	0.58188	0.55933
	0.04347	0.03614
	0.00189	0.00131

The threshold found by the method of the algorithm for automatic threshold detection in bi-modal distribution, for Ratio 3a is 0.57 . This threshold correctly classifies 7 out of 9 babies (78%) and 4 out of 9 adults (44%). Localizing the chin is difficult to perform with consistency, due to changes in shading and shadowing, multiple chins, the possibility of an open jaw, and the possibility of facial hair. The classification result based on this ratio should not be ruled out as a possible candidate. Several factors could have contributed to this result. The shape of the chin varies greatly from a person to person which allows diverse results in the measurements of this ratio.

Table 12. shows the results of the ratio computation with real images, indicating that it is possible to computationally distinguish between baby and non-baby images.

TABLE 12

Results of the ratio computation with real images, indicating that it is possible to computationally distinguish between baby and non-baby images.		
Ratio 3b	Baby	Adult
Sum	7.5145	7.3137
Num of Elements	13	13
Average	0.57804	0.56259
Std Deviation	0.03535	0.02781
Variance	0.00125	0.00077

The threshold found by the method of the algorithm for automatic threshold detection in bi-modal distribution, for Ratio 3b is 0.53 . This threshold correctly classifies 12 out of 13 babies (92%) and 2 out of 13 adults (15%). Although the chin is more difficult to find, the oval that fits the face is found more easily. The drawback to the oval is that the chin position found from the oval may not be an exact fit because the oval finds the best fit including the sides of the face. The data supports the fact that ratio $3 b$ is not bimodal; even the averages are very similar.

RATIO 4: eye-nose: eye-mouth

Ratio 4 is (Nose to midway point of eyes: mouth to midway point of eyes). This ratio uses features from stages 1 through 7 of Fig. Table 13 shows the results of the ratio computation with real images, indicating that it is possible to computationally distinguish between baby and non-baby images.

TABLE 13

Results of the ratio computation with real images, indicating that it is possible to computationally distinguish between baby and non-baby images.		
Ratio 4	Baby	Adult
Sum	12.9206	7.9505
Num of Elements	21	12
Average	0.61527	0.66254
Std Deviation	0.04292	0.04942
Variance	0.00184	0.00244

The threshold found by the the method of the algorithm for automatic threshold detection in bi-modal distribution, for Ratio 4 is 0.62 . This threshold correctly classifies 8 out of 21 babies (38%) and 8 out of 12 adults (67%).
RATIO 5: eye-mouth: eye-chin
Ratio 5 is (mouth to midway point of eyes:chin to midway point of eyes). This ratio uses features from stages 1 through 6 of FIG. 3. Table 14 shows the results of the ratio computation with real images, indicating that it is possible to computationally distinguish between baby and non-baby images.

TABLE 14

Results of the ratio computation with real images, indicating that it is possible to computationally distinguish between baby and non-baby images.		
	Baby	Adult
Ratio 5a	5.6842	5.6907
Sum	9	9
Num of Elements	0.63157	0.63230

TABLE 14-continued
Results of the ratio computation with real images, indicating that it is possible to computationally distinguish between baby and non-baby images.

Ratio 5a	Baby	Adult
Std Deviation	0.03173	0.02341
Variance	0.00101	0.00055

The threshold found by the method of the algorithm for automatic threshold detection in bi-modal distribution, for Ratio $5 a$ is 0.64 . This threshold correctly classifies 6 out of 9 babies (67%) and 3 out of 9 adults (33%). This ratio also has the chin location problem. This ratio can best be used when the chin is located in a more accurate manner. The data supports the fact that ratio 3 b is not bimodal; even the averages are very similar.

Table 15 shows the results of the ratio computation with real images, indicating that it is possible to computationally distinguish between baby and non-baby images.

TABLE 15 ocalization. If made robust to shading shadowing, and occlusion effects, this ratio can be improved to serve as a good classifier.

Ratios 1,2 , and 3 can suffer if the face is rotated in depth, and as such some measure may need to be adopted to 5 compensate for this rotation, before the ratios are computed. Ratios 4,5 , and 6 are more consistently correct when this occurs. Enhancement can occur by combining several ratios
to make the final ratio classification. Such combination could be based on statistical analysis.
Referring to FIG. 3, stage seven, 270, is to verify that facial features are normal as expected to what a face should have. For detection and recognition, reference ratios of digital images can be initially stored in a digital computer and subsequently compared to a newly detected digital image including a margin for error. The stored reference ratios can include but are not limited to specific age groups, gender groups, specific individuals and the like.

For example, the various ratio categories for three general age classes was determined in the inventors patent application $08 / 198,816$, which has been incorporated by reference. For instance, in actual application, a digital camera can be preprogamed with a reference ratio for babies up to the age of three years old. In operation the described invention will compare a newly received digital image to compute a ratio and compare this new ratio to the reference ratio in order to locate and identify a baby from individuals of different age groups in the image.

The invention described herein is intended to allow for a computer to automaticly detect a single facial image from a digital image that includes extraneous facial and/or nonfacial images, to at least the same degree as having a human to find a face in the digital image. Similarily, the invention further allows for recognition of different facial expressions by a computer to at least the same degree as having a human interprett another person's facial expression.
Other facial features can also be examined. Skin and eye color restrictions can also be loosened. Then, the confirmation of facial features in the presence of eye patches and dark glasses, and other occlusions and shadowing effects can be compensated for. Confirmation of facial features can also be made robust to varieties of moustaches and facial scars, and dishevelled hair. Finally, an accurate estimation of the top of the skull may be able to be computed to aid in enhancing the accuracy facial feature confirmation.

Further, additional age related information can also be used to enhance facial feature confirmation. Additional information incorporated for age-based facial-finding, includes but is not limited to the growth of the nose and the nose-bridge, the relative shrinking of the iris-size over time, and changes to the outline of the face.

While the preferred embodiment describes detection of human faces, the invention is not limited to detection and recognition of only human faces. For example, the invention would be applicable to be used to detect and center in on other pre-programmed objects, such as but not limited to animals, plants, and artificial objects such as but not limited to automobiles and buildings. Thus, other reference ratios can be calculated and used for subsequent comparison.

The invention is not limited to detecting only from a digitized image. For example, an analog based image can be converted by well known analog to digital converters into a digitized image. Furthermore, the image can itself be based on any known method that quantifies the amount of light coming in at points in space, such as but not limited to pixel 55 points. wherein the digital image is formed from:
an analog signal converted to a digital image.

