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Face tampering is an intriguing task in video/image genuineness identification and has attracted significant amounts of attention
in recent years. In this work, we propose a face forgery detection method that consists of preprocessing, an improved Siamese
network-based feature extractor (including a feature alignment module), and postprocessing (a voting principle). Roughly
speaking, our method extracts the features in the grey space of face/background image pairs and measures the difference to make
decisions. Experiments on several standard databases prove the effectiveness of our method, and especially on the low-quality
subdataset of the FaceForensics++ , our method achieves a competitive result.

1. Introduction

In recent years, image/video tampering methods have de-
veloped rapidly [1], including Deepfake [2], Face2Face [3],
FaceSwap [4], and Neural Textures [5]. +ese methods rely
on advanced image/video processing algorithms and are
embedded within many applications in the market. Because
visual contents can be easily manipulated, the detection of
tampered contents is of practical significance and readily
attracts attention [6]. In this work, we are interested in face
forgery detection.

Many methods have been proposed for detection of
tampered face images and videos, and the accuracy mainly
depends on the selection of features and classifiers. +e state-
of-the-art methods roughly consist of two stages: feature ex-
traction and classification. Several methods segregate these
stages as separate subproblems [7–10], while some methods
integrate the two stages in sequence based on deep neural
networks (DNNs) [1, 11–18]. Regarding face forgery detection,
there are two main types of selections of features: one is based
on single-image features [1, 7–29], while the other is based on
between-frame feature differences in videos [30–39]. Note that
various types of classifiers are used (e.g., SVM, CNN, RNN, and
MLP) and that SVM and CNN are relatively more popular.

+e existing methods have achieved excellent detection
accuracy on public datasets, including [1, 23, 40–43].
However, there are still problems yet to be solved. +e first
problem is that most methods offer poor robustness. +ey
can achieve satisfactory accuracy on uncompressed or lightly
compressed images and videos, but for content that is
compressed with high intensity, the detection accuracy is
greatly reduced because the compression may significantly
eliminate the traces of forgery. +e quality of images and
videos also decreases after rounds of postprocessing, which
greatly compromises the performance of the existing
methods. +e second problem is that almost all of the
methods use only the features of the facial area or the fusion
boundary area of the face and background but discard the
features of the background. Although normally only the
facial area is tampered, it is worth noting that, for untam-
pered images, the facial area and the background are con-
sistent at a certain feature level, which stands in contrast with
forged images. +erefore, in this work, we address the face-
background difference-based features.

In this paper, we propose a method based on the im-
proved Siamese network [44]. +e Siamese network was
originally proposed to learn a similarity metric with ap-
plication to face verification. We use the Siamese network to

Hindawi
Security and Communication Networks
Volume 2022, Article ID 5169873, 13 pages
https://doi.org/10.1155/2022/5169873

mailto:lyc124184@mail.dlut.edu.cn
https://orcid.org/0000-0003-1057-7973
https://orcid.org/0000-0002-4042-3898
https://orcid.org/0000-0001-8028-2279
https://orcid.org/0000-0003-0533-1186
https://orcid.org/0000-0002-9933-7900
https://orcid.org/0000-0001-5258-9628
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/5169873


measure the similarity between the face area and the
background of the video frames. Before being saved in
memory, a captured video is processed through a series of
steps, including quantization, denoising, color correction,
gamma correction, filtering, white balance, and even JPEG
compression [45]. +is series of processing steps involves
unique statistical characteristics, and in an untampered
video, the face area and the background of the video frames
exhibit high similarity. In a tampered video, the similarity
between the face area and the background is low because
they originate from different videos. It is worth noting that
this specialty is video-level; that is, the similarity relationship
between the face area and the background between different
frames in the video conforms to this law, because all pro-
cessing is carried out on the whole video, that is, all frames.
Our improved Siamese network can measure the similarity
in order to distinguish genuine and tampered images and
videos. +e general pipeline of our method is depicted in
Figure 1, and our contribution can be roughly concluded as
follows: First, we design a preprocessing module that obtains
a large number of image patch pairs of face area and
background. Next, we present our improved Siamese net-
work, which consists of two submodules, i.e., feature ex-
traction and feature alignment. In the feature extraction
module, we grey the image patch pairs and then input the
pairs to a two-stream convolutional neural network with
shared weights to extract features in the grey space of the
images. In the feature alignment module, we align the
features to measure the similarity between the face area and
the background of images and obtain the final authenticity
judgement result. During testing, we define a voting prin-
ciple to correct our results by cropping multiple pairs of face
area and background from a video frame. +en, we define a
voting principle to correct the classification results. Last,
through experiments, we show that our method outperforms
the state-of-the-art methods on challenging low-quality
datasets.

2. Related Work

2.1. Face Forgery. +e most widely used face tampering
methods include Deepfake [2], Face2Face [3], FaceSwap [4],
and Neural Textures [5]. Examples of these methods are
depicted in Figure 2.

+e core of the application of Deepfake to facial video
tampering is the parallel training of two autoencoders with
shared parameters.+e production process has two stages: the
training stage and the generation stage. In the training stage,
two autoencoders with shared parameters extract the features
of two faces that belong to different persons and then input
two autodecoders with independent parameters. In the
generation stage, the facial features extracted by the
autoencoder are input into the autodecoder corresponding to
another different face to generate a mixed face. Finally, the
mixed face is blended with the rest of the image using Poisson
image editing [46]. Face2Face is a technology that can modify
the expression and mouth shape of the target character. +e
main advancement of Face2Face lies in deforming various
algorithms, including improvements in RGB tracking

algorithms, transfer functions, and the establishment of
mouthmodels. FaceSwap is used to transfer the face area from
the source video to the target video. For the source video, the
method first extracts the facial area of the source video and its
corresponding facial landmarks and then fits a 3D model. For
the target video, the method uses the same approach to fit the
3D model, which is rendered by the texture coordinates
obtained from the 3D model of the source video to produce
the final face-changing video. Neural Textures uses expression
migration to modify the texture map of the target actor’s face
to match the expression of the source actor. +is texture map
is used to sample the neural texture of the target character.
+en, the method inputs the sampled neural texture map to
the delayed neural renderer and outputs the final repro-
duction result after end-to-end training.

2.2. Detection of Face Forgery. With the development of face
tampering technology, the forged images and videos pro-
duced are close to genuine, which has aroused concerns and
attracted attention to research on detection technology for
face tampering. Existing detection methods can be roughly
divided into two types: detection for tampered images and
videos.

2.2.1. Detection Methods for Tampered Images. +is type of
method aims to extract the features of the single image for
classification. Some traditional manual features such as
speeded up robust features (SURF) [7], photo response
nonuniformity (PRNU) [8], local binary pattern (LBP) [9],
image quality measures (IQM) [10], etc., can be used to
detect tampered images. However, the accuracy of these
methods is not competitive on large datasets. With the rapid
development of deep learning, face forgery detection has also
made extensive use of deep learning. Deep neural networks
(DNN) are used to extract the features of a single image or as
classifiers. Some methods use DNN to extract the frequency
features of the images [19–22]. For example, Luo et al. [20]
found that current CNN-based detectors tend to overfit to
method-specific color textures and thus fail to generalize, so
they proposed to utilize the high-frequency noises for face
forgery detection by devising three functional modules
observing image noises remove color textures and expose
discrepancies between authentic and tampered regions.
Besides, the unique biological features of face images are
used as classification features by some methods [23–26].
Matern et al. [24] proposed a method to detect Deepfake
videos based on the visual features of eyes, teeth, and facial
contours. However, this method has certain requirements
for the test images, such as that the images need to include
clear eyes or teeth. References [27–29] effectively used the
texture or boundary features of the images and had a certain
improvement in cross-database detection performance.
+ere are some methods that use specific neural networks to
detect tampered images with end-to-end training
[1, 11–15, 39] and some methods [16–18] also introduce
attention mechanism on this basis. +ese methods rely on
the powerful adaptive learning ability of the neural network
and the focus of the methods is therefore on the construction
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of the backbone network or attention network and good
performance has been achieved. It is emphasized that
methods based on features of the individual image can also
be used to determine the authenticity of the videos.

2.2.2. Detection Methods for Tampered Videos. +is type of
method mainly uses the continuity and consistency of
various features between video frames to determine au-
thenticity. +erefore, it relies on the timing of the video

(a) (b) (c) (d) (e)

Figure 2: Examples of genuine images and four tampering methods. (a) Genuine images. (b) Deepfake. (c) Face2Face. (d) FaceSwap.
(e) Neural Textures.
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Figure 1: Overview of the proposed method. Our detection framework includes three modules. +e preprocessing module is used to crop
face area patches and background patches of video frames, where IBi and IFi (i� 1, 2, . . ., N) represent the face patch and the background
patch, respectively. N represents the number of videos. +e feature extraction module converts patch pairs into greyscale, i.e., IBGi and IFGi,
and then extracts features in the grey space of the pairs, i.e., GWBi and GWFi, using a two-stream network with shared weight. +e feature
alignment module mines their similarity by concatenating features from different areas and obtains the final classification result. CWi
denotes aligned features. ⊗ represents the concatenation operation. +e final classification result is obtained after CWi goes through three
fully connected layers.
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frames, and the detection object can only be a video, not a
single image [30–38]. Haliassos et al. [38] proposed a de-
tection called LipForensics which targets high-level semantic
irregularities in mouth movements, which are common in
many generated videos. But it requires a large-scale labelled
dataset for pretraining. Zheng et al. [32] explored taking full
advantage of the temporal coherence for video face forgery
detection utilizing a novel end-to-end framework, which
consists of two major stages. +e temporal consistency of
video frames is also used in [30–33]. Li et al. [36] proposed a
long-term recurrent convolutional network (LRCN) to
detect the blinking frequency of people in the videos and to
compare it with the blinking frequency of normal people to
distinguish between genuine and tampered videos. However,
because the blinking frequency in high-quality tampered
videos is almost the same as that of normal people, the
prospective application of this method is not ideal. Agarwal
et al. [37] used an open-source facial behavior analysis
toolkit, Openface, to model the faces of five political ce-
lebrities in order to distinguish the authenticity of the videos.
However, because there are not as many genuine and
tampered videos for ordinary people as for politicians, this
method has limited applications.

2.3. SiameseNetwork. +e Siamese network is used to learn a
function that maps the inputs into a target space such that
the L1 norm in the target space approximates the semantic
distance in the input space.+e details of the architecture are
given in Figure 3. X1 and X2 are the inputs shown to the
network, W is the shared parameter vector between CNNs,
and GW (X1) and GW (X2) are the two points in the low-
dimensional space that are generated by mapping X1 and X2.
EW is a function that measures the compatibility between X1
and X2.

3. Proposed Method

As shown in Figure 1, our method consists of three modules,
i.e., preprocessing (Subsection III-A), feature extraction
(Subsection III-B), and feature alignment (Subsection III-C).
In addition, we introduce the voting principle in Subsection
III-D.

3.1. Preprocessing. +e feature extraction module takes
image patch pairs as input, so we need to crop each video
frame into image patch pairs. For each video in the datasets,
we first use the software package dlib [47] to detect the face
area of each frame in the video, and we crop a fixed-size face
image patch according to the center of the face. We crop
three corner background patches of the image to the same
size as face image patches, excluding the lower right corner.
It should be noted that the three corners are selected to
facilitate cropping and improve the efficiency of pre-
processing. In fact, it can be cropped anywhere on the
background of images. And the number of cropped back-
ground patches can also be any odd number which is
convenient for the voting principle (which will be intro-
duced in Subsection D) other than three. +e three

background patches are later used by the voting principle to
calibrate our test results. In the preprocessing stage, we fi-
nally process the videos in each dataset Fi(i� 1, 2, . . ., N),
where N represents the number of videos, into face patches
IFi and background patches IBi, as described in detail in
Algorithm 1.

3.2. Feature Extraction. Artefacts may be left on videos due
to hardware and software differences and manufacturing
imperfections. In one genuine video, the artefacts are
consistent and continuous in general, such that the facial
area and the background have high similarity, while in the
tampered video (e.g., generated by Deepfake and FaceSwap),
the similarity between the face area and the background is
lower. +e tampered videos generated by Face2Face and
Neural Textures only modify the facial expression and some
attributes and are not directly derived from different videos,
but the tampering still impacts the consistency of the
artefacts.

To this end, we use the improved Siamese network to
measure the similarity between the face area and the
background of the video frames. We employ the Xception
network [48] as the backbone of the Siamese network. +e
Xception network is currently one of the most effective and
widely used networks, as in [1, 19, 20, 22], for face forgery
detection.+e advantage of deep learning lies in its powerful
computing ability and autonomous learning ability.
+rough end-to-end training and supervised learning, the
convolutional neural network extracts the suitable and ef-
fective features in the grey space of the images.

After the preprocessing module, we obtain a pair of
image patches. In the feature extraction module, we first
convert the pair of image patches to greyscale. Since the
semantic content of the face patch and the background patch
is very different, greying the pair of patches can reduce the
impact of the semantic content so that the network can

CNN

X1 X2

EW

GW (X1)

||GW (X1)-GW (X2)||

GW (X2)

CNNW

Figure 3: +e architecture of the Siamese network.
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concentrate more on the low-level features with better
generalization performance. +en the pair of patches are
given to the Xception networks with shared weights to get
the 512-dimension feature maps in the grey space. Sharing
weights ensures that the two streams of the networkmine the
features of the same space, and at the same time it is
equivalent to enriching the feature data of each stream,
making the network more efficient. And the feature maps
can be regarded as features of the noise distribution of the
image patches.

3.3. Feature Alignment. After obtaining the features of the
face patch GWFi (i� 1, 2, . . ., N), where N represents the
number of videos, and the features of the background patch
GWBi in the grey space, it is significant to measure their
similarity in order to distinguish whether they are from
genuine images or tampered images. +e most direct way to
accomplish this goal is to perform a residual operation on
two feature maps, similar to what the original Siamese
network does, but this is not suitable for image patches with
large differences in semantic content. +us, in the feature
alignment module, we concatenate GWFi and GWBi and
acquire the aligned features, which are 1024-dimensional
feature maps, i.e., CWi, defined as

CWi � GWFi ⊗GWBi. (1)

⊗ represents concatenating GWFi and GWBi. CWi is then
input to the fully connected layers behind. +ere are three
fully connected layers that have 256, 10, and 2 nodes in
sequence. +e aligned features retain all the feature infor-
mation of the image patch pair so that the following fully
connected layers can fully mine the similarity between them
and make the learning process more stable and robust in
order to achieve more satisfactory performance.

+e aligned features are very robust for classification.
Limited by current technical conditions, no matter what
kind of face tampering technology is employed, the focus is
on the continuity of semantic content, and damage to the
continuity of the noise artefacts in certain feature spaces is
inevitable. +erefore, compared with the genuine videos,
even if tampered videos undergo a variety of postprocessing
operations, the similarity between the face patch and the
background patch remains at a relatively low level.
Extracting the features in the grey space of the images and
measuring the similarity by concatenating features greatly
reduce the influence of the semantic content of the images.

+is approach enables our method to maintain satisfactory
detection performance for tampered images and videos with
high compression factors.

Under the supervised and end-to-end training, the
feature alignment module can measure the similarity be-
tween the face patch and the background patch and produce
the final classification result. We train our network by
minimizing the cross-entropy loss function, which is defined
as

Loss � − [y · log(y)̂ +(1 − y) · log(1 − (y)̂)]. (2)

y represents the labels of image patches and ŷ represents the
classification results output by the network. +e fully con-
nected layers of the feature alignment module act as a
classifier.

Algorithm 2 describes the entire training process in detail.

3.4. Voting Principle. To obtain more accurate classification
results, we define a voting principle in the test stage to
modify them. +e difference from the training is when we
randomly select an image patch, we will select three patches
from the same frame as the face patch and make them form
three patch pairs by copying the face image patch with the
three background patches. +e three pairs of patches are
then input into our trained feature extraction module and
feature alignment module, and three binary predicted labels
are obtained. Finally, according to the voting principle that
the minority obeys the majority, the predicted label, that is,
the classification result of the image to which the face patch
and background patches belong, is obtained. At the same
time, as we emphasized in Subsection III-A, the number of
background patches can also be any odd number other than
three. +e details of the voting principle can be found in
Figure 4. Let IF be the face patch and let IB1, IB2, and IB3 be
the three corresponding background patches. Let Y1, Y2, Y3,
and Yt be the prediction labels of three patch pairs and the
final prediction label, respectively. Yt � 1 means that the
image is genuine and Yt � 0 means that image is tampered.
Table 1 illustrates the voting principles between Yt and the
labels of the three patch pairs.

4. Experiments

In this section, we first introduce the datasets that we used in
the experiment, and then, we introduce our experimental
setup and detailed training process. Finally, we report the

Input: Videos of the dataset: Fi, i� 1, 2, . . ., N, N: +e number of videos
Output: Images patches IB and IF, IBi: background patches, IF i: face patch
for each Fi do
if Fi is a real video then

Assign Fi to the set Fr
else

Assign Fi to the set Ft
crop face patch IFi which is assigned to the set Ff and three background patches IBi which are assigned to the set Fb

ALGORITHM 1: Preprocessing.
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performance of our proposed method and analyze the ex-
perimental results in detail.

4.1.Datasets. We used three datasets in our experiments: the
FaceForensics++ dataset [1], the Celeb-DF(v2) dataset [40],
and the UADFV dataset [23]. FaceForensics++ is a forensics
dataset consisting of 1000 original video sequences that have
been manipulated with four automated face manipulation
methods: Deepfake (DP), Face2Face (F2), FaceSwap (FS),

Input: +e pair of image patches: IFi and IBi,i� 1, 2, . . ., N
N: +e number of videos

Output: +e prediction label Yti, IBi: background patches, IF i: face patch
while epoch≤ 30 do

for each pair of IFi and IBi do
if IFi and IBi are from Fr then

label l� 1
else

IFi and IBi are from Ft, label l� 0
Greying IFi to IFGi and IBi to IBGi
Mapping IFGi to GW Fi and IFGi to GW Bi with shared weights W
Concatenating GWBi and GWFi to CWi
Mapping CWi to get label Yti

return Siamese network model

ALGORITHM 2: Training.

IB1 IB2 IB3

IF IF IF

Fingerprint extraction and
alignment

voting

1or0 1or0

1or0

1or0

Y1 Y2

Yt

Y3

Figure 4: +e details of the voting principle. It is used in the test stage to modify the classification results. IF is the face patch, while IB1, IB2,
and IB3 are the three corresponding background patches. Y1, Y2, and Y3 are the prediction labels of three patch pairs, and the final predicted
label, Yt, is obtained according to the voting principle from Y1, Y2, and Y3.

Table 1: +e voting principles between Yt and Y1, Y2, and Y3. Yt � 1
means that the image is genuine and Yt � 0 means that the image is
tampered.

Y Binary label
Y1 1 1 1 0 1 0 0 0
Y2 1 1 0 1 0 1 0 0
Y3 1 0 1 1 0 0 1 0
Yt 1 1 1 1 0 0 0 0
+e bold results are the final prediction label.
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and Neural Textures (NT); i.e., it contains four subdatasets.
+e data have been sourced from 977 YouTube videos, and
all videos contain a trackable mostly frontal face without
occlusions, which enables automated tampering methods to
generate realistic forgeries. All videos have three resolutions,
i.e., raw quality without compression, high quality with a
light compression using a quantization of 23, and low quality
with a heavy compression using a quantization of 40.

+e UADFV dataset contains 98 videos, with 49 genuine
videos and 49 tampered videos. All tampered videos are
generated by the method of Deepfake. Each video has one
subject and lasts approximately 11 seconds, with a typical
resolution of 294 500 pixels. +e Celeb-DF(v2) dataset is a
large-scale challenging dataset for Deepfake forensics. It
includes 590 original videos collected from YouTube, with
subjects of different ages, ethnic groups, and genders, and
5639 high-quality Deepfake videos generated using an im-
proved synthesis process. +e overall visual quality of the
synthesized Deepfake videos in the Celeb-DF dataset is
greatly improved when compared to other datasets, with
significantly fewer notable visual artefacts. In addition, the
genuine video shows a wide range of changes in the subject’s
face size, orientation, lighting conditions, and background.

4.2. Implementation Details. In our experiment, we used the
software package dlib [47] to detect faces in the frames of the
videos and extract the face area, but we decided to eliminate
some videos in the datasets for which the face extraction failed.
For every subdataset of the FaceForensics++ dataset, we select
976 tampered videos, among which 681 videos were used as the
training set, 145 videos are used as the validation set, and the
other 145 videos are used as the test set. For the UADFV
dataset, we selected 43 tampered videos, of which 31 videos are
used as the training set, 6 videos are used as the validation set,
and the other 6 videos are used as the test set. +e number of
genuine videos is the same as the number of tampered videos.
In each video, we randomly select 50 pairs of face patches and
background patches for training and 150 pairs of patches for
validation and testing due to the need for the voting principle.

For the Celeb-DF(v2) dataset, because the number of
genuine videos is far less than that of tampered videos, we
use two methods to divide the dataset in order to ensure the
balance of genuine and tampered data during the training
process. One method is to divide the data according to the
quantity balance; that is, for both genuine and tampered
videos, 400 videos are selected for training, 50 videos for
validation, and 50 videos for testing, and 50 pairs of patches
are randomly selected in each video for training and 150
pairs of patches are selected for validation and testing. +e
other method is based on the proportional balance; that is,
the genuine videos are divided in the same way as the
previous method, but for tampered videos, 4,000 are selected
for training, 500 for validation, and 500 for testing, while
only 5 pairs of patches for training and 15 pairs of patches for
validation and testing in each video are randomly selected in
order to keep the quantities of tampered data and genuine
data the same. +e precise numbers of the patch pairs for
each dataset can be found in Table 2.

All networks have been implemented with Python 3.7
using PyTorch. Weight optimization of the network is
achieved with successive batches of 16. +e sizes of face
patches and background patches are both 256 256. +e
networks are optimized via Adam [49] with default pa-
rameters (β1� 0.9 and β2� 0.999). We adjust the learning
rate by combining warm-up and stepwise methods. We set
the base learning rate as 0.0001. Every training process
contains 30 epochs: 10 are used to warm-up, 10 are main-
tained at the base learning rate, and then, the learning rate is
divided by 10 every 5 epochs.

4.3. Evaluation Metrics. We apply the accuracy score (Acc)
and the area under the receiver operating characteristic
(ROC) curve (AUC) values that are commonly used in face
forgery detection as our evaluation metrics. In addition, we
apply precision (P), recall (R), and the F1 score on the
challenging low-quality data from the FaceForensics++
dataset [1] to better evaluate the performance of our method.

4.4. Results. We first compare the performance of our
network with the three most widely used networks based on
the four subdatasets of the FaceForensics++ dataset with
different quality. +e results are listed in Table 3.

As these results show, except for the subdataset of Neural
Textures (NT) with high quality, our method outperforms all
the reference methods and different face manipulation
methods with respect to all quality settings. It is worth noting
that our method achieves Acc values of 84.14%, 97.97%,
98.88%, and 98.21% on the subdatasets of Deepfake (DP),
Face2Face (F2), FaceSwap (FS), and Neural Textures (NT)
with low quality, respectively. +e performance of our
method far exceeds that of the reference methods; in par-
ticular, the performance becomes even better after use of the
voting principle to correct the results, with values of 84.14%,
96.62%, 99.49%, and 98.90% achieved. Moreover, compared
to the results on the same subdataset with raw quality and
high quality, the Acc scores of reference methods have
significantly declined. However, except on the DP sub-
dataset, the performance of our method on low-quality
datasets is close to that of raw quality. +e previous methods
for face forgery detection can mine the differences in feature
distribution between genuine and tampered images to find
the traces of tampered images. +e image compression
eliminates the forgery traces to a certain extent so that the
differences in the feature distribution of genuine and
tampered images are reduced.+erefore, the performance of
the network will also be reduced accordingly. However, our
method determines the authenticity of the images by

Table 2: Precise numbers of patch pairs for training, validation,
and testing of the three datasets.

Dataset
Number of pairs

Training Validation Test
FaceForensics++ [1] 68600 43500 43500
UADFV [23] 3100 1800 1800
Celeb-DF(v2) [40] 40000 15000 15000
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comparing the similarity between the face area and the
background of the images, which greatly enhances the robust
performance of the network so that postprocessing similar to
image or video compression has a relatively small impact on
the performance. In addition, from the results in Table 3, it
can be concluded that the voting principle does not achieve
better results on the DP subdataset; specifically, on the
datasets with raw and low quality, the Acc scores are equal to
those of the method not employing the voting principle, and
on the high-quality dataset, the score even becomes slightly
lower. Overall, however, the voting principle is still beneficial
to the results.

We then evaluate our method on the UADFV and Celeb-
DF(v2) datasets. +e results are shown in Table 4. +e
proposed method achieves 99.94% Acc performance on the
UADFV dataset, and the score even reaches 1.00 by voting,
although this is only a small improvement compared to the
Xception network. With respect to the ways that the Celeb-
DF(v2) dataset is divided according to the proportional
balance and the quantity balance, our method achieves
92.61% and 94.94%, respectively, exhibiting remarkable
improvement compared to the reference methods. +ese
results prove the superiority of our method.

To better evaluate the performance of our method on the
low-quality datasets, we calculate precision (P), recall (R), and
the F1 score of all methods, as shown in Table 5, and generate
ROC curves of different methods as shown in Figure 5 on the
FaceForensics++ dataset with low quality. It can be seen from
the results in Table 5 that, compared with the reference
methods, our method has achieved better performance with
respect to all evaluation metrics on the four subdatasets. +e
AUC values of the proposed method, i.e., the area values in
Figure 5, are far ahead, with the exception that the results on
the DP subdataset are close to those of Xception.

4.4.1. Comparison with Recent Works on the Low-Quality
Datasets of FaceForensics++ [1]. In order to demonstrate the
competitive results of our method on low-quality datasets,
we compared our results with recent methods
[14, 19, 20, 22, 25, 28, 39, 50–52]. Since the experimental sets
between us and others are almost the same, we directly used
the results in these papers. +e results are shown in Table 6.

Accuracy scores marked in bold represent the highest
accuracy scores. +e Acc of our method in some categories
exceeds all the reference methods, i.e., F2, FS, NT. +ese
results fully demonstrate that our method exhibits very good

and robust performance and generalization ability on
challenging low-quality datasets and that the impact of
compression processing is very small, which is extremely
important for the practical application and promotion of the
detection methods.

4.5. Discussion on Other Influencing Factors

4.5.1. Effect of Size of Image Patches. To evaluate the impact
of image patch size on network performance, we used the
patch sizes of 256× 256, 192×192, and 128×128 to conduct
ablation tests on the FaceForensics++ dataset with low
quality. +e results are shown in Table 7. +e size of the
image patches exerts an obvious influence on the perfor-
mance of our method. For the size of 256× 256, our method
including the voting principle achieves the leading perfor-
mance on all datasets, but for the sizes of 192×192 and
128×128, our method offers better performance on only
three datasets.+e impact of the size also differs according to
different tampering methods. For Deepfake, the result for
the size of 192×192 is the best, but for the other three
methods, the results are best for the size of 256× 256. In
general, our method performs best for the size of 256× 256.

4.5.2. Effects of Different Tampering Methods. From Table 3,
it can be concluded that our method has a higher accuracy rate
for the tampered images generated by FaceSwap with different
quality. +is is because FaceSwap has a simpler production
principle and process than the other three methods. +e most
difficult tampering methods to detect for our method are
Deepfake, Neural Textures, and Face2Face on the datasets of

Table 3: Acc score on the FaceForensics++ dataset. LQ represents low quality, HQ represents high quality, and Raw represents raw quality.

Method
Dataset

LQ HQ Raw
DP F2 FS NT DP F2 FS NT DP F2 FS NT

Meso4 [11] 77.68 83.65 79.92 77.74 89.77 94.25 95.50 78.70 96.37 97.95 98.17 93.30
MesoInception4 [11] 74.20 78.75 79.72 67.94 83.74 91.48 94.34 75.06 88.34 97.65 97.81 92.52
Xception [48] 83.70 87.21 83.17 87.90 95.15 97.07 95.96 87.99 98.31 97.75 98.10 96.45
Our method 84.14 97.97 98.88 98.21 95.79 97.11 97.37 84.69 98.72 97.91 98.75 97.33
Our method (voting) 84.14 98.62 99.49 98.90 95.77 97.12 97.37 84.71 98.72 97.92 98.77 98.18
+e bold results show the best.

Table 4: Acc score on the UADFV and Celeb-DF(v2) datasets. C P
and C Q represent the way in which the Celeb-DF dataset is divided
according to the proportional balance and the quantity balance,
respectively.

Method

Dataset

UADFV [23]
Celeb-DF(v2)

[40]
CP CQ

Meso4 [11] 82.67 87.10 83.75
MesoInception4 [11] 96.33 88.10 70.15
Xception [48] 99.33 90.78 89.64
Our method 99.94 92.61 94.94
Our method (voting) 100.00 92.62 94.93
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Figure 5: ROC curves of different methods based on the FaceForensics++ dataset with low quality. (a) Deepfake. (b) Face2Face. (c) FaceSwap.
(d) Neural Textures.

Table 5: Precision (P), Recall (R), and F1 score on the FaceForensics++ dataset with low quality.

Method
P R F1

DP F2 FS NT DP F2 FS NT DP F2 FS NT
Meso4 [11] 77.88 82.71 78.07 80.13 77.32 85.08 83.21 73.77 77.60 83.88 80.56 76.82
MesoInception4 [11] 80.91 87.91 92.49 86.48 63.35 66.68 64.69 42.54 71.06 75.83 76.13 57.03
Xception [48] 82.96 86.01 81.41 85.02 84.82 88.88 85.97 92.01 83.88 87.42 83.63 88.38
Our method 83.36 98.15 98.85 98.34 85.84 97.78 98.91 97.91 84.58 97.97 98.88 98.12
+e bold results show the best.
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low quality, high quality, and raw quality, respectively.
+erefore, different tampering methods should be tested with
different preprocessing operations in practical applications.

4.5.3. Effects of Different Image Modes. In our basic ex-
periment, we have processed all image patches into greyscale
mode. To compare the impacts of different image modes on
the classification performance, we used the image patches of
the RGB mode to conduct a comparative experiment. +e
experiment is performed on the FaceForensics++ dataset
with low quality. Figure 6 shows the results of the com-
parison experiment. It can be determined that the classifi-
cation performance in the greyscale mode is better than that
in the RGB mode for each subdataset, and it is even more
superior than Face2Face and FaceSwap. +is result shows
that our method can find amore suitable feature distribution
in the grey space to distinguish between real and tampered
images. And the reason may be that the grey domain reduces
the relevant semantic features produced by colors compared
to the RGB domain, so that our network can find more
general features.

4.5.4. Effect of Concatenating Features. We use feature
subtraction instead of concatenation in the feature align-
ment module to conduct a comparative experiment, and the
experiment is performed on the FaceForensics++ dataset
with low quality. +e results are shown in Figure 7. It is

obvious that concatenating features is more effective. In fact,
the subtraction operation is more suitable for use in face
recognition tasks with image pairs including similar se-
mantic content. In our task, the face area and the back-
ground area are divergent in semantic content, the effect of
the subtraction operation is greatly reduced, and the effect is
almost completely lost for Face2Face and FaceSwap. +e
concatenation operation allows the fully connected layer to
be classified under richer feature conditions, resulting in
better performance.

Table 6: Comparative analysis of detection performance with recent methods on the low-quality datasets of FaceForensics++ [1]. +e
performances of [19, 25, 28, 39], [50, 51, 52] are obtained from [28], and others are from the original papers, respectively.

Method
Dataset

DP F2 FS NT
Durall et al. [50] 71.69 65.66 65.43 59.34
DSP-FWA [25] 93.60 91.77 90.73 83.15
Liu et al. [51] 92.39 90.67 91.99 84.69
Qian et al. [19] 96.01 93.62 94.33 86.37
Bondi et al. [52] 94.95 91.33 94.26 87.79
Bonettini et al. [39] 96.13 92.93 94.09 88.15
Khalid et al. [14] 88.40 71.20 86.10 97.50
Liu et al. [22] 93.48 86.02 92.26 76.78
Luo et al. [20] 98.60 95.70 92.90 —
Yang et al. [28] 97.88 96.85 96.87 88.47
Our method 84.14 97.97 98.88 98.21
Our method (voting) 84.14 98.62 99.49 98.90
+e bold results show the best.

Table 7: Acc scores of different sizes of image patches based on the FaceForensics++ dataset with low quality.

Method
Dataset

256× 256 192×192 128×128
DP F2 FS NT DP F2 FS NT DP F2 FS NT

Meso4 [11] 77.68 83.65 79.92 77.74 56.16 55.54 61.98 51.81 57.59 56.64 56.26 50.06
MesoInception4 [11] 74.20 78.75 79.72 67.94 76.23 64.25 63.46 71.40 67.97 64.15 70.22 64.41
Xception [48] 83.70 87.21 83.17 87.90 78.47 67.84 71.95 82.86 77.26 61.75 73.86 63.59
Our method 84.14 97.97 98.88 98.21 84.74 66.33 78.52 94.01 76.05 65.18 74.06 79.31
Our method (voting) 84.14 98.62 99.49 98.90 84.74 66.34 78.54 95.74 76.06 65.17 74.15 80.72
+e bold results show the best.
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Figure 6: Results for the impacts of different image modes on
classification performance. +e classification performance in the
greyscale mode is better than that in the RGB mode on all sub-
datasets, especially for Face2Face and FaceSwap.
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4.5.5. Effects of Different Backbones of the Feature Extraction
Module. We chose Xception [48], which is currently the
most widely used network in the field of face forgery de-
tection, as the backbone of the feature extraction module.
However, the backbone of our feature extraction module
based on the Siamese framework can also be some general
classification networks. To explore the universality of our
method, we use VGG13 [53] and ResNet18 [54] to conduct a
comparative experiment: the experiment is performed on
the FaceForensics++ dataset with low quality. As shown in
Figure 8, the overall performance of the detection frame-
work using Xception because of the backbone is slightly
better than that of ResNet18, but slightly worse than VGG13.
+is finding shows to a certain extent that our method still
has the potential to continue to improve and that it can be
adapted to some general classification networks.

+rough these ablation experiments, we explore the
impacts of different conditions on our methods. At the same

time, it can also be learned that, for images and videos with
different resolution and those generated by different forgery
methods, we should use the framework with different details
to achieve the best results. +e generalization performance
of the method will be the focus of future work.

5. Conclusion

+e development of deep learning has significantly im-
proved the quality and efficiency of generating forged face
images and videos. In this paper, we propose an innovative
face forgery detection framework based on the improved
Siamese network, which extracts and aligns the features of
the face area and the background of the image and then
mines the similarity between them to determine the au-
thenticity of the image. +is framework not only offers great
robustness and generalization performance but also makes
full use of the feature information of the image background.
We evaluate our method on several different datasets, thus
proving its effectiveness in practice, especially that it ach-
ieves impressive results on low-quality datasets.
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