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Abstract — The automatic recognition of facial expressions has been an active research topic since the early nineties. There 

have been several advances in the past few years in terms of face detection and tracking, feature extraction mechanisms and 

the techniques used for expression classification. This paper surveys some of the published work since 2001 till date. The paper 

presents a time-line view of the advances made in this field, the applications of automatic face expression recognizers, the 

characteristics of an ideal system, the databases that have been used and the advances made in terms of their standardization 

and a detailed summary of the state of the art. The paper also discusses facial parameterization using FACS Action Units (AUs) 

and MPEG-4 Facial Animation Parameters (FAPs) and the recent advances in face detection, tracking and feature extraction 

methods. Notes have also been presented on emotions, expressions and facial features, discussion on the six prototypic 

expressions and the recent studies on expression classifiers. The paper ends with a note on the challenges and the future work. 

This paper has been written in a tutorial style with the intention of helping students and researchers who are new to this field. 

Index Terms — Expression recognition, emotion classification, face detection, face tracking, facial action encoding, survey, 

tutorial, human-centered computing. 

——————————      —————————— 

1. Introduction

Studies on Facial Expressions and Physiognomy date back to the early Aristotelian era (4th century BC). Physiognomy 

is the assessment of a person's character or personality from their outer appearance, especially the face [1]. But over the 

years, while the interest in Physiognomy has been waxing and waning1 [1], the study of facial expressions has 

consistently been an active topic. The foundational studies on facial expressions that have formed the basis of today’s 

research can be traced back to the 17th century. A detailed note on the various expressions and movement of head 

muscles was given in 1649 by John Bulwer in his book “Pathomyotomia“. Another interesting work on facial expressions 

(and Physiognomy) was by Le Brun, the French academician and painter. In 1667, Le Brun gave a lecture at the Royal 

Academy of Painting which was later reproduced as a book in 1734 [2]. It is interesting to know that the 18th century 

actors and artists referred to his book in order to achieve “the perfect imitation of ‘genuine’ facial expressions” [2]2. The 

interested reader can refer to a recent work by J. Montagu on the origin and influence of Le Brun’s lectures [3]. 

Moving on to the 19th century, one of the important works on facial expression analysis that has a direct 

relationship to the modern day science of automatic facial expression recognition was the work done by Charles 

Darwin. In 1872, Darwin wrote a treatise that established the general principles of expression and the means of 

expressions in both humans and animals [4]. He also grouped various kinds of expressions into similar categories. The 

categorization is as follows: 

 low spirits, anxiety, grief, dejection, despair 

 joy, high spirits, love, tender feelings, devotion 

 reflection, meditation, ill-temper, sulkiness, determination 

 hatred, anger 

 disdain, contempt, disgust, guilt, pride 

 surprise, astonishment, fear, horror 

 self-attention, shame, shyness, modesty 

 

1 Darwin has referred to ‘Physiognomy’ as a subject that does not concern him [4]. 
2 The references to the works of John Bulwer and Le Brun as can be found in Darwin’s book [4]. 
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Furthermore, Darwin also cataloged the facial deformations that occur for each of the above mentioned class of 

expressions. For example: “the contraction of the muscles round the eyes when in grief”, “the firm closure of the mouth when in 

reflection”, “the depression of the corners of the mouth when in low spirits”, etc [4]3. 

Another important milestone in the study of facial expressions and human emotions is the work done by 

psychologist Paul Ekman and his colleagues since the 1970s. Their work is of significant importance and has a large 

influence on the development of modern day automatic facial expression recognizers. I have devoted a considerable 

part of section 3 and section 4 to give an introduction to their work and the impact it has had on present day systems. 

Traditionally (as we have seen), facial expressions have been studied by clinical and social psychologists, medical 

practitioners, actors and artists. However in the last quarter of the 20th century, with the advances in the fields of 

robotics, computer graphics and computer vision, animators and computer scientists started showing interest in the 

study of facial expressions. 

The first step towards the automatic recognition of facial expressions was taken in 1978 by Suwa et al. Suwa and 

his colleagues presented a system for analyzing facial expressions from a sequence of images (movie frames) by using 

twenty tracking points. Although this system was proposed in 1978, researchers did not pursue this line of study till 

the early 1990s. This can be clearly seen by reading the 1992 survey paper on the automatic recognition of faces and 

expressions by Samal and Iyengar [6]. The ‘Facial Features and Expression Analysis’ section of the paper presents only 

four papers: two on automatic analysis of facial expressions and two on modeling of the facial expressions for 

animation. The paper also states that “research in the analysis of facial expressions has not been actively pursued” (page 74 

from [6]). I think that the reason for this is as follows: The automatic recognition of facial expressions requires robust 

face detection and face tracking systems. These were research topics that were still being developed and worked upon 

in the 1980s. By the late 1980s and early 1990s, cheap computing power started becoming available. This led to the 

development of robust face detection and face tracking algorithms in the early 1990s. At the same time, Human-

Computer Interaction and Affective Computing started gaining popularity. Researchers working on these fields 

realized that without automatic expression and emotion recognition systems4, computers will remain cold and 

unreceptive to the users’ emotional state. All of these factors led to a renewed interest in the development of automatic 

facial expression recognition systems. 

Since the 1990s, (due to the above mentioned reasons) research on automatic facial expression recognition has 

become very active. Comprehensive and widely cited surveys by Pantic and Rothkrantz (2000) [7] and Fasel and Luttin 

(2003) [8] are available that perform an in-depth study of the published work from 1990 to 2001. Therefore, I will be 

mostly concentrating only on the published papers from 2001 onwards. Readers interested in the previous work can 

refer to the above mentioned surveys. 

Till now we have seen a brief ‘timeline view’ of the important studies on expressions and expression recognition 

(right from the Aristotelian era till 2001). The remainder of the paper will be organized as follows: Section 2 mentions 

some of the applications of automatic facial expression recognition systems, section 3 gives the important techniques 

used to facial parameterization, section 4 gives a note on facial expressions and features, section 5 gives the 

characteristics of a good automatic face expressions recognition system, section 6 covers the various techniques used 

for face detection, tracking and feature extraction, section 7 gives a note on the various databases that have been used, 

section 8 gives a summary of the state of the art, section 9 gives a note on classifiers, section 10 gives an interesting note 

on the 6 prototypic expressions, section 11 mentions the challenges and future work and the paper concludes with 

section 12. 

2. Applications 

Automatic face expression recognition systems find applications in several interesting areas. With the recent 

advances in robotics, especially humanoid robots, the urgency in the requirement of a robust expression recognition 

system is evident. As robots begin to interact more and more with humans and start becoming a part of our living 

 

3 It is important to note that Darwin’s work is based on the work of Sir Charles Bell, one of his early contemporaries. In Darwin’s own words, “He 
(Sir Charles Bell) may with justice be said, not only to have laid the foundations of the subject as a branch of science, but to have built up a noble structure” (page 2 
from [4]). Readers interested in Sir Charles Bell’s work can refer [5]. 

4 Facial Expression recognition should not be confused with human Emotion Recognition. As Fasel and Luttin point out, “Facial Expression recognition 
deals with the classification of facial motion and facial feature deformation into classes that are purely based on visual information” whereas “Emotion Recognition is 
an interpretation attempt and often demands understanding of a given situation, together with the availability of full contextual information” (page 259 and 260 in 
[7]). 
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spaces and work spaces, they need to become more intelligent in terms of understanding the human’s moods and 
emotions. Expression recognition systems will help in creating this intelligent visual interface between the man and the 

machine. 

Humans communicate effectively and are responsive to each other’s emotional states. Computers must also gain 

this ability. This is precisely what the Human-Computer Interaction research community is focusing on: namely, 

Affective Computing. Expression recognition plays a significant role in recognizing one’s affect and in turn helps in 
building meaningful and responsive HCI interfaces. The interested reader can refer to Zeng et al.’s comprehensive 

survey [9] to get a complete picture on the recent advances in Affect-Recognition and its applications to HCI. 

Apart from the two main applications, namely robotics and affect sensitive HCI, expression recognition systems 

find uses in a host of other domains like Telecommunications, Behavioral Science, Video Games, Animations, 

Psychiatry, Automobile Safety, Affect sensitive music juke boxes and televisions, Educational Software, etc. 

Practical real-time applications have also been demonstrated. Bartlett et al. have successfully used their face 

expression recognition system to develop an animated character that mirrors the expressions of the user (called the CU 

Animate) [13]. They have also been successful in deployed the recognition system on Sony’s Aibo Robot and ATR’s 
RoboVie [13]. Another interesting application has been demonstrated by Anderson and McOwen, called the ‘EmotiChat’ 
[18]. It consists of a chat-room application where users can log in and start chatting. The face expression recognition 

system is connected to this chat application and it automatically inserts emoticons based on the user’s facial 
expressions. 

As expression recognition systems become more real-time and robust, we will be seeing many other innovative 

applications and uses. 

3. Facial Parameterization 

The various facial behaviors and motions can be parameterized based on muscle actions. This set of parameters can 

then be used to represent the various facial expressions. Till date, there have been two important and successful 

attempts in the creation of these parameter sets: 

1. The Facial Action Coding System (FACS) developed by Ekman and Friesen in 1977 [27] and 

2. The Facial Animation parameters (FAPs) which are a part of the MPEG-4 Synthetic/Natural Hybrid Coding 

(SNHC) standard, 1998 [28]. 

Let us look at each of them in detail: 

3.1. The Facial Action Coding System (FACS) 

Prior to the compilation of the FACS in 1977, most of the facial behavior researchers were relying on the human 

observers who would observe the face of the subject and give their analysis. But such visual observations cannot be 

considered as an exact science since the observers may not be reliable and accurate. Ekman et al. questioned the 

validity of such observations by pointing out that the observer may be influenced by context [29]. They may give more 

prominence to the voice rather than the face and furthermore, the observations made may not be the same across 

cultures; different cultural groups may have different interpretations [29]. 

The limitations that the observers pose can be overcome by representing expressions and facial behaviors in terms 

of a fixed set of facial parameters. With such a framework in place, only these individual parameters have to be 

observed without considering the facial behavior as a whole. Even though, since the early 1920s researchers were 

trying to measure facial expressions and develop a parameterized system, no consensus had emerged and the efforts 

were very disparate [29]. To solve these problems, Ekman and Friesen developed the comprehensive FACS system 

which has since then become the de-facto standard. 

Facial Action Coding is a muscle-based approach. It involves identifying the various facial muscles that 

individually or in groups cause changes in facial behaviors. These changes in the face and the underlying (one or more) 

muscles that caused these changes are called Action Units (AU). The FACS is made up of several such action units. For 

example: 

 AU 1 is the action of raising the Inner Brow. It is caused by the Frontalis and Pars Medialis muscles, 

 AU 2 is the action of raising the Outer Brow. It is caused by the Frontalis and Pars Lateralis muscles, 
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 AU 26 is the action of dropping the Jaw. It is caused by the Masetter, Temporal and Internal Pterygoid muscles, 

and so on [29]. However not all of the AUs are caused by facial muscles. Some of such examples are: 

 AU 19 is the action of ‘Tongue Out’, 
 AU 33 is the action of ‘Cheek Blow’, 
 AU 66 is the action of ‘Cross-Eye’, 

and so on [29]. The interested reader can refer to the FACS manuals [27] and [29] for the complete list of AUs. 

AUs can be additive or non-additive. AUs are said to be additive if the appearance of each AU is independent and 

the AUs are said to be non-additive if they modify each other’s appearance [30]. Having defined these, representation 

of facial expressions becomes an easy job. Each expression can be represented as a combination of one or more additive 

or non-additive AUs. For example ‘fear’ can be represented as a combination of AUs 1, 2 and 26 [30]. Figs. 1 and 2 

show some examples of upper and lower face AUs and the facial movements that they produce when presented in 

combination. 

 

Fig. 1: Some of the Upper Face AUs and their combinations. Figure reprinted from [10] A. 

 

Fig. 2: Some of the Lower Face AUs and their combinations. Figure reprinted from [10] B. 
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There are other observational coding schemes that have been developed, many of which are variants of the FACS. 

They are: FAST (Facial Action Scoring Technique), EMFACS (Emotional Facial Action Coding System), MAX 

(Maximally Discriminative Facial Movement Coding System), EMG (Facial Electromyography), AFFEX (Affect 

Expressions by holistic Judgment), Mondic Phases, FACSAID (FACS Affect Interpretation Database) and Infant/Baby 

FACS. Readers can refer to Sayette et al. [38] for descriptions, comments and references on many of these systems. 

Also, the comparison of FACS with MAX, EMG, EMFACS and FACSAID has been given by Ekman and Rosenberg 

(pages 13-16 from [45]). 

Automatic recognition of the AUs from the given image or video sequence is a challenging task. Recognizing the 

AUs will help in determining the expression and in turn the emotional state of the person. Tian et al. have developed 

the Automatic Face Analysis (AFA) system which can automatically recognize six upper face AUs and ten lower face 

AUs [10]. However real time applications may demand recognition of AUs from profile views too. Also, there are 

certain AUs like AU36t (tongue pushed forward under the upper lip) and AU29 (pushing jaw forward) that can be 

recognized only from profile images [20]. To address these issues, Pantic and Rothkrantz have worked on the 

automatic AU coding of profile images [15], [20]. 

Let us close this section with a discussion about the comprehensiveness of the FACS AU coding system. Harrigan 

et al. have discussed the difference between selectivity and comprehensiveness in the measurement of the different 

types of facial movement [81]. From their discussion, it is clear that comprehensive measurement and parameterization 

techniques are required to answer difficult questions like: Do people with different cultural and economic 

backgrounds show different variations of facial expressions when greeting each other? How does a person’s facial 
expression change when he or she experiences a sudden change in heart rate? [81]. In order to test if the FACS 

parameterization system was comprehensive enough, Ekman and Friesen tried out all the permutations of AUs using 

their own faces. They were able to generate more than 7000 different combinations of facial muscle actions and 

concluded that the FACS system was comprehensive enough (page 22 from [81]). 

3.2. The Facial Animation Parameters (FAPs) 

In the 1990s and prior to that, the computer animation research community faced similar issues that the face expression 

recognition researchers faced in the pre-FACS days. There was no unifying standard and almost every animation 

system that was developed had its own defined set of parameters. As noted by Pandzic and Forchheimer, the efforts of 

the animation and graphics researchers were more focused on the facial movements that the parameters caused, rather 

than the efforts to choose the best set of parameters [31]. Such an approach made the systems unusable across domains. 

To address these issues and provide for a standardized facial control parameterization, the Moving Pictures Experts 

Group (MPEG) introduced the Facial Animation (FA) specifications in the MPEG-4 standard. Version 1 of the MPEG-4 

standard (along with the FA specification) became the international standard in 1999. 

In the last few years, face expression recognition researchers have started using the MPEG-4 metrics to model 

facial expressions [32]. The MPEG-4 standard supports facial animation by providing Facial Animation Parameters 

(FAPs). Cowie et al. indicate the relationship between the MPEG-4 FAPs and FACS AUs: “MPEG-4 mainly focusing on 

facial expression synthesis and animation, defines the Facial Animation parameters (FAPs) that are strongly related to the Action 

Units (AUs), the core of the FACS” (page 125 from [32]). To better understand this relationship between FAPs and AUs, I 

give a brief introduction to some of the MPEG-4 standards and terminologies that are relevant to face expression 

recognition. The explanation that follows in the next few paragraphs has been derived from [28], [31], [32], [33], [34] 

and [35] (readers interested in a detailed overview of the MPEG-4 Facial Animation technology can refer to the survey 

paper by Abrantes and Pereira [34]. For a complete in-depth understanding of the MPEG-4 standards, refer to [28] and 

[31]. Raouzaiou et al. give a detailed note on FAPs, their relation to FACS and the modeling of facial expressions using 

FAPs [35]). 

The MPEG-4 defines a face model in its neutral state to have a specific set of properties like a) all face muscles are 

relaxed; b) eyelids are tangent to the iris; c)  pupil is 1/3rd the diameter of the iris and so on. Key features like eye 

separation, iris diameter, etc are defined on this neutral face model [28]. 

The standard also defines 84 key feature points (FPs) on the neutral face [28]. The movement of the FPs is used to 

understand and recognize facial movements (expressions) and in turn also used to animate the faces. Fig. 3 shows the 

location of the 84 FPs on a neutral face as defined by the MPEG-4 standard. 
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Fig. 3: The 84 Feature Points (FPs) defined on a neutral face. Figure reprinted from [28]
 C

. 

The FAPs are a set of parameters that represent a complete set of facial actions along with head-motion, tongue, 

eye and mouth control (we can see that the FAPs like the AUs are closely related to muscle actions). In other words, 

each FAP is a facial action that deforms a face model in its neutral state. The FAP value indicates the magnitude of the 

FAP which in turn indicates the magnitude of the deformation that is caused on the neutral model, for example: a 

small smile versus a big smile. The MPEG-4 defines 68 FAPs [28]. Some of the FAPs and their description can be found 

in Table 1. 

FAP No. FAP Name FAP Description 

3 open_jaw Vertical jaw displacement 

4 lower_t_midlip Vertical top middle inner lip displacement 

5 raise_b_midlip Vertical bottom middle inner lip displacement 

6 stretch_l_cornerlip Horizontal displacement of left inner lip corner 

7 stretch_r_cornerlip Horizontal displacement of right inner lip corner 

Table 1: Some of the FAPs and their descriptions [28] 

In order to use the FAP values for any face model, the MPEG-4 standard defines normalization of the FAP values. 

This normalization is done using Facial Animation Parameter Units (FAPUs). The FAPUs are defined as a fraction of 

the distances between key facial features. Fig. 4 shows the face model in its neutral state along with the defined FAPUs. 

The FAP values are expressed in terms of these FAPUs. Such an arrangement allows for the facial movements 

described by a FAP to be adapted to any model of any size and shape. 

The 68 FAPs are grouped into 10 FAP groups [28].  FAP group 1 contains two high level parameters: visemes 

(visual phonemes) and expressions. We are concerned with the expression parameter (the visemes are used for speech 

related studies). The MPEG-4 standard defines six primary facial expressions: joy, anger, sadness, fear, disgust and 

surprise (these are the 6 prototypical expressions that will be introduced in section 4). Although FAPs have been 

designed to allow the animation of faces with expressions, in recent years, the facial expression recognition community 
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is working on the recognition of facial expressions and emotions using FAPs. For example the expression for ‘sadness’ 
can be expressed using FAPs as follows: close_t_l_eyelid (FAP 19), close_t_r_eyelid (FAP 20), close_b_l_eyelid (FAP 21), close_b_r_eyelid 

(FAP 22), raise_l_i_eyebrow (FAP 31), raise_r_i_eyebrow (FAP 32), raise_l_m_eyebrow (FAP 33), raise_r_m_eyebrow (FAP 34), raise_l_o_eyebrow (FAP 

35), raise_r_o_eyebrow (FAP 36) [35]. 

 

Fig. 4: The face model shown in its neutral state. The feature points used to define FAP units (FAPU) are also shown. The FAPUs are: 

ES0 (Eye Separation), IRISD0 (Iris Diameter), ENS0 (Eye-Nose Separation), MNSO (Mouth-Nose Separation), MW0 (Mouth Width). Figure 

reprinted from [28] D. 

As we can see, the MPEG-4 FAPs are closely related to the FACS AUs. Raouzaiou et al. [33] and Malatesta et al. 

[35] have worked on the mapping of AUs to FAPs. Some examples are shown in Table 2. Raouzaiou et al. have also 

derived models that will help in bringing together the disciplines of facial expression analysis and facial expression 

synthesis [35]. 

Action Units (FACS AUs) Facial Action Parameters (MPEG-4 FAPs) 

AU1 (Inner Brow Raise) raise_l_i_eyebrow + raise_r_i_eyebrow 

AU2 (Outer Brow Raise) raise_l_o_eyebrow + raise_r_o_eyebrow 

AU9 (Nose Wrinkle) lower_t_midlip + raise_nose + stretch_l_nose + stretch_r_nose 

AU15 (Lip Corner Depressor) lower_l_cornerlip + lower_r_cornerlip 

Table 2: Some of the AUs and their mapping to FAPs [35] 

Recent works that are more relevant to the theme of this paper are the proposed automatic FAP extraction 

algorithms and their usage in the development of facial expression recognition systems. Let us first look at the 

proposed algorithms for the automatic extraction of FAPs. While working on an FAP based Automatic Speech 

Recognition system (ASR), Aleksic et al. wanted to automatically extract points from the outer lip (group 8), inner lip 

(group 2) and tongue (group 6). So, in order to automatically extract the FAPs, they introduced the Gradient Vector 

Flow (GVF) snake algorithm, Parabolic Template algorithm and a Combination algorithm [36]. While evaluating these 

algorithms, they found that the GVF snake algorithm, in comparison to the others, was more sensitive to random noise 

and reflections. Another algorithm that has been developed for automatic FAP extraction is the Active Contour 

algorithm by Pardas and Bonafonte [37]. These algorithms along with HMMs have been used successfully in the 

recognition of facial expressions [19], [37] (the system evaluation and results are presented in section 8). 

In this section we have seen the two main facial parameterization techniques. Let us now take a look at some 

interesting points on emotions, facial expressions and facial features. 

4. Emotions, Expressions and Features 

One of the means of showing emotion is through changes in facial expressions. But are these facial expressions of 

emotion constant across cultures? For a long time, Anthropologists and Psychologists had been grappling with this 

question. Based on his theory of evolution, Darwin suggested that they were universal [40]. However the views were 

varied and there was no general consensus. In 1971, Ekman and Friesen conducted studies on subjects from western 
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and eastern cultures and reported that the facial expressions of emotions were indeed constant across cultures [40]. The 

results of this study were well accepted. However, in 1994, Russell wrote a critique questioning the claims of universal 

recognition of emotion from facial expressions [42]. The same year, Ekman [43] and Izard [44] replied to this critique 

with strong evidences and gave a point to point refutation of Russell’s claims. Since then, it has been considered as an 

established fact that the recognition of emotions from facial expressions is universal and constant across cultures.  

 Cross cultural studies have shown that, although the interpretation of expressions is universal across cultures, the 

expression of emotions though facial changes depend on social context [43], [44]. For example, when American and 

Japanese subjects were shown emotion eliciting videos, they showed similar facial expressions. However, in the 

presence of an authority, the Japanese viewers were much more reluctant to show their true emotions through changes 

in facial expressions [43]. In their cross cultural studies (1971), Ekman and Friesen used only six emotions, namely 

happiness, sadness, anger, surprise, disgust and fear. In their own words: “the six emotions studied were those which had 

been found by more than one investigator to be discriminable within any one literate culture” (page 126 from [40]). These six 

expressions have come to be known as the ‘basic’, ‘prototypic’ or ‘archetypal’ expressions. Since the early 1990s, 

researchers have been concentrating on developing automatic expression recognition systems that recognize these six 

basic expressions.  

Apart from the six basic emotions, the human face is capable of displaying expressions for a variety of other 

emotions. In 2000, Parrott identified 136 emotional states that humans are capable of displaying and categorized them 

into separate classes and subclasses [39].  This categorization is shown in Table 3. 

Primary 

emotion 

Secondary emo-

tion 

Tertiary emotions 

Love Affection Adoration, affection, love, fondness, liking, attraction, caring, tenderness, compassion, sentimentality 

Lust Arousal, desire, lust, passion, infatuation 

Longing Longing 

Joy Cheerfulness Amusement, bliss, cheerfulness, gaiety, glee, jolliness, joviality, joy, delight, enjoyment, gladness, happiness, jubilation, elation, 

satisfaction, ecstasy, euphoria 

Zest Enthusiasm, zeal, zest, excitement, thrill, exhilaration 

Contentment Contentment, pleasure 

Pride Pride, triumph 

Optimism Eagerness, hope, optimism 

Enthrallment Enthrallment, rapture 

Relief Relief 

Surprise Surprise Amazement, surprise, astonishment 

Anger Irritation Aggravation, irritation, agitation, annoyance, grouchiness, grumpiness 

Exasperation Exasperation, frustration 

Rage Anger, rage, outrage, fury, wrath, hostility, ferocity, bitterness, hate, loathing, scorn, spite, vengefulness, dislike, resentment 

Disgust Disgust, revulsion, contempt 

Envy Envy, jealousy 

Torment Torment 

Sadness Suffering Agony, suffering, hurt, anguish 

Sadness Depression, despair, hopelessness, gloom, glumness, sadness, unhappiness, grief, sorrow, woe, misery, melancholy 

Disappointment Dismay, disappointment, displeasure 

Shame Guilt, shame, regret, remorse 

Neglect Alienation, isolation, neglect, loneliness, rejection, homesickness, defeat, dejection, insecurity, embarrassment, humiliation 

Sympathy Pity, sympathy 

Fear Horror Alarm, shock, fear, fright, horror, terror, panic, hysteria, mortification 

Nervousness Anxiety, nervousness, tenseness, uneasiness, apprehension, worry, distress, dread 

Table 3: The different emotion categories. Table reprinted from [41] E and the tree structure given by Parrott; pages 34 and 35 from [39]. 
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In more recent years, there have been attempts at recognizing expressions other than the six basic ones. One of the 

techniques used to recognize non-basic expressions is by automatically recognizing the individual AUs which in turn 

helps in recognizing finer changes in expressions. An example of such a system is the Tian et al.’s AFA system that we 

saw in section 3.1 [10]. 

Most of the developed methods attempt to recognize the basic expressions and some attempts at recognizing non-

basic expressions. However there have been very few attempts at recognizing the temporal dynamics of the face. 

Temporal dynamics refers to the timing and duration of facial activities. The important terms that are used in 

connection with temporal dynamics are: onset, apex and offset [45]. These are known as the temporal segments of an 

expression. Onset is the instance when the facial expression starts to show up, apex is the point when the expression is 

at its peak and offset is when the expression fades away (start-of-offset is when the expression starts to fade and the 

end-of-offset is when the expression completely fades out) [45]. Similarly onset-time is defined as the time taken from 

start to the peak, apex-time is defined as the total time at the peak and offset-time is defined as the total time from peak 

to the stop [45]. Pantic and Patras have reported successful recognition of facial AUs and their temporal segments. By 

doing so, they have been able to recognize a much larger range of expressions (apart from the prototypic ones) [46]. 

Till now we have seen the basic and non-basic expressions and some of the recent systems that have been 

developed to recognize expressions in each of the two categories. We have also seen the temporal segments associated 

with expressions. Now, let us now look at another very important type of expression classification: ‘posed’, ‘modulated’ 
or ‘deliberate’ versus ‘spontaneous’, ‘unmodulated’ or ‘genuine’. Posed expressions are the artificial expressions that a 

subject will produce when he or she is asked to do so. This is usually the case when the subject is under normal test 

condition or under observation in a laboratory. In contrast, spontaneous expressions are the ones that people give out 

spontaneously. These are the expressions that we see on a day to day basis, while having conversations, watching 

movies etc. Since the early 1990s, till recent years, most of the researchers have focused on developing automatic face 

expression recognition systems for posed expressions only. This is due to the fact that posed expressions are easy to 

capture and recognize. Furthermore, it is very difficult to build a database that contains images and videos of subjects 

displaying spontaneous expressions. The specific problems faced and the approaches taken by the researchers will be 

covered in section 7.  

Many psychologists have proved that posed expressions are different from spontaneous expressions, in terms of 

their appearance, timing and temporal characteristics. For an in-depth understanding of the differences between posed 

and spontaneous expressions, the interested reader can refer to chapters 9 through 12 in [45]. Furthermore, it also turns 

out that many of the posed expressions that researchers have used in their recognition systems are highly exaggerated. 

I have included fig. 5 as an example. It shows a subject (from one of the publicly available expression databases) 

displaying surprise, disgust and anger. It can be clearly seen that the expressions displayed by the subject are highly 

exaggerated and appear very artificial. In contrast, genuine expressions are usually subtle. 

 

Fig. 5: Posed and exaggerated displays of Surprise, Disgust and Anger. Figure reprinted from [10]
F
. 

The differences in posed and spontaneous expressions are quite apparent and this highlights the need for 

developing expression recognition systems that can recognize spontaneous rather than posed expressions. Looking 

forward, if the face expression recognition systems have to be deployed in real-time day to day applications, then they 

need to recognize the genuine expressions of humans. Although systems have been demonstrated that can recognize 

posed expressions with high recognition rates, they cannot be deployed in practical scenarios. Thus, in the last few 

years some of the researchers have started focusing on spontaneous expression recognition. Some of these systems will 

be discussed in section 8. The posed expression recognition systems are serving as the foundational work using which 

more practical spontaneous expression recognition systems are being built. 
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Let us now look at another class of expressions called ’microexpressions’. Microexpressions are the expressions 

that people display when they are trying to conceal their true emotions [86]. Unlike regular spontaneous expressions, 

microexpressions last only for 1/25th of a second. There has been no research done on the automatic recognition of 

microexpressions, mainly because of the fact that these expressions are displayed very quickly and are much more 

difficult to elicit and capture. Ekman has studied microexpressions in detail and has written extensively about the use 

of microexpressions to detect deception and lies (page 129 from [85]). Ekman also talks about ‘squelched’ expressions. 
These are the expressions that begin to show up but are immediately curtailed by the person by quickly changing his 

or her expressions (page 131 from [85]). While microexpressions are complete in terms of their temporal parameters 

(onset-apex-offset), squelched expressions are not. But squelched expressions are found to last longer than 

microexpressions (page 131 from [85]). 

Having discussed emotions and the associated facial expressions, let us now take a look at Facial Features. Facial 

features can be classified as being permanent or transient. Permanent features are the features like eyes, lips, brows 

and cheeks which remain permanently. Transient features include facial lines, brow wrinkles and deepened furrows 

that appear with changes in expression and disappear on a neutral face. Tian et al.’s AFA system uses recognition and 

tracking of permanent and transient features in order to automatically detect AUs [10]. 

Let us now look at the main parts of the face and the role they play in the recognition of expressions. As we can 

guess, the eyebrows and mouth are the parts of the face that carry the maximum amount of information related to the 

facial expression that is being displayed. This is shown to be true by Pardas and Bonafonte. Their work shows that 

surprise, joy and disgust have very high recognition rates (of 100%, 93.4% and 97.3% respectively) because they 

involve clear motion of the mouth and the eyebrows [37]. Another interesting result from their work shows that the 

mouth conveys more information than the eyebrows. The tests they conducted with only the mouth being visible gave 

a recognition accuracy of 78% whereas tests conducted with only the eyebrows visible gave a recognition accuracy of 

only 50%. Another occlusion related study by Bourel et al. has shown that sadness is mainly conveyed by the mouth 

[26]. Occlusion related studies are important because in real world scenarios, partial occlusion is not uncommon. 

Everyday items like sunglasses, shadows, scarves, facial hair, etc can lead to occlusions and the recognition system 

must be able to recognize expressions despite these occlusions [25]. Kotsia et al.’s study on the effect of occlusions on 
face expression recognizers shows that the occlusion of the mouth reduces the results by more than 50% [25]. This 

number perfectly matches with the results of Pardas and Bonafonte (that we have seen above). Thus we can say that, 

for expression recognition, the eyebrows and mouth are the most important parts of the face with the mouth being 

much more important than the eyebrows. Kotsia et al. also showed that occlusions on the left half or the right half of 

the face do not affect the performance [25]. This is because of the fact that the facial expressions are symmetric along 

the vertical plane that divides the face into left and right. 

Another point to consider is the differences in facial features among individual subjects. Kanade et al. have written 

a note on this topic [66]. They discuss differences such as the texture of the skin and appearance of facial hair among 

adults and infants, eye opening in Europeans and Asians, etc (section 2.5 from [66]). 

I will conclude this section with a debate that has been going on for a long time regarding the way the human 

brain recognizes faces (or in general, images). For a long time, psychologists and neuropsychologists have debated 

whether the recognition of the faces is by components or by a holistic process. While Biederman proposed the theory of 

recognition-by-components [83], Farah et al. suggested that recognition is a holistic process. Till date, there has been no 

agreement on the same. Thus, face expression recognition researchers have followed both approaches: holistic 

approaches like PCA and component based approaches like the use of Gabor Wavelets. 

5. Characteristics of a Good System 

We are now in a position where we can list down the features that a good face expression recognition system must 

possess: 

 It must be fully automatic 

 It must have the capability to work with video feeds as well as images 

 It must work in real-time 

 It must be able to recognize spontaneous expressions 
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 Along with the prototypic expressions, it must be able to recognize a whole range of other expressions too 

(probably by recognizing all the facial AUs) 

 It must be robust against different lighting conditions 

 It must be able to work moderately well even in the presence of occlusions 

 It must be unobtrusive 

 The images and video feeds do not have to be pre-processed 

 It must be person independent 

 It must work on people from different cultures and different skin colors. It must also be robust against age (in 

particular, recognize expressions of both infants, adults and the elderly) 

 It must be invariant to facial hair, glasses, makeup etc. 

 It must be able to work with videos and images of different resolutions 

 It must be able to recognize expressions from frontal, profile and other intermediate angles 

From the past surveys (and this one), we can see that different research groups have focused on addressing 

different aspects of the above mentioned points. For example, some have worked on recognizing spontaneous 

expression, some on recognizing expressions in the presence of occlusions; some have developed systems that are 

robust against lighting and resolution and so on. However going forward, researchers need to integrate all of these 

ideas together and build systems that can tend towards being ideal. 

6. Face Detection, Tracking and Feature Extraction  

Automatic face expression recognition systems are divided into three modules: 1) Face Tracking and Detection, 2) 

Feature Extraction and 3) Expression Classification. We will look at the first two modules in this section. A note on 

classifiers is presented in section 9. 

The first step in facial expression analysis is to detect the face in the given image or video sequence. Locating the 

face within an image is termed as face detection or face localization whereas locating the face and tracking it across the 

different frames of a video sequence is termed as face tracking. Research in the fields of face detection and tracking has 

been very active and there is exhaustive literature available on the same. It is beyond the scope of this paper to 

introduce and survey all of the proposed methods. However this section will cover the face detection and tracking 

algorithms that have been used by face expression recognition researchers in the past few years (since the early 2000s). 

One of the methods developed in the early 1990s to detect and track faces was the Kanade-Lucas-Tomasi tracker. 

The initial framework was proposed by Lucas and Kanade [56] and then developed further by Tomasi and Kanade 

[57]. In 1998, Kanade and Schneiderman developed a robust face detection algorithm using statistical methods [55], 

which has been used extensively since its proposal5. In 2004, Viola and Jones developed a method using the AdaBoost 

learning algorithm that was very fast and could rapidly detect frontal view faces. They were able to achieve excellent 

performance by using novel methods that could compute the features very quickly and then rapidly separate the 

background from the face [54]. Other popular detection and tracking methods were proposed by Sung and Poggio in 

1998, Rowley et al. in 1998 and Roth et al. in 2000. For references and a comparative study of the above mentioned 

methods, interested readers can refer to [54] and [55]. 

A face tracker that is being used extensively by the face expression recognition researchers is the Piecewise Bezier 

Volume Deformation (PBVD) tracker, developed by Tao and Huang [47].  The tracker uses a generic 3D wireframe 

model of the face which is associated with 16 Bezier volumes. The wireframe model and the associated real-time face 

tracking are shown in fig. 6. It is interesting to note that the same PBVD model can also be used for the analysis of 

facial motion and the computer animation of faces. 

Let us now look at face tracking using the 3-D Candide face model. The Candide face model is constructed using a 

set of triangles. It was originally developed by Rydfalk in 1987 for model based computer animation [48]. The face 

model was later modified by Stromberg, Welsh and Ahlberg and their models have come to be known as Candide-1, 

Candide-2 and Candide-3 respectively [59]. The 3 models are shown in Figs. 7a, 7b and 7c. Candide-3 is currently being 

used by most of the researchers. In recent years, apart from facial animation, the Candide face model has been used for 

 

5 The proposed detection method was considered to be “influential and one that has stood the test of time”. For this, Kanade and Schneiderman were 
awarded the 2008 Longuet-Higgins Prize at IEEE Conf. CVPR. (http://www.cmu.edu/qolt/News/2008%20Archive/kanade-longuet-higgin.html) 

http://www.cmu.edu/qolt/News/2008%20Archive/kanade-longuet-higgin.html
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face tracking as well [60]. It is one of the popular tracking techniques that are currently being used by face expression 

recognition researchers. 

                       

Fig. 6: The 16 Bezier volumes associated with a wireframe mesh and the real-time tracking that is achieved. Figure reprinted from [47]
G
. 

                

Fig. 7a: Candide - 1 face model. Figure reprinted from [47]
H
. 

                  

Fig. 7b: Candide - 2 face model. Figure reprinted from [47]
I
. 

              

Fig. 7c: Candide - 3 face model. Figure reprinted from [47]
J
. 

Another face tracker is the Ratio Template Tracker. The Ratio Template Algorithm was proposed by Sinha in 1996 

for the cognitive robotics project at MIT [49]. Scassellati used it to develop a system that located the eyes by first 

detecting the face in real time [50]. In 2004, Anderson and McOwen modified the Ratio Template by incorporating the 

‘Golden Ratio’ (or Divine Proportion) [61] into it. They called this modified tracker as the Spatial Ratio Template 

tracker [51]. This modified tracked was shown to work better under different illuminations. Anderson and McOwen 

suggest that this improvement is because of the incorporated ‘Golden Ratio’ which helps in describing the structure of 

the human face more accurately. The Spatial Ratio Template tracker (along with SVMs) has been successfully used in 

face expression recognition [18] (the evaluation is covered in section 8). The Ratio Template and the Spatial Ratio 

Template are shown in fig. 8a and their application to a face is shown in fig. 8b. 

Another system that achieves fast and robust tracking is the PersonSpotter system [52]. It was developed in 1998 

by Steffens et al. for real-time face recognition. Along with face recognition, the system also has modules for face 
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detection and tracking. The tracking algorithm locates regions of interest which contain moving objects by forming 

difference images. Skin detectors and convex detectors are then applied to this region in order to detect and track the 

face. The PersonSpotter’s tracking system has been demonstrated to be robust against considerable background 

motion. In the subsequent modules, the PersonSpotter system applies a model graph on the face and automatically 

suppressing the background. This is as shown in fig. 9. 

         

 

Fig. 8a: The image on the left is the Ratio Template (14 pixels by 16 pixels). The template is composed of 16 regions (gray boxes) and 
23 relations (arrows). The image on the right is the Spatial Ratio Template. It is a modified version of the Ratio Template by incorporating the 

‘Golden Ratio’. Figures reprinted from [50] and [51] respectively
K
. 

              

Fig. 8b: The image on the left shows the Ratio Template applied to a face. The image on the right shows the Spatial Ratio Template 
applied to a face. Figure reprinted from [51]

L
. 

 

Fig. 9: PersonSpotter’s model graph and background suppression. Figure reprinted from [52]
M
. 

In 2000, Bourel et al., proposed a modified version of the Kanade-Lucas-Tomasi tracker [82], which they called as 

the EKLT tracker (Enhanced KLT tracker). They used the configurations and visual characteristics of the face to extend 

the KLT tracker which made the KLT tracker robust against temporary occlusions and allowed it to recover from the 

loss of points caused by tracking drifts.  

Other popular face trackers (or in general, object trackers) are the ones based on Kalman Filters, extended Kalman 

Filters, Mean-Shifting and Particle Filtering. Out of these methods, particle filters (and adaptive particle filters) are 

more extensively used since they can deal successfully with noise, occlusion, clutter and a certain amount of 

uncertainty [62]. For a tutorial on particle filters, interested readers can refer to Arulampalam et al. [62]. In recent years, 

several improvements in particle filters have been proposed, some of which are mentioned here: Motion prediction has 

been used in adaptive particle filters to follow fast movements and deal with occlusions [63], mean shift has been 

incorporated into particle filters to deal with the degeneracy problem [64] and AdaBoost has been used with particle 

filters to allow for detection and tracking of multiple targets [65]. 
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Other interesting approaches have been proposed. Instead of using a face tracker, Tian et al. have used multistate 

face models to track the permanent and transient features of the face separately [10]. The permanent features (lips, 

eyes, brow and cheeks) are tracked using a separate lip tracker [66], eye tracker [67] and brow and cheek tracker [56]. 

They used canny edge detection to detect the transient features like furrows. 

7. Databases 

One of the most important aspects of developing any new recognition or detection system is the choice of the database 

that will be used for testing the new system. If a common database is used by all the researchers, then testing the new 

system, comparing it with the other state of the art systems and benchmarking the performance becomes a very easy 

and straightforward job. However, building such a ‘common’ database that can satisfy the various requirements of the 

problem domain and become a standard for future research is a difficult and challenging task. With respect to face 

recognition, this problem is close to being solved with the development of the FERET Face Database which has become 

a de-facto standard for testing face recognition systems. However the problem of a standardized database for face 

expression recognition is still an open problem. But when compared to the databases that were available when the 

previous surveys [7], [8] were written, significant progress has been made in developing standardized expression 

databases. 

When compared to face recognition, face expression recognition poses a very unique challenge in terms of 

building a standardized database. This challenge is due to the fact that expressions can be posed or spontaneous. As 

we have seen in the previous sections, there is a huge volume of literature in psychology that states that posed and 

spontaneous expressions are very different in their characteristics, temporal dynamics and timings. Thus, with the 

shifting focus of the research community from posed to spontaneous expression recognition, a standardized training 

and testing database is required that contains images and video sequences (at different resolutions) of people 

displaying spontaneous expressions under different conditions (lighting conditions, occlusions, head rotations, etc). 

The work done by Sebe and colleagues [21] is one of the initial and important steps taken in the direction of 

creating a spontaneous expression database. To begin with, they listed the major problems that are associated with 

capturing spontaneous expressions. Their main observations were as follows: 

 Different subjects express the same emotions at different intensities 

 If the subject becomes aware that he or she is being photographed, their expression loses its authenticity 

 Even if the subject is not aware of the recording, the laboratory conditions may not encourage the subject to 

display spontaneous expressions. 

Sebe and colleagues consulted with fellow psychologists and came up with a method to capture spontaneous 

expressions. They developed a video kiosk where the subjects could watch emotion inducing videos. The facial 

expressions of were recorded by a hidden camera. Once the recording was done, the subjects were notified of the 

recording and asked for their permission to use the captured images and videos for research studies. 50% of the 

subjects gave consent. The subjects were then asked about the true emotions that they had felt. Their replies were 

documented against the recordings of the facial expressions [21]. 

From their studies, they found out that it was very difficult to induce a wide range of expressions among the 

subjects. In particular, fear and sadness were found to be difficult to induce. They also found that spontaneous facial 

expressions could be misleading. Strangely, some subjects had a facial expression that looked sad when they were 

actually feeing happy. As a side observation, they found that students and younger faculty were more ready in giving 

their consent to be included in the database whereas older professors were not [21]. 

Sebe et al.’s study helps us in understanding the problems encountered with capturing spontaneous expressions 

and the round-about mechanisms that have to be used in order to elicit and capture authentic facial expressions. 

Let us now look at some of the popular expression databases that are publicly and freely available. There are many 

databases available and covering all of them will not be possible. Thus, I will be covering only those databases that 

have mostly been used in the past few years. To begin with, let us look at the Cohn-Kanade database also known as the 

CMU-Pittsburg AU coded database [66], [67]. This is a fairly extensive database (figures and facts are presented in 

table 4) and has been widely used by the face expression recognition community. However this database has only 

posed expressions… continued on pg. 16 
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Database Sample Details Expression Elicitation and Data Recording 

Methods 

Available Descrip-

tions 

Additional Notes Reference 

Cohn-Kanade 

Database (also 

known as CMU-

Pittsburg data-

base) [66], [67]. 

 500 image se-

quences from 

100 subjects 

 Age: 18 to 30 

years 

 Gender: 65% 

female 

 Ethnicity: 15% 

African - Amer-

icans and 3% of 

Asians and La-

tinos 

This DB contains only posed expressions. 

“The subjects were instructed to perform a 
series of 23 facial displays that included 

single action units (e.g. AU 12, or lip corners 

pulled obliquely) and action unit combina-

tions (e.g. AU 1+2, or inner and outer brows 

raised).  Each begins from a neutral or near-

ly neutral face.  For each, an experimenter 

described and modeled the target display. 

 Six were based on descriptions of prototyp-

ic emotions (i.e., joy, surprise, anger, fear, 

disgust, and sadness). These six tasks and 

mouth opening in the absence of other ac-

tion units were annotated by certified FACS 

coders.” 

“Annotation of 
FACS Action Units 

and emotion-

specified expres-

sions” 

“Images taken using 2 
cameras: one directly in 

front of the subject and 

the other positioned 30 

degrees to the subject’s 
right. But the DB con-

tains only the images 

taken from the frontal 

camera.” 

Information 

presented here 

has been quot-

ed from [67]. 

MMI Facial 

Expression 

Database [69], 

[74] 

 52 different 

subjects of both 

sexes 

 Gender: 48% 

female 

 Age: 19 to 62 

years 

 Ethnicity: Euro-

pean, Asian, or 

South American 

 Background: 

Natural lighting 

and variable 

backgrounds 

(for some sam-

ples) 

This DB contains posed and spontaneous 

expressions. “The subjects were asked to 
display 79 series of expressions that includ-

ed either a single AU (e.g., AU2) or a combi-

nation of a minimal number of AUs (e.g., 

AU8 cannot be displayed without AU25) or 

a prototypic combination of AUs (such as in 

expressions of emotion). Also, a short neu-

tral state is available at the beginning and at 

the end of each expression.” 

 

For natural expressions:  “Children interact-

ed with a comedian. Adults watching emo-

tion inducing videos” 

“Action Units, 
metadata (data 

format, facial view, 

shown AU, shown 

emotion, gender, 

age), analysis of AU 

temporal activation 

patterns” 

“The emotions were 
determined using an 

expert annotator”. 
 

 A highlight of this DB 

is that it contains both 

frontal and profile 

view images.  

 

Information 

presented here 

has been quot-

ed from [75] 

Spontaneous 

Expressions 

Database [21] 

 28 subjects This DB contains spontaneous expressions. 

The subjects were asked to watch emotion 

inducing videos in a custom built video 

kiosk. Their expressions were recorded 

using hidden cameras. Then, the subjects 

were informed about the recording and 

were asked for their consent. Out of 60, 28 

gave consent. 

The database is self 

labeled. After 

watching the vide-

os, the subjects 

recorded the emo-

tions that they felt. 

The researchers found 

that it is very difficult 

to induce all the emo-

tions in all of the sub-

jects. Joy, surprise and 

disgust were the most 

easy whereas sadness 

and fear were the most 

difficult. 

Information 

presented here 

has been quot-

ed from [21] 

The AR Face 

Database [78], 

[79] 

 126 people 

 Gender: 70 men 

and 56 women 

 Over 4000 color 

images are 

available 

This DB contains only posed expressions. 

“No restrictions on wear (clothes, glasses, 

etc.), make-up, hair style, etc. were imposed 

to participants. Each person participated in 

two sessions, separated by two weeks time. 

The same pictures were taken in both ses-

sions.” 

None This database has 

frontal-faces with 

different expressions, 

illumination conditions 

and occlusions (scarf 

and sunglasses). 

Information 

presented here 

has been quot-

ed from [78] 

CMU Pose, 

Illumination, 

Expression (PIE) 

Database [80] 

 41,368 images of 

68 people 

 4 different ex-

pressions. 

This DB contains only posed expressions. None This database provides 

facial images for 13 

different poses 43 

different illumination 

conditions. 

Information 

presented here 

has been quot-

ed from [80] 

The Japanese 

Female Facial 

Expression 

(JAFFEE) Data-

base [76] 

 219 images of 7 

facial expres-

sions (6 basic fa-

cial expressions 

+ 1 neutral) 

 10 Japanese 

female models. 

This DB contains only posed expressions. 

The photos have been taken under strict 

controlled conditions of similar lighting and 

with the hair tied away from the face.   

“Each image has 
been rated on 6 

emotion adjectives 

by 92 Japanese 

subjects” 

All the expressions are 

multiple AU expres-

sions. 

Information 

presented here 

has been quot-

ed from [76] 

and [77]. 

Table 4: A summary of some of the facial expression databases that have been used in the past few years. 
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continued from pg. 14… Looking forward, although this database may be used for comparison and benchmarking 

against previously developed systems, it will be not be suitable to use it for spontaneous expression recognition. Some 

of the other databases that contain only posed expressions are the AR face database [78], [79], the CMU Pose, 

Illumination and Expression (PIE) database [80] and the Japanese Female Facial Expression database (JAFFE) [76]. 

Table 4 gives the details of each of these databases. 

A major step towards creating a standardized database that can meet the needs of the present day research 

community is the creation of the MMI Facial Expression database by Pantic and colleagues [69], [74]. The MMI facial 

expression database contains both posed and spontaneous expressions. It also contains profile view data. The highlight 

of this database is that it is web-based, fully searchable and downloadable for free. The database went online on 

February 2009 [75]. For specific numerical details please refer to table 4. 

There is also a database created by Ekman and Hager. It is called the Ekman-Hager database or the Ekman-Hager 

Facial Action Exemplars [70]. Some other researchers have created their own databases (for example, Donato et al. [71], 

Chen-Huang [73]). Another important database is Ekman’s datasets [72] (but not available for free). It contains various 

data from cross-cultural studies and recent neuropsychological studies, expressive and neutral faces of Caucasians and 

Japanese, expressive faces from some of the stone-age tribes, and data that demonstrate the difference between true 

enjoyment and social smiles [72]. Most of the research has been focused on 2D face expression recognition. But 3D face 

expression recognition has been mostly ignored. To address this issue, a 3D facial expression database has also been 

developed [68]. It contains 3D range data from a 3DMD digitizer. Apart from the above mentioned databases, there are 

many other databases like the RU-FACS-1, USC-IMSC, UA-UIUC, QU, PICS and others. A comparative study of some 

of these databases with the MMI database is given in [69]. 

Till now we have focused on the issues related to capturing data and the work that has been done on the same. 

However there is one more unaddressed issue. Once the data has been captured, it needs to be labeled and augmented 

with helpful metadata. Traditionally the expressions have been labeled by the help of expert observers or AU coders or 

with the help of the subjects themselves (by asking them what emotion they felt). However such labeling is time 

consuming and requires expertise on the part of the observer; for self observations, the subjects may need to be trained 

[11]. Cohen et al. observed that although labeled data is available in fewer quantities, there is a huge volume of 

unlabeled data that is available. So they used Bayesian network classifiers like Naïve Bayes (NB), Tree Augmented 

Naïve Bayes (TAN) and Stochastic Structure Search (SSS) for semi-supervised learning with could work with some 

amount of labeled data and large amounts of unlabeled data [11]. 

I will now give a short note on the problems that specific researchers have faced with respect to the use of 

available databases. Cohen et al. reported that they could not make use of the Cohn-Kanade database to train and test a 

Multi-Level HMM classifier because each video sequence ends in the peak of the facial expression, i.e. each sequence 

was incomplete in terms of its temporal pattern [12]. Thus, looking forward database creators must note that the 

temporal patterns of the video captures must be complete. That is, all the video sequences must have the complete 

pattern of onset, apex and offset captured in the recordings. Another specific problem was reported by Wang and Yin 

in their face expression recognition studies using topographic modeling [23]. They note that topographic modeling is a 

pixel based approach and is therefore not robust against illumination changes. But in order to conduct illumination 

related studies, they were unable to find a database that had expressive faces against various illuminations. Another 

example is the occlusion related studies conducted by Kotsia et al. [25]. They could not find any popularly used 

database that had expressive faces with occlusions. So they had to preprocess the Cohn-Kanade and JAFFE database 

and graphically add occlusions. 

From the above discussion it is quite apparent that the creation of a database that will serve everyone’s needs is a 
very difficult job. However, there have been new databases created that contain spontaneous expressions, frontal and 

profile view data, 3D data, data under varying conditions of occlusion, lighting, etc and are publicly and freely 

available. This is a very important factor that will have a positive impact on the future research in this area. 

8. State of the Art 

Since it is almost impossible to cover all of the published work, I have selected 19 papers that I felt were important and 

very different from each other. Many of these 19 papers have already been introduced in the previous sections. I will 

not get into the verbose descriptions of these papers; rather table 5 has been created that will give a summary of all the 

surveyed papers. The papers are presented in chronological order starting from 2001. 
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Reference Feature Extraction Classifier Database Sample size Performance Important Points 

Tian et al., 

2001 [10] 

Permanent features: 

Optical Flow, Gabor 

Wavelets and Multi-

state Models. 

Transient features: 

Canny edge detec-

tion 

2 ANNs, one 

for upper face 

and one for 

lower face 

Cohn-

Kanade and 

Ekman-

Hager Facial 

Action 

Exemplars 

Upper Face: 50 sample 

sequences from 14 sub-

jects performing 7 AUs 

Lower Face: 63 sample 

sequences from 32 sub-

jects performing 11 AUs 

Recognition of Upper 

Face AUs: 96.4%  

Recognition of Lower 

Face AUs: 96.7% 

Average of 93.3% when 

generalized to inde-

pendent databases 

Recognizes posed expres-

sions.  

Real-time system. 

Automatic Face detection. 

Head motion is handled 

Invariant to scaling. 

Uses facial feature tracker to 

reduce processing time. 

Bourel et 

al., 2001 

[26] 

Local spatio-

temporal vectors 

obtained from the 

EKLT tracker 

Modular 

classifier with 

data fusion. 

Local classifi-

ers are rank 

weighted 

kNN classifi-

ers. Combina-

tion is a sum 

scheme. 

Cohn-

Kanade 

30 subjects 

25 sequences for 4 expres-

sions (total of 100 video 

sequences) 

Refer fig. 10 Deals with recognizing facial 

expressions in the presence of 

occlusions. 

Proposes use of modular 

classifiers instead of mono-

lithic classifiers. Classification 

is done locally and then the 

classifier outputs are fused. 

Pardas and 

Bonafonte, 

2002 [37] 

MPEG-4 FAPs ex-

tracted using an 

improved Active 

Contour algorithm 

and motion estima-

tion 

HMM Cohn-

Kanade 

Used the whole DB Overall efficiency of 84% 

(across 6 prototypic 

expressions) 

Experiments with: joy, 

surprise and anger: 98%, 

joy, surprise and sad-

ness: 95% 

Automatic extraction of 

MPEG-4 FAPs 

Proves that FAPs convey the 

necessary information that is 

required to extract the emo-

tions. 

Cohen et 

al., 2003 

[12] 

A vector of extract-

ed Motion Units 

(MUs) using PBVD 

tracker 

NB, TAN, 

SSS, HMM, 

ML-HMM 

Cohn-

Kanade and 

own DB 

Cohn-Kanade: 53 subjects 

Own DB: 5 subjects 

Refer table 6 Real-time system. 

Emotion classification from 

video. 

Suggests use of HMMs to 

automatically segment a 

video into different expres-

sion segments. 

Cohen et 

al., 2003 

[11] 

A vector of extract-

ed Motion Units 

(MUs) using PBVD 

tracker 

NB, TAN and 

SSS 

Cohn-

Kanade and 

Chen-

Huang 

Refer table 7 Refer table 8 Real-time system. 

Uses semi-supervised learn-

ing to work with some la-

beled data and large amount 

of unlabeled data. 

Bartlett et 

al., 2003 

[13] 

Gabor Wavelets SVM, 

AdaSVM 

(SVM with 

AdaBoost). 

Cohn-

Kanade 

313 sequences from 90 

subjects. First and last 

frame used as training 

images 

SVM with Linear Ker-

nel: Automatic face 

detection: 84.8%; Manu-

al alignment: 85.3%. 

SVM with RBF Kernel: 

Automatic face detec-

tion: 87.5%; Manual 

alignment: 87.6% 

Fully automatic system. 

Real-time recognition at high 

level of accuracy 

Successfully deployed on 

Sony’s Aibo pet robot, ATR’s 
RoboVie and CU Animator 

Michel and 

Kaliouby, 

2003 [14] 

Vector of feature 

displacements (Eu-

clidean distance 

between neutral and 

peak) 

SVM Cohn-

Kanade 

For each basic emotion, 

10 examples were used 

for training and 15 exam-

ples were used for testing.  

With RBF Kernel: 87.9%. 

Person independent: 

71.8% 

Person dependent (train 

and test data supplied 

by expert): 87.5% 

Person dependent (train 

and test data supplied 

by 6 users during ad-hoc 

interaction): 60.7% 

Real-time system. 

Does not require any prepro-

cessing. 

 

Table 5: A summary of some of the posed and spontaneous expression recognition systems (since 2001). 
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Reference Feature Extraction Classifier Database Sample size Performance Important Points 

Pantic and 

Rothkrantz, 

2004 [15] 

Frontal and Profile 

facial points 

Rule based 

classifier 

MMI 25 subjects 86% accuracy Recognizes facial expressions in 

frontal and profile views. 

Proposed a way to do automatic 

AU coding in profile images. 

Not Real-time. 

Buciu and 

Pitas, 2004 

[16] 

Image representa-

tion using Non 

negative Matrix 

Factorization (NMF) 

and Local Non 

negative Matrix 

factorization 

(LNMF). 

Nearest 

neighbor 

classifier 

using CSM 

and MCC 

Cohn-

Kanade 

and JAFFE 

Cohn-Kanade: 164 

samples 

JAFFE: 150 samples 

Cohn-Kanade: LNMF with 

MCC gave the highest 

accuracy of 81.4% 

JAFFE: Only 55% to 68% 

for all 3 methods 

PCA was also performed for 

comparison purpose. LNMF 

outperformed both PCA and 

NMF whereas NMF produces 

the poorest performance. 

CSM classifier is more reliable 

than MCC and gives better 

recognition.  

Pantic and 

Patras, 2005 

[46] 

Tracking a set of 20 

facial fiducial points 

Temporal 

Rules 

Cohn-

Kanade and 

MMI 

Cohn-Kanade: 90 

images 

MMI: 45 images 

Overall an average recog-

nition of 90% 

Recognizes 27 AUs. 

Invariant to occlusions like 

glasses and facial hair. 

Shown to give a better perfor-

mance than the AFA system 

Zheng et al., 

2006 [17] 

34 landmark points 

converted into a 

Labeled Graph (LG) 

using Gabor wave-

let transform. Then 

a semantic expres-

sion vector built for 

each training face.   

KCCA used to learn 

the correlation 

between LG vector 

and semantic vector. 

The correla-

tion that is 

learnt is used 

to estimate 

semantic 

expression 

vector which 

is then used 

for classifica-

tion 

JAFFE and 

Ekman’s 
Pictures of 

Affect 

JAFFE: 183 images 

Ekman’s: 96 images 

Neutral expressions 

were not chosen 

from either database 

Using Semantic Info: On 

JAFFE DB: with Leave one 

image out (LOIO) cross 

validation: 85.79%, with 

Leave one subject out 

(LOSO) cross validation: 

74.32%, On Ekman’s DB: 
81.25% 

Using Class Label Info: On 

JAFFE DB: with LOIO: 

98.36%, with LOSO: 

77.05%, On Ekman’s DB: 
78.13% 

Used KCCA to recognize facial 

expressions 

The singularity problem of the 

Gram matrix has been tackled 

using an improved KCCA algo-

rithm. 

Anderson 

and McOw-

en, 2006 [18] 

Motion signatures 

obtained by tracking 

using spatial ratio 

template tracker 

and performing 

optical flow on the 

face using multi-

channel gradient 

model (MCGM) 

SVM and 

MLP 

CMU-

Pittsburg 

AU coded 

DB and a 

non-

expressive 

DB 

CMU: 253 samples 

of 6 basic expres-

sions. But these had 

to be preprocessed 

by reducing frame 

rate and scale 

Non-expressive: 10 

subjects, 4800 

frames long 

Motion averaging using: 

co-articulation regions: 

63.64%, 7x7 blocks: 77.92%, 

ratio template algorithms, 

with MLP: 81.82%, with 

SVM: 80.52% 

Fully automated, multistage 

system. 

Real-time system. 

Able to operate efficiently in 

cluttered scenes. 

Used motion-averaging to con-

dense the data that is fed to the 

classifier. 

Aleksic and 

Katsaggelos, 

2006 [19] 

MPEG-4 FAPs, 

outer lip  (group 8) 

and eyebrow (group 

4) followed by PCA 

to reduce dimen-

sionality 

HMM and 

MS-HMM 

Cohn-

Kanade 

284 recordings of 90 

subjects 

Using HMM: Only eye-

brow FAPs: 58.8%, Only 

outer lip FAPs: 87.32%, 

Joint FAPs: 88.73% 

After assigning stream 

weights and then using a 

MS-HMM: 93.66% with 

outer lip having more 

weight than eyebrows. 

Showed that performance im-

provement is possible by using 

MS-HMMs and proposed a way 

to assign stream weights. 

Used PCA to reduce the dimen-

sionality of the features before 

giving it to the HMM. 

 

Pantic and 

Patras, 2006 

[20] 

Mid level parame-

ters generated by 

tracking 15 facial 

points using particle 

filtering 

Rule based 

classifier 

MMI 1500 samples of 

both static and 

profile views (single 

and multiple AU 

activations) 

86.6% on 96 test profile 

sequences 

Automatic segmentation of 

input video into facial expres-

sions. 

Recognition of temporal seg-

ments of 27 AUs occurring alone 

or in combination. 

Automatic recognition of AUs 

from profile images. 

Table 5 (Continued): A summary of some of the posed and spontaneous expression recognition systems (since 2004). 
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Reference Feature Extrac-

tion 

Classifier Database Sample size Performance Important Points 

Sebe et al., 

2007 [21] 

MUs generated 

from the PBVD 

tracker 

Bayesian nets, 

SVMs and Deci-

sion Trees. Used 

voting algorithms 

like bagging and 

Boosting to im-

prove results.  

Created 

spontaneous 

emotions 

database. 

Also used 

Cohn-

Kanade 

Created DB: 28 

subjects showing 

mostly neutral, joy, 

surprise and delight. 

Cohn-Kanade: 53 

subjects 

Using many different 

classifiers: Cohn-Kanade: 

72.46% to 93.06%, Created 

DB: 86.77% to 95.57%. 

Using kNN with k = 3, best 

result of 93.57% 

Recognizes spontaneous expres-

sions 

Created an authentic DB where 

subjects are showing their natu-

ral facial expressions 

Evaluated several Machine 

Learning algorithms 

Kotsia and 

Pitas, 2007 

[22] 

Geometric 

displacement 

of Candide 

nodes 

Multiclass SVM:  

For expression 

recognition: used 

six-class SVM, one 

for each expres-

sion. For AU 

recognition: used 

one-class SVMs, 

one for each of the 

8 chosen AUs 

used. 

Cohn-

Kanade 

Whole DB 99.7% for facial expression 

recognition 

95.1% for facial expression 

recognition based on AU 

detection 

Recognizes either the six basic 

facial expressions or a set of 

chosen AUs. 

Very high recognition rates have 

been shown 

Wang and 

Yin, 2007 

[23] 

Topographic 

context (TC) 

expression 

descriptors 

QDC, LDA, SVC 

and NB 

Cohn-

Kanade and 

MMI 

Cohn-Kanade: 53 

subjects, 4 images 

per subject for each 

expression. Total of 

864 images 

MMI: 5 subjects, 6 

images per subject 

for each expression. 

Total of 180 images 

Person dependent tests: on 

MMI: with QDC: 92.78%, 

with LDA: 93.33%, with 

NB: 85.56%, on Cohn-

Kanade: with QDC: 

82.52%, with LDA: 87.27%, 

with NB: 93.29%. 

Person independent tests: 

on Cohn-Kanade: with 

QDC: 81.96%, with LDA: 

82.68%, with NB: 76.12%, 

with SVC: 77.68% 

Proposed a topographic model-

ing approach in which the gray 

scale image is treated as a 3D 

surface. 

Analyzed the robustness against 

the distortion of detected face 

region and the different intensi-

ties of facial expressions. 

Dornaika 

and 

Davoine, 

2008 [24] 

Candide face 

model used to 

track features.  

First head pose is 

determined using 

Online Appearance 

Models and then 

expressions are 

recognized using a 

stochastic ap-

proach 

Created 

own data 

Used several video 

sequences. Also 

created a challenge 

1600 frame test 

video, where sub-

jects were allowed 

to display any ex-

pression in any 

order for any dura-

tion 

Results have been spread 

across different graphs and 

charts. Interested readers 

can refer [24] to view the 

same. 

Proposes a framework for simul-

taneous face tracking and ex-

pression recognition. 

2 AR models per expression 

gave better mouth tracking and 

in turn better performance. 

The video sequences contained 

posed expressions. 

Kotsia et 

al., 2008 

[25] 

3 approaches: 

Gabor features, 

DNMF algo-

rithm and by 

Geometric 

displacement 

vectors ex-

tracted using 

Candide track-

er 

Multiclass SVM 

and MLP 

Cohn-

Kanade and 

JAFFE 

 Using JAFFE: with Gabor: 

88.1%, with DNMF: 85.2% 

Using Cohn-Kanade: with 

Gabor: 91.6%, with DNMF: 

86.7%, with SVM: 91.4% 

Developed a system to recognize 

expressions in-spite of occlu-

sions. 

Discusses the effect of occlusion 

on the 6 prototypic facial expres-

sions.  

Table 5 (Continued): A summary of some of the posed and spontaneous expression recognition systems (since 2007). 

ANN: Artificial Neural Network, kNN: k-Nearest Neighbor, HMM: Hidden Markov Model, NB: Naïve Bayes, TAN: Tree Augmented Naïve 

Bayes, SSS: Stochastic Structure Search, ML-HMM: Multi-Level HMM, SVM: Support Vector Machine, CSM: Cosine Similarity Measure, 

MCC: Maximum Correlation Classifier, KCCA: Kernel Canonical Correlation Analysis, MLP: Multi-Layer perceptron, MS-HMM: Multi-

Stream HMM, QDC: Quadratic Discriminant Classifier, LDA: Linear Discriminant Classifier, SVC: Support Vector Classifier. 
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Fig. 10 (referred from table 5): Bourel et al.’s system’s performance. Figure reprinted from [26]
N
. 

 

 Cohn-Kanade DB Own DB 

Person Dependent Tests Insufficient data to perform person dependent tests NB (Gaussian): 79.36% 

NB (Cauchy): 80.05% 

TAN: 83.31% 

HMM: 78.49% 

ML-HMM: 82.46% 

Person Independent Tests NB (Gaussian): 67.03% 

NB (Cauchy): 68.14% 

TAN: 73.22% 

Insufficient data to conduct tests using HMM and ML-HMM 

NB (Gaussian): 60.23% 

NB (Cauchy): 64.77% 

TAN: 66.53% 

HMM: 55.71% 

ML-HMM: 58.63% 

Table 6 (referred from table 5): Cohen et al.’s system’s performance [12] 

 Cohn-Kanade DB Chen-Huang DB 

Labeled and Unlabeled 

data 

200 labeled, 2980 unlabeled for training and 1000 for testing 300 labeled, 11982 unlabeled for training and 3555 for testing 

Only Labeled data 53 subjects displaying 4 to 6 expressions. 8 frames per expression 

sequence 

5 subjects displaying 6 expressions. 60 frames per expression 

sequence 

 

Table 7 (referred from table 5): Cohen et al.’s sample size [11] 

 Cohn-Kanade DB Chen-Huang DB 

Labeled and Unlabeled data NB classifier: 69.10% 

TAN classifier: 69.30% 

SSS classifier: 74.80% 

NB classifier: 58.54% 

TAN classifier: 62.87% 

SSS classifier: 74.99% 

Only Labeled data NB classifier: 77.70% 

TAN classifier: 80.40% 

SSS classifier: 81.80% 

NB classifier: 71.78% 

TAN classifier: 80.31% 

SSS classifier: 83.62% 

 

Table 8 (referred from table 5): Cohen et al.’s system performance [11] 
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9. Classifiers 

The final stage of any face expression recognition system is the classification module (after the face detection and 

feature extraction modules). A lot of recent work has been done on the study and evaluation of the different classifiers. 

Cohen et al. have studied static classifiers like the Naïve Bayes (NB), Tree Augmented Naïve Bayes (TAN), 

Stochastic Structure Search (SSS) and dynamic classifiers like Single Hidden Markov Models (HMM) and Multi-Level 

Hidden Markov Models (ML-HMM) [11], [12]. In the next few paragraphs, I will cover some of the important results of 

their study.  

While studying NB classifiers, Cohen et al. experimented with the use of Gaussian distribution and Cauchy 

distribution as the model distribution of the NB classifier. They found that using the Cauchy distribution as the model 

gives better results [12]. Let us look at NB classifiers in more detail. We know about the independence assumption of 

NB classifiers. Although this independence assumption is not true in many of the real-world scenarios, NB classifiers 

are known to work surprisingly well. For example, if the word ‘Bill’ appears in an email, the probability of ‘Clinton’ or 
‘Gates’ appearing become higher. This is a clear violation of the independence assumption. However NB classifiers 

have been used very successfully in classifying email as spam and non-spam. When it comes to face expression 

recognition, Cohen et al. suggest that similar independence assumption problems exist. This is so because there is a 

high degree of correlation between the display of emotions and facial motion [12]. They then studied the TAN classifier 

and found it to be better than NB. As a generalized thumb rule, they suggest the use of a NB classifier when data is 

insufficient since the TAN’s learnt structure becomes unreliable and the use of TAN when sufficient data is available 

[12]. 

Cohen et al. have also suggested the scenarios where static classifiers can be used and the scenarios where 

dynamic classifiers can be used [12]. They report that dynamic classifiers are sensitive to changes in the temporal 

patterns and the appearance of expressions. So they suggest the use of dynamic classifiers when performing person 

dependent tests and the use of static classifiers when performing person independent tests. But there are other notable 

differences too: static classifiers are easy to implement and train when compared to dynamic classifiers. But on the flip 

side, static classifiers give poor performance when given expressive faces that are not at their apex [12]. 

As we saw in section 7, Cohen et al. used NB, TAN and SSS while working on semi-supervised learning to address 

the issues of labeled and unlabeled databases [11]. They found that NB and TAN performed well with training data 

that had been labeled. However they performed poorly when unlabeled data was added to the training set. So, they 

introduced the SSS algorithm and which could outperform NB and TAN when presented with unlabeled data [11]. 

Coming to dynamic classifiers, HMMs have traditionally been used to classify expressions. Cohen et al. suggested 

an alternative use of HMMs by using it to automatically segment arbitrarily long video sequences into different 

expressions [12].  

Bartlett et al. used AdaBoost to speed up the process of feature selection. Improved classification performance was 

obtained by training the SVMs using this representation [13]. 

Bourel et al. proposed the localized representation and classification of features followed by the application of data 

fusion [26]. They propose the use of several modular classifiers instead of one monolithic classifier since the failure of 

one of the modular classifiers does not necessarily affect the classification. Also, the system becomes robust against 

occlusions; even if one part of the face is not visible then only that particular classifier fails whereas the other local 

classifiers still function properly [26]. Another reason stated was that new classification modules can be added easily if 

and when required. They used a rank weighted kNN classifier for each local classifier and the combination was 

implemented by a simple summation of classifier outputs [26]. 

Anderson and McOwen suggested the use of motion averaging over specified regions of the face to condense the 

data into an efficient form [18]. They reported that the classifiers worked better when fed with condensed data rather 

than the whole uncondensed data [18]. Next they studied MLPs and SVMs and found that both were giving almost 

similar performance. In order to choose among the two, they performed statistical studies and decided to go with the 

use of SVMs. A major factor affecting this decision was the fact that the SVMs had a much lower False Acceptance Rate 

(FAR) when compared to MLPs. 

In 2007, Sebe et al. evaluated several machine leaning algorithms like Bayesian Nets, SVMs and Decision Trees 

[21]. They also used voting algorithms like bagging and boosting to improve the classification results. It is interesting 
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to note that they found NB and kNN to be stable algorithms whose performance did not improve significantly with the 

usage of the voting algorithms. In total, they published evaluation results for 14 different classifiers: NB with bagging 

and boosting, NBd (NB with discrete inputs) with bagging and boosting, TAN, SSS, Decision Tree inducers like ID3 

with bagging and boosting, C4.5, MC4 with bagging and boosting, OC1, SVM, kNN with bagging and boosting, PEBLS 

(Parallel Exemplar Based Learning System), CN2 (Direct Rule Induction algorithm) and Perceptrons. For the detailed 

evaluation results, interested readers can refer to [21]. 

10. The 6 Prototypic Expressions 

Let us take a look at the 6 prototypic expressions: happiness, sadness, anger, surprise, disgust and fear. When 

compared to the many other possible expressions, these six are the easiest to recognize. Studies on these six 

expressions and the observations from the surveyed papers brings out many interesting points out of which three 

major points are covered in the paragraphs below: 1) A note on the confusions that occur when recognizing the 

prototypic expressions, 2) A note on the elicitation of these expressions and 3) The effect of occlusion on the 

recognition of each expression. 

Are all the six expressions mutually distinguishable or is there an element of confusion between them? Sebe et al. 

have written about the 1978 study done by Ekman and Friesen which shows that anger is usually confused with 

disgust and fear is usually confused with surprise (page 196 from [58]). They attribute these confusions to the fact that 

these expressions share common facial movements and actions. But do the results of the confusion related studies of 

behavioral psychologists like Ekman and Friesen apply to modern day automatic face expression recognition systems 

as well? It is interesting to know that a study of the results (the published confusion matrices) from many of the 

surveyed papers do show similar confusion between anger and disgust [14], [19], [12], [21], [22], [23], [25]. However the 

confusion between fear and surprise was not very evident. Rather the systems confused fear with happiness [19], [21], 

[22], [23], [25] and fear with anger [14], [12], [22], [25]. Also, sadness was confused with anger [19], [21], [22], [23], [25]. 

When it comes to the ease of recognition, it has been shown that, out of the six prototypic expressions, surprise and 

happiness are the easiest to recognize [37], [14]. 

Let us now look at the elicitation of these 6 expressions. The most common approach taken by the researchers to 

elicit natural expressions is by showing the subjects emotion inducing films and movie clips. In the section “Emotion 
Elicitation Using Films”, Coan and Allen give a detailed note on the different films that have been used by various 

researchers to elicit spontaneous expressions in the subjects (page 21 from [30]). As we have seen in section 7, Sebe et 

al. have also used emotion inducing films to capture data for their spontaneous expression database. While doing so, 

they have reported that eliciting sadness and fear in the subjects was difficult [21]. However Coan and Allen’s study 
reports that while eliciting fear was difficult (as noted by Sebe et al.), eliciting sadness was not difficult [30]. I think this 

difference in the reports is because of the different videos that were used to elicit sadness. Coan and Allen also 

reported that the emotions that they found difficult to elicit were anger and fear with anger being the toughest. They 

suggest that this may be due to the fact that the display of anger requires a very personal involvement which is very 

difficult to elicit using movie clips [30]. For the names of the various movie clips that have been used, the interested 

reader can refer page 21 from [30]. 

Let us conclude this section by studying the effect of occlusion on each of the prototypic expressions. In their 

occlusion related studies, Kotsia et al. have categorically listed the effect of occlusion on each of the six prototypic 

expressions [25]. Their studies show that occlusion of the mouth leads to inaccuracies in the recognition of anger, fear, 

happiness and sadness whereas the occlusion of the eyes (and brows) leads to a dip in the recognition accuracy of 

disgust and surprise [25]. 

11. Challenges and Future Work 

The face expression research community is shifting its focus to the recognition of spontaneous expressions. As 

discussed earlier, the major challenge that the researchers face is the non-availability of spontaneous expression data. 

Capturing spontaneous expressions on images and video is one of the biggest challenges ahead. As noted by Sebe et 

al., if the subjects become aware of the recording and data capture process, their expressions immediately loses its 

authenticity [21]. To overcome this they used a hidden camera to record the subject’s expressions and later asked for 
their consents. But moving ahead, researchers will need data that has subjects showing spontaneous expressions under 

different lighting and occlusion conditions. For such cases, the hidden camera approach may not work out. Asking 
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subjects to wear scarves and goggles (to provide mouth and eye occlusions) while making them watch emotion 

inducing videos and subsequently varying the lighting conditions is bound to make them suspicious about the 

recording that is taking place which in turn will immediately cause their expressions to become unnatural or semi-

authentic. Although building a truly authentic expression database (one where the subjects are not aware of the fact 

that their expressions are being recorded) is extremely challenging, a semi-authentic expression database (one where 

the subjects watch emotion eliciting videos but are aware that they are being recorded) can be built fairly easily. One of 

the best efforts in recent years in this direction is the creation of the MMI database. Along with posed expressions, 

spontaneous expressions have also been included. Furthermore, the DB is web-based, searchable and downloadable.  

The most common method that has been used to elicit emotions in the subjects is by the use of emotion inducing 

videos and film clips. While eliciting happiness and amusement is quite simple, eliciting fear and anger is the 

challenging part. As mentioned in the previous section, Coan and Allen point out that the subjects need to become 

personally involved in order to display anger and fear. But this rarely happens when watching films and videos. The 

challenge lies in finding out the best alternative ways to capture anger and fear or in creating (or searching for) video 

sequences that are sure to anger a person or induce fear in him. 

Another major challenge is labeling of the data that is available. Usually it is easy to find a bulk of unlabeled data. 

But labeling the data or augmenting it with meta-information is a very time consuming process and possibly error-

prone. It requires expertise on the part of the observer or the AU coder. A solution to this problem is the use of semi-

supervised learning that allows us to work with both labeled and unlabeled data [11]. 

Apart from the six prototypic expressions there are a host of other expressions that can be recognized. But 

capturing and recognizing spontaneous non-basic expressions is even more challenging than capturing and 

recognizing spontaneous basic expressions. This is still an open topic and no work seems to have been done on the 

same.  

Currently all expressions are not being recognized with the same accuracy. As seen in the previous sections, anger 

is often confused with disgust. Also, an inspection of the surveyed results shows that the recognition percentages are 

different for different expressions. Looking forward, researchers must work towards eliminating such confusions and 

recognize all the expressions with equal accuracy. 

As discussed in the previous sections, differences do exist in facial features and facial expressions between cultures 

(for example, Europeans and Asians) and age groups (adults and children). Face expression recognition systems must 

become robust against such changes. 

There is also the aspect of temporal dynamics and timings. Not much work has been done on exploiting the timing 

and temporal dynamics of the expressions in order to differentiate between posed and spontaneous expressions. As 

seen in the previous sections, it has been shown from psychological studies that it is useful to include the temporal 

dynamics while recognizing faces since expressions not only vary in their characteristics but they vary also in their 

onset, apex and offset timings. 

Another area where more work is required is the automatic recognition of expressions and AUs from different 

head angles and rotations. As seen in section 8, Pantic and Rothkrantz have worked on expression recognition from 

profile faces. But there seems to be no published work on recognizing expressions from faces that are at different 

angles between full-frontal and full-profile. 

Many of the systems still require manual intervention. For the purpose of tracking the face, many systems require 

facial points to be manually located on the first frame. The challenge is to make the system fully automatic. In recent 

years, there have been advances in building such fully automatic face expression recognizers [10], [37], [13]. 

Looking forward, researchers can also work towards the fusion of expression-analysis and expression-synthesis. 

This is possible given the recent advances in animation technology, the arrival of the MPEG-4 FA standards and the 

available mappings of the FACS AUs to MPEG-4 FAPs. 

A possible work for the future is the automatic recognition of microexpressions. Currently training kits are 

available that can train a human to recognize microexpressions. It will be interesting to see the kind of training that the 

machine will need. 

I will conclude this section with a small note on the medical conditions that lead to ‘loss of facial expression’. 
Although it has no direct implication to the current state of the art, I feel that, as a face expression recognition 
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researcher, it is important to know that there exist certain conditions which can cause what is known as ‘flat affect’ or 

the condition where a person is unable to display facial expressions [87]. There are 12 causes for the loss of facial 

expressions namely: Asperger syndrome, Autistic disorder, Bell's palsy, Depression, Depressive disorders, Facial 

paralysis, Facial weakness, Hepatolenticular degeneration, Major depressive disorder, Parkinson's disease, 

Scleroderma, and Wilson’s disease [87]. 

12. Conclusion 

This paper’s objective was to introduce the recent advances in face expression recognition and the associated areas in a 

manner that should be understandable even by the new comers who are interested in this field but have no 

background knowledge on the same. In order to do so, we have looked at the various aspects of face expression 

recognition in detail. Let us now summarize: We started with a time-line view of the various works on expression 

recognition. We saw some applications that have been implemented and other possible areas where automatic 

expression recognition can be applied. We then looked at facial parameterization using FACS AUs and MPEG-4 FAPs. 

Then we looked at some notes on emotions, expressions and features followed by the characteristics of an ideal system. 

We then saw the recent advances in face detectors and trackers. This was followed by a note on the databases followed 

by a summary of the state of the art. A note on classifiers was presented followed by a look at the six prototypic 

expressions. The last section was the challenges and possible future work to be done. 

Face expression recognition systems have improved a lot over the past decade. The focus has definitely shifted 

from posed expression recognition to spontaneous expression recognition. The next decade will be interesting since I 

think that robust spontaneous expression recognizers will be developed and deployed in real-time systems and used in 

building emotion sensitive HCI interfaces. This is going to have an impact on our day to day life by enhancing the way 

we interact with computers or in general, our surrounding living and work spaces. 
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