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Face Frontalization Using Appearance Flow based

Convolutional Neural Network
Zhihong Zhang, Xu Chen, Beizhan Wang∗, Guosheng Hu, Wangmeng Zuo, Edwin R. Hancock, Fellow, IEEE

Abstract—Facial pose variation is one of the major factors
making face recognition (FR) a challenging task. One popular so-
lution is to convert non-frontal faces to frontal ones on which face
recognition is performed. Rotating faces causes the facial pixel
value changes. Therefore, existing CNN-based methods learn to
synthesize frontal faces in color space. However, this learning
problem in color space is highly non-linear, causing the synthetic
frontal faces to lose fine facial textures. In this work, we take
the view that the nonfrontal-frontal pixel changes are essentially
caused by geometric transformations (rotation, translation, etc)
in space. Therefore, we aim to learn the nonfrontal-frontal facial
conversion in spatial domain rather than the color domain to
ease the learning task. To this end, we propose an Appearance
Flow based Face Frontalization Convolutional Neural Network
(A3F-CNN). Specifically, A3F-CNN learns to establish the dense
correspondence between the non-frontal and frontal faces. Once
the correspondence is built, frontal faces are synthesized by
explicitly ‘moving’ pixels from the non-frontal one. In this way,
the synthetic frontal faces can preserve fine facial textures. To
improve the convergence of training, an appearance flow guided
learning strategy is proposed. In addition, GAN loss is applied to
achieve a more photorealistic face and a face mirroring method
is introduced to handle the self-occlusion problem. Extensive
experiments are conducted on face synthesis and pose invariant
face recognition. Results show that our method can synthesize
more photorealistic faces than existing methods in both controlled
and uncontrolled lighting environments. Moreover, we achieve
very competitive face recognition performance on the Multi-PIE,
LFW and IJB-A databases.

Index Terms—Face frontalization, Face synthesis, Optical flow,
Face recognition

I. INTRODUCTION

FACE recognition (FR) is a topical research direction

in computer vision. Recently, great progress has been

achieved in face recognition using deep learning methods and

large database of labeled face images. However, face recog-

nition is still a challenging problem in uncontrolled lighting

environments, and in particular, in the presence of large pose

variations. Specifically, strong pose variations significantly

decrease the accuracy of the evaluated methods. As verified by

[1], [2], [3], [4], [5], [6], pose is a major factor for reducing the
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accuracy. As a result, Pose Invariant Face Recognition (PIFR)

has attracted great interest. Research into PIFR can be cate-

gorised into two groups a) Latent Space Learning (LSL) and

b) Analysis-by-Synthesis (AbS). LSL methods are essentially

general metric learning techniques from computer vision. Dur-

ing training, LSL methods project the features extracted from

input images under various poses into a common space [7],

[8] where the image features of the same identity are clustered

but otherwise are far away from one another. During testing,

the test face features are mapped to the same latent space

for recognition. The features can be hand-crafted or learned.

Hand-crafted features (SIFT [9], HOG [10], Gabor [11], LBP

[12], etc.) aim to capture pose-invariant information, but the

performance is not that promising. Learning-based methods,

mainly deep learning methods [13], [14], [15], [16], [17],

can achieve more robust PIFR performance across different

poses. Hand-crafted features behave like the features from

shallow layers of deep learning, which can perform low-level

of robustness. Deeper layers can capture more abstract and

robust information across different poses, which hand-crafted

features cannot. Although LSL methods achieve promising

performance, PIFR is conducted in a latent space, which is

like a black box and makes the intermediate representation

less interpretable. In the real world, the interpretability or

visualization of the recognition process is important in many

practical applications, such as law enforcement and visually

identifying suspects.

To solve the interpretability problem of LSL, in contrast,

AbS methods explicitly convert a face under arbitrary pose

to a canonical view (frontal face) as the intermediate repre-

sentation. Then face recognition can be performed with the

canonical view. In this way, it is clear that the pose problem is

solved by explicit frontalization, which is more interpretable.

This frontalization process is also called pose normalization.

AbS methods can be categorised as a) 3D methods (AbS-

3D) [18], [19], [20], [21], [22], [23], [24], [25], [26] and b)

2D methods (AbS-2D) [27], [28], [29], [30], [31]. AbS-3D

methods fit a 3D model, typically a 3D Morphable Model

(3DMM) [32], to an input face image with arbitrary pose.

After fitting, the parameters of shape, texture, pose (camera)

and illumination can be recovered. By re-setting the pose

parameters and keeping other parameters fixed, the input

face can be re-rendered in a frontal view. Although AbS-

3D methods can intrinsically handle pose transformations, the

fitting process is usually slow and the performance is highly

dependent on the accuracy of facial landmark detection.

Unlike AbS-3D methods, AbS-2D methods perform the

frontalization in 2D space without using 3D templates (mod-
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els). AbS-2D methods can be either (1) linear or (2) non-linear.

For linear methods, the spatial projection from non-frontal face

to a frontal one is achieved by linear mappings [33], [34], [35].

For non-linear methods, the projection is usually achieved by

deep learning methods such as CNN (convolutional neural

network). In fact, CNN methods frequently use non-frontal and

frontal face pairs to learn a non-linear projection by training

an encoder-decoder architecture [36], [29], [31], [30]. Specif-

ically, the non-frontal faces are usually first fed into a stack

of convolution layers (encoder) with decreasing resolutions

to generate compact latent representations (codes). Then the

codes are passed through a stack of deconvolution layers (de-

coder, usually symmetrical to the encoder) to generate the de-

sired frontal face images. These CNN-based methods achieve

better performance than the linear methods. However, they

generally encode the input image into pooled representation.

The reconstructed frontal face is then obtained by decoding

the pooled representation (bottleneck), leading to detail-losing

and blurry results [29], [31], [30]. Even adversarial loss can

be introduced to improve visual quality, it cannot ultimately

address the blurry reconstruction issue.

To solve the blurry reconstruction problem, recently, the

novel flow-based image synthesis approaches have attracted

considerable attention [37], [38], [39]. The key idea under-

pinning these methods is to synthesize the desired image

by ‘moving’ pixels from single or multiple input images

instead of synthesizing them. For example, [37] proposed a

style transfer algorithm by establishing dense correspondences

between the input and the sample. In [38], CNN is trained to

explicitly infer the appearance correlation between different

views of objects.

Inspired by these flow-based methods, in this paper, we

propose an Appearance Flow based Face Frontalization Con-

volutional Neural Network (A3F-CNN), which aims to per-

form face frontalization by learning the dense correspondence

between the non-frontal and frontal face images. Once such

correspondence is built or learned, the frontal face image can

be naturally synthesized by moving pixels from its non-frontal

counterpart. To make the generated face more photorealistic,

we adopt a Generative Adversarial Network (GAN) to con-

strain the recovery process by incorporating prior knowledge

of the distribution of frontal faces. Since pose transformation

is highly non-linear, we propose an appearance flow guided

learning strategy. Specifically, we first apply the SIFT-FLOW

algorithm [40] to establish coarse correspondences between

non-frontal and frontal faces offline. Then these prebuilt

correspondences are used to guide the training of A3F-CNN,

making it converge quickly to desired solution. By ‘moving’

pixels rather than ‘synthesizing’ them, A3F-CNN can generate

frontal faces with much richer details than CNN-based pixel

synthesis methods [36], [29], [31], [30]. In addition, one of

the major problems in face frontalization is to recover the self-

occluded areas of a face, particularly, in the presence of large

pose variations. Clearly, the perfect recovery of pixels in the

self-occluded area from a single non-frontal face is intractable

since this information is irreversibly lost. Fortunately, these

pixels can be ‘estimated’ or ‘guessed’ by invoking facial

symmetry. In fact, A3F-CNN handle large pose variations

by only synthesizing the visible half part of face, and then

generating the full face by concatenating the visible half face

with its mirror image.

Our contributions can be summarized as:

• A novel appearance flow based end-to-end face frontal-

ization network, A3F-CNN, is proposed. Unlike existing

methods [36], [29], [31], [30], which perform frontal-

ization learning in a color space, we perform learning

in the spatial domain. Instead of reconstructing frontal

faces by ‘synthesizing’ pixels from a black box [36], [29],

[31], [30], A3F-CNN generates the desired frontal face

by ‘moving’ pixels from their positions in a non-frontal

face to those in a frontal pose. In this way, A3F-CNN can

effectively preserve facial texture details. In addition, a

GAN is adopted to produce photorealistic face images

and facial symmetric information is used to solve the

self-occlusion problem.

• To effectively train A3F-CNN, we propose an appearance

flow guided learning strategy. Specifically, we first apply

the SIFT-FLOW algorithm offline to establish coarse

correspondences between non-frontal and frontal face

images. Then the prebuilt correspondences are used to

guide the training.

• A3F-CNN essentially learns the underlying spatial trans-

formation on the 2D plane without accurately detected

landmarks which are needed by AbS-3D methods.

II. RELATED WORK

Face Frontalization, or frontal view synthesis, aims to

synthesize a frontal face from a face image with arbitrary

pose variation. Many methods have been proposed to solve

the frontalization problem. For example, Sagonas et al. [41]

propose a constrained low-rank minimization model to jointly

reconstruct the frontal face and localize landmarks. Hassner et

al. [18] effectively employ a shared reference 3D face model

for face frontalization. Recently, many researchers have pro-

posed Convolutional Neural Network (CNN) based methods

[14], [15], [13], [36], [28], [29] for joint face frontalization

and representation learning, and they have achieved impressive

improvement in performance. For instance, Kan et al. [36]

progressively rotate a non-frontal face image to a frontal one

through multiple stacked auto-encoders. Yin et al. [30] propose

FF-GAN, where 3DMM was incorporated into the GAN ar-

chitecture to provide shape and appearance priors. Huang et al.

[31] use a two-pathway GAN architecture for simultaneously

perceiving global structures and local details. Tran et al. [29]

propose an encoder-decoder network, named DR-GAN, to

simultaneously learn a pose-invariant face representation and

synthesize the frontal face. Specifically, DR-GAN can take

multiple images as the inputs to synthesize a frontal face,

which differentiates it from its counterparts.

Dense Correspondence, is a non-trivial problem, and aims

to establish pixel-level correspondence across images. Most

typically it operates with two images. Previously, researchers

construct the correspondences between two images under the

brightness constancy assumption [42], [43]. Unfortunately, this

has been proven to be vulnerable to variations caused by
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lighting, perspective and noise [44]. Middle-level features,

such as SIFT [9] and HOG [10], can be used as a more robust

image representations, and achieve great success in many

applications [45], [46], [47]. For example, Liu et al. propose

SIFT-FLOW [40] which aligns two images from different 3D

scenes by pixel-wise matching SIFT features between them.

Most recently, a variety of techniques [37], [38], [39], [48] aim

to estimate correspondence between pair or multiple images

using CNNs, which can learn more robust features than hand-

crafted ones such as SIFT, HOG, etc.

Learning Geometric Transformations for warping gen-

erally can result in image with fine details. In [49], spatial

transformer networks (STNs) are suggested to learn a spatial

mapping. Subsequently, CNN models are further exploited

for dense flow estimation [38], [39], [50]. These methods

generally adopt an encoder-decoder architecture to predict

dense flow. The flow networks are then learned by minimizing

the pixel loss enforced on the warped and the ground-truth

images. However, due to that face image usually is smooth, the

flow network by pixel loss intends to be trapped into undesired

local minima for face frontalization. In this work, in addition

to pixel loss, we further incorporate dense correspondence loss

by middle-level features to address this issue.

Generative Adversarial Network (GAN), introduced by

Goodfellow et al. [51], has recently attracted attention in the

field of deep learning. The key idea underpinning GAN is

to train two networks, i.e. a generator and a discriminator,

in turn in an adversarial way. Specifically, the generator is

trained to produce a synthetic photorealistic image to fool the

discriminator, while the discriminator learns to distinguish the

synthetic image from the real one. With a mini-max two-player

game, the generator and discriminator compete with each other

and can mutually improve performance. Since GAN is able to

generate photorealistic images with plausible high frequency

details, it is used in a wide range of applications, such as image

generation [52], [53], super-resolution [54], style transfer [55],

and face hallucination [56].

III. METHODOLOGY

Assume that we have a pair of images (IP , IF ), where

IP and IF represent two face images with same identity but

viewed from non-frontal and frontal directions, respectively.

For simplicity, we also assume both images are of the same

size of H ×W × C with H the height, W the width, C the

number of color channels. In this work, we aim to synthesize

a frontal face ÎF with rich facial texture details from a non-

frontal face IP . At the same time, the identity information

should also be well preserved.

In this section, we propose Appearance Flow based Face

Frontalization Convolutional Neural Network (A3F-CNN),

which incorporates flow based dense correspondence into deep

learning based frontalization. Specifically, we reconstruct the

frontal face by ‘moving’ pixels from the input non-frontal face

to the target one, rather than ‘generating’ pixels on the fly.

The pixel movement can guarantee that the synthetic frontal

faces contain fine details. This pixel movement is achieved

by a network, Generator, which learns the pixel-wise spatial

transformation between the non-frontal face and the frontal

one. Additionally, adversarial loss is adopted to generate pho-

torealistic output. The architecture of the network is detailed in

Section III-A. This frontalization operation (‘pixel movement’

process) is highly non-linear, causing difficulties with network

training. In this work, we propose an appearance flow guided

learning strategy to alleviate the training difficulty, and which

is detailed in Section III-B. Subsequently, to solve the self-

occlusion problem in face frontalization, a symmetry based

face mirroring method is introduced in Section III-C. Finally,

the synthesis loss function of our method is detailed in Section

III-D. The general framework of the proposed method is shown

in Fig. 1.

Fig. 1. The general framework of the proposed method. First, coarse dense
correspondences between non-frontal and frontal faces are offline generated
by using SIFT-FLOW algorithm. Then, these pre-computed coarse dense
correspondences can be used to guide the training of A3F-CNN.

A. Network Architecture

The generator of A3F-CNN is illustrated in Fig. 2 where

the output size of each block is labeled. It comprises a) an

encoder, b) a decoder and c) a sampling operator. Specifically,

the encoder takes a non-frontal face image as input, followed

by several encoder blocks. Each encoder block consists of a

strided convolution layer that reduces the spatial size and a

residual block [57] that has strong non-linear learning capacity.

The decoder takes the output of encoder as input, followed by

several decoder blocks, ending with a convolution layer that

generates the sampling coordinates. Similarly, each decoder

block consists of a deconvolution layer [58] that magnifies the

size of feature maps and a residual block. Finally, the frontal

face image is generated by sampling pixels from the input

using a bilinear sampling method according to the estimated

sampling coordinates. We adopt PRelu [59] as the activation

function for each convolution/deconvolution layer except for

the final one, where tanh is applied to normalize the output

(image pixel coordinates). Batch normalization [60] is also

used after each convolution/deconvolution layer except the first

one. The architecture of our generator is detailed in Table I.

Note that the generator consists of three components: an

encoder, a decoder and a bilinear sampling operation. Given

the input IP , we denote by G(IP ) the output of whole gener-

ator, i.e., the synthesized frontal face. And C(IP ) denotes the

output of decoder, which is actually the predicted sampling
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TABLE I
THE DETAILED STRUCTURE OF GENERATOR. RB REPRESENTS RESIDUAL

BLOCK [57].

Encoder Decoder

Layer Filter/Strides Layer Filter/Strides

Conv0 5× 5/1 DeConv3 5× 5/3
Conv1 3× 3/2 RB5 3× 3/1
RB1 3× 3/1 DeConv2 3× 3/2

Conv2 3× 3/2 RB6 3× 3/1
RB2 3× 3/1 DeConv1 3× 3/2

Conv3 3× 3/2 RB7 3× 3/1
RB3 3× 3/1 DeConv0 3× 3/2

Conv4 5× 5/3 RB8 3× 3/1
RB4 3× 3/1 Conv5 5× 5/1

coordinates. Besides, Ci(I
P ) represents the value of C(IP )

at position i. The bilinear sampling operation, introduced by

[49], has the form

BSi(I
P , Ci(I

P )) =
∑

j∈N(Ci(IP ))

IPj max(0, 1− |Cx
i (I

P )− xj |)

max(0, 1− |Cy
i (I

P )− yj |)

(1)

where N(Ci(I
P )) represents the set of 4 neighbours of

Ci(I
P ), (xj , yj) denotes the absolute coordinates of the pixel

at position j. Note that this sampling operation is differen-

tiable, which means that the whole network can be trained in

an end-to-end manner.

To generate photorealistic faces, adversarial loss is adopted

to guide the synthetic face following the target distribution

of real frontal faces. The structure of the Discriminator is

similar to CASIA-Net [61] except that Max-Pooling and

Fully Connected layers are replaced with convolution layers

according to [62]. In addition, batch normalization [60] is used

before each convolutional layer except the first one. Leaky

ReLU [63] with slope 0.2 is adopted as the activation function

after each convolution layer except for the last one.

B. Appearance Flow Guided Learning Strategy

Unlike many CNN-based methods which are designed to

generate the reconstruction image directly [36], [29], [31],

[30], A3F-CNN only learns the spatial transformation guided

by optical flow. The learning of A3F-CNN is highly non-

linear and is easily trapped into local minima. Empirically,

we find that the training of A3F-CNN has a high probability

to fail without proper initialization. To solve this problem,

we adopted an appearance flow guided learning strategy.

Specifically, offline processing is first applied to learn the

‘coarse’ dense correspondence between input (non-frontal) and

output (frontal) faces. This ‘coarse’ dense correspondence can

guide the network training to quickly converge to a satisfying

point. In this work, this correspondence is achieved by using

SIFT-FLOW [40] approach in an offline fashion.

SIFT-FLOW was proposed as an image alignment method,

aiming to align an image to its nearest neighbours in a large

image corpus containing a variety of scenes. The SIFT-FLOW

algorithm consists of two components: pixel-wise SIFT feature

extraction and matching. Although the original SIFT descriptor

[9] is a feature representation method consists of both feature

extraction and detection, only the feature extraction component

is used in SIFT-FLOW algorithm. Compare with the original

optical flow methods that build pixel-level correspondence

between two images, the SIFT descriptor in SIFT-FLOW

can characterize local image structures and encode contextual

information, which contributes to achieve a robust matching

across various scene or object appearances.

The design of matching objective function of SIFT-FLOW is

based on two criteria: (1) the SIFT feature should be matched

along the flow vector and (2) the flow field should be smooth

except on object boundaries. Let s1 and s2 represent two SIFT

images, and denote the coordinate of image by p = (x, y),
denote the flow vector at position p by w(p) = (u(p), v(p)),
the objective function of SIFT-FLOW is formulated as follow:

E(w) =
∑

p

min(‖s1(p)− s2(p+ w(p))‖1 , t)+

∑

p

η(|u(p)|+ |v(p)|)+

∑

p,q∈ǫ

(min(α|u(p)− u(q)|, d)+

min(α|v(p)− v(q)|, d))

(2)

where η and α are weighting parameters, t and d denote

thresholds. It is clear that this objective function consists of

three components: data term, small displacement term and

smoothness term (or spatial regularization term). The data term

constrains the SIFT features to be matched along with the flow

vector w(p). The small displacement term limits the size of

flow vectors, and the smoothness term requires the flow vector

of adjacent pixels to be similar. By optimizing this objective

function, the correspondence between two images can be esti-

mated. Fig. 3 shows two examples of dense correspondences

generated by SIFT-FLOW algorithm.

In A3F-CNN, SIFT-FLOW creates the ‘coarse’ correspon-

dence between input and target synthetic images. This ‘coarse’

correspondence is then used to guide the optimization (synthe-

sis) process to avoid trapping into local minima. This process

is detailed in Section III-D2.

Fig. 3. Dence correspondence established by SIFT-FLOW approach.

C. Symmetry Based Face Mirroring Method for Self-

Occlusions

Another challenge in face frontalization is self-occlusion.

In particularly, in the presence of large pose variations. This
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Fig. 2. General structure of generator.

problem exists in all the frontalization methods including our

flow-based frontalization. Clearly, it is impossible to perfectly

recover the frontal face from a non-frontal one since the

information in self-occluded areas is irreversibly lost. Usually,

we can only ‘guess’ the pixels in the occluded area from

the unoccluded area based on the assumption that faces are

roughly symmetrical. In this work, we adopt a face mirroring

method to solve the self-occlusion problem by exploiting the

facial symmetry prior [64], [65], [21], [66]. As illustrated in

Fig. 4, A3F-CNN just recovers half of the frontal face, then

the other half is mirrored from the unoccluded half face.

D. Loss Functions

In our work, we define the objective function as a weighted

sum of 4 individual loss functions,

L = Lpixel + λ1Ldc + λ2Lip + λ3Ladv (3)

where Lpixel, Ldc, Lip and Ladv are the pixel-wise loss, the

dense correspondence loss, the identity preserving loss and the

adversarial loss, respectively. The details of these 4 losses are

as follows.

1) Pixel-wise Loss: As ℓ2 loss tends to generate blurry

output, we adopt the ℓ1 loss to better preserve high frequency

signals. The formulation of the pixel loss term, or fidelity term,

is as follows,

Lpixel =
1

H ×W

∥

∥G(IP )− IF
∥

∥

1
(4)

Note that in case of large pose difference, the pixel-wise loss

is only calculated in half of the facial image due to the other

half will be recovered by the mirroring, as stated in Section

III-C.

2) Dense Correspondence Loss: The coarse dense corre-

spondences between the non-frontal and frontal faces that are

generated offline by the SIFT-Flow [40] method are used to

guide the training through the dense correspondence loss term.

Ldc =
1

H ×W

∥

∥C(IP )−DC(IP , IF )
∥

∥

1
(5)

where DC(IP , IF ) indicates the prebuilt dense correspon-

dence between IP and IF . This term constrains the network

to learn the appearance flow from non-frontal input to frontal

output guided by a dense correspondence that is generated

offline. Note that we still adopt the ℓ1 loss in order to tolerate

the imprecise prebuilt correspondences.

3) Identity Preserving Loss: To preserve the identity while

synthesizing frontal face, a pre-trained face recognition net-

work is used to apply content loss [67] between the synthetic

image and its ground-truth counterpart. To be more specific,

features extracted from the synthetic image are required to be

close to the features from ground-truth one, so as to obtain an

identity preserving ability. The identity preserving loss term

is as follows,

Lip =
1

#F

∥

∥F (G(IP ))− F (IF )
∥

∥

2
(6)

where #F represents the feature dimension, and F (∗) is the

feature extractor of the pre-trained recognition network.

4) Adversarial Loss: In order to generate photorealistic

frontal faces, we also adopt an adversarial loss, which aims

at forcing the synthetic frontal face image to reside on the

manifold of real frontal face images. In this work, we use

Least Square GAN [68] since it is more stable than the original

GAN [51]. The adversarial loss term is as follows,

Ladv = (D(G(IP ))− c)2 (7)

where c is set to be 1 in our work.

IV. EXPERIMENTS

In this section, we first describe the detailed experimental

settings, including the face databases, hyper-parameters used

in experiments. Then we present some qualitative results, i.e.,

the visualization of our synthetic frontal pose face image. We

also quantitatively evaluate the performance of the proposed

method on face recognition, demonstrating that A3F-CNN can

generate highly discriminative features for face recognition.

Finally, an analysis is conducted to study the effect of different

components of A3F-CNN.

A. Experimental Settings

The face databases used in this experiment include:

• Multi-PIE [69], the largest database for evaluating face

recognition under pose, illumination and expression vari-

ations in controlled environments. It contains 750, 000+
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Fig. 4. Face mirror method for large pose variations.

images taken from 337 subjects, with 13 poses and 20

illuminations.

• CASIA-WEBFACE [61], a popular face database for

training deep face models, consisting of 494, 414 images

from 10, 575 subjects.

• LFW [70], a well-known face database for evaluating the

performance of face recognition in the wild, consisting of

13, 233 images collected from the web. In its verification

protocols, the test set consists of 10 folds, each with 300
matched pairs and 300 unmatched pairs.

• IJB-A [71], also known as IARPA Janus Benchmark

A, is a challenging large pose face database. It has 5, 396
images and 20, 412 video frames for 500 subjects in

uncontrolled settings.

The experiments consist of two parts: a) synthesis and b)

recognition. For synthesis, the proposed synthesis method is

trained on database (Multi-PIE), and validated on the Multi-

PIE, LFW and IJB-A databases. Following the evaluation

settings in [29], we use a subset of Multi-PIE with all four

sessions, 337 subjects, 9 poses from −60◦ to 60◦ and 20
illuminations. The first 200 subjects are used for training while

the remaining 137 subjects are for testing. The number of

images used for training and testing are 299, 340 and 153, 180,

respectively. For recognition, the face recognition network,

CASIA-NET, is trained using the whole CASIA-WEBFACE

database and the aforementioned training set of Multi-PIE. The

face recognition performance is tested on the Multi-PIE, LFW

and IJB-A databases. In addition, to determine whether to use

face mirroring method (≥ 45◦), the pose of the face is first

estimated using method introduced in [72].

All the images used in experiment are cropped and scaled

to size of 96× 72× 3 (H ×W × C), while the pixel values

are normalized into the range of [−1, 1]. We train our network

using the Adam [73] optimizer with a learning rate of 10−4.

Other hyper-parameters are empirically set as λ1 = 0.1, λ2 =
10−5, λ3 = 10−4, where λ1, λ2 and λ3 are introduced in III-D.

Our model is trained on a NVIDIA Tesla K80 GPU, but only

one of two cores is used. The training lasts 100, 000 iterations,

which takes around 20 hours. In the testing phrase, processing

each image takes about 0.0003 second.

B. Qualitative Evaluation-Face Synthesis

Many face frontalization methods suffer from the problem

of missing high frequency facial details even under small pose

variations. As a result, they tend to generate blurry images

lacking fine details. In this section, we demonstrate that A3F-

CNN can generate frontal faces with rich texture details by

moving pixels instead of synthesizing them. Fig. 5 shows

a comparison between A3F-CNN and several state-of-the-art

face frontalization methods [74], [18], [31], [29], [30], where

GT represents ground-truth. It is clear that the traditional AbS-

3D methods [74], [18] cannot faithfully recover the shape

of the face especially in self-occluded areas. Moreover, the

synthetic faces contain many strong artifacts. Not surprisingly,

the images generated by most of CNN-based methods [29],

[30] lack of fine facial details partially due to the bottleneck

of the encoder-decoder network. In contrast, A3F-CNN can

generate photorealistic synthetic face image as well as preserve

texture details. Although the recently proposed TP-GAN [31]

can also synthesize face images with rich textures, it requires

main facial components (two eyes, nose and mouth) of the face

to be accurately located, which means that the performance

of landmark detection algorithm can significantly affect the

quality of synthesized frontal face.

To analyze the effectiveness of our method on different

poses, more results are illustrated in Fig. 6. We can see that our

method can effectively recover the frontal view of face in small

pose cases. While in large pose cases, since the self-occlusion

problem is serious, the frontal face is concatenated by visible

half part of face and its mirrors, as introduced in Section III-C.

Even so, A3F-CNN can still generate photorealistic faces.

As our synthesis model is trained using the images in a

controlled environment (Multi-PIE), it is interesting to know

whether the trained model can generalize well to faces in

an uncontrolled environment. To evaluate this generalization

capacity, we test A3F-CNN on the LFW and IJB-A datasets.

As shown in Fig. 7, A3F-CNN can also recover photorealistic

frontal faces from faces in the wild, illustrating the strong

generalization capacity of A3F-CNN.

Fig. 8 shows pixel correspondences predicted by the Gen-

erator. It is obvious that pixels of synthetic frontal face are

mainly sampled from their counterparts non-frontal input fa-

cial images. In other words, A3F-CNN has essentially learned
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(a) Input (b) [74] (c) [18] (d) [31] (e) [29] (f) [30] (g) Ours (h) GT

Fig. 5. Comparison with state-of-the-art face frontalization methods.

(a) 60
◦ (b) 45

◦ (c) 30
◦ (d) 15

◦ (e) −15
◦ (f) −30

◦ (g) −45
◦ (h) −60

◦

Fig. 6. Face frontalization from arbitrary poses in constrained environment on Multi-PIE.
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Fig. 7. Face frontalization from arbitrary poses in the wild on LFW (Columns 1-3) and IJB-A (Columns 4-6).

the underlying pose transformation rule between frontal and

non-frontal faces. Note that A3F-CNN does not rely on any

3D knowledge; the training is conducted through data-driven

learning on the 2D plane alone.

Fig. 8. Dense correspondence predicted by our method.

C. Face Recognition

To quantitatively demonstrate that our proposed method

can generate identity preserving faces, we first conduct face

recognition on Multi-PIE. In this experiment, we randomly

select exactly one image with a frontal view for each subject

in the testing set for used as a gallery, leaving the remaining

as probe images. Each image is first passed into A3F-CNN to

generate the corresponding frontal view. Then deep features

are extracted from the generated image using a pre-trained

face recognition network (CASIA-NET). Rank-1 recognition

accuracy is evaluated with a cosine-distance metric. Evaluation

results are shown in Table II. Here A3F-CNN achieves the

best performance for all poses. The favorable performance

of our method indicates that our model can synthesize more

photorealistic and identify-preserving frontal faces.

In addition, we also evaluate the face recognition perfor-

mance of A3F-CNN on LFW and IJB-A databases, where

faces are taken from an uncontrolled environment. As shown in

Table III, our method achieves the best mean face verification

accuracy in comparison to its counterparts, demonstrating that

it effectively preserves identity-related texture information.
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TABLE II
COMPARISON OF STATE-OF-THE-ART METHODS IN TERMS OF

RECOGNITION ACCURACY (%) ON MULTI-PIE.

Methods ±15
◦ ±30

◦ ±45
◦ ±60

◦ mean

Zhu et al. [15] 90.7 80.7 64.1 45.9 70.3
Zhu et al. [13] 92.8 83.7 72.9 60.1 77.4
CFP [14] 95.0 88.5 79.9 61.9 81.3
DR-GAN [29] 94.0 90.1 86.2 83.2 88.4
FF-GAN [30] 94.8 93.4 91.0 87.0 91.5
TP-GAN [31] 98.7 98.1 95.4 87.7 95.0
CASIA-NET [61] 98.1 97.5 95.1 90.5 95.3

A3F-CNN 98.7 98.9 95.8 92.7 96.5

Moreover, Table IV shows the verification and identification

performance on IJB-A database. On both verification and

identification test, our method achieves consistently better

results than many state-of-the-art methods.

TABLE III
FACE VERIFICATION RESULTS ON LFW.

Methods ACC(%) AUC(%)

Hassner et al. [18] 93.62± 1.17 98.38± 0.06
HPEN [74] 96.25± 0.76 99.39± 0.02
FF-GAN [30] 96.42± 0.89 99.45± 0.03
CASIA-NET [61] 96.43± 0.97 99.29± 0.32

A3F-CNN 96.63± 0.99 99.29± 0.42

TABLE IV
PERFORMANCE COMPARISON ON IJB-A DATABASE.

Methods
Verification Identification

FAR=0.01 FAR=0.001 Rank-1 Rank-5

OpenBR[71] 23.6± 0.9 10.4± 1.4 24.6± 1.1 37.5± 0.8
GOTS[71] 40.6± 1.4 19.8± 0.8 44.3± 2.1 59.5± 2.0
Wang[75] 72.9± 3.5 51.0± 6.1 82.2± 2.3 93.1± 1.4
PAM[72] 73.3± 1.8 55.2± 3.2 77.1± 1.6 88.7± 0.9
DCNN[76] 78.7± 4.3 - 85.2± 1.8 93.7± 1.0
DR-GAN[29] 77.4± 2.7 53.9± 4.3 85.5± 1.5 94.7± 1.1
CASIA-NET 78.0± 1.9 57.3± 9.1 91.8± 1.9 96.1± 1.0

A3F-CNN 80.4± 3.3 60.0± 8.6 92.2± 2.3 97.4± 0.9

D. Ablation Study

In this section, we study the effect of the various model

components used in our work, including a) the appearance flow

guided learning strategy, b) the ℓ1 pixel loss term, c) the face

mirroring method for self-occlusions and d) the adversarial

loss.

Appearance Flow Guided Learning Strategy: To validate

the effectiveness of the proposed appearance flow guided

learning strategy, we train the A3F-CNN directly without

a dense correspondence loss term for comparison, and the

pixel loss was monitored during training. The comparison of

pixel loss with and without dense correspondence guidance

is illustrated in Fig. 9, while the corresponding frontalization

results are shown in Fig. 10. The learning without dense corre-

spondence guidance obviously becomes trapped into undesired

local minima, and the trained model can only roughly generate

a blurry face rather than a photorealistic one. Fig. 11 shows

the predicted dense correspondence by model trained without

Ldc. It is clear that the prebuilt coarse dense correspondence is

essential to assist the network to avoid being trapped in local

minima.

Fig. 9. The pixel loss values during training. The blue and red curves
represent the pixel loss values of network trained with and without dense
correspondence loss term, respectively.

Fig. 10. Synthesis results without (middle row) and with (last row) dense
correspondence constraint.

Fig. 11. Dense correspondence predicted by method trained without Ldc.
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Fig. 12. Comparison of face synthesis results with l2 (first row) and l1
(second row) loss terms. While the last row represents the ground truth.

Fig. 13. Comparison of face synthesis results without (middle row) and with
(last row) concatenate process. While the first row represents the input.

ℓ1 vs. ℓ2 Pixel-wise Loss: ℓ1 loss and ℓ2 loss are two of

the most commonly used fidelity terms in image synthesis.

As discussed in [77], ℓ2 loss suffers from several well-

known limitations in image synthesis. For example, the use

of ℓ2 loss assumes that the noise is independent of the local

characteristics of the image, which is usually not valid in face

synthesis. To qualitatively compare the synthetic results under

ℓ2 loss with our ℓ1 loss, we train a model where the fidelity

term is replaced by the ℓ2 loss term, while the training strategy

is kept the same for a fair comparison. As shown in Fig.

12, images generated by the ℓ2 loss are relatively blurry and

contain more visible artifacts. In contrast, the model trained

using the ℓ1 loss can better maintain high frequency details

and the synthetic faces are more similar to the ground-truth

ones.

Face Mirroring Method: To handle the self-occlusion

problem for large pose variations, we adopt a face mirroring

method that concatenates the visible half face with its mirror

image. To demonstrate the effectiveness of the face mirroring

method, we compare the faces generated with and without

the mirroring processing under large pose variations. The

results are shown in Fig. 13, where the last row represents

the synthetic faces without mirroring processing. It is clear

that given a single non-frontal face with large pose, the self-

occluded part is rather difficult to recover. In contrast, the face

mirroring method uses the visible part to recover the occluded

part, generating more realistic faces (middle row).

Adversarial Loss: In order to generate more photorealistic

images, we apply GAN through the adversarial loss term,

Fig. 14. Comparison of face synthesis results without (first row) and with
(second row) adversarial learning. While the last row represents the ground
truth.

aiming at forcing the synthetic faces to match the target dis-

tribution of real frontal ones. To show the effect of adversarial

loss, we train the model without the adversarial loss term for

comparison. As shown in Fig. 14, faces generated by the model

trained without the adversarial loss term (the first row) contain

more artifacts. In contrast, adversarial loss can successfully

suppress artifacts, making the synthetic images (the second

row) more photorealistic.

Quantitative results: Finally, we quantitatively analyze the

effect of each component. We first train A3F-CNN without

certain component and then evaluate the trained model in

terms of recognition accuracy on Multi-PIE. The result is

shown in Table V. We can find that the model trained with

ℓ2 pixel loss instead of ℓ1 achieves comparable performance

with original A3F-CNN. The same conclusion can be drawn

by model trained without adversarial learning. This suggests

that the ℓ2 pixel loss and adversarial learning have limited

effect on recognition. In contrast, the performance of models

trained without Ldc and mirroring method drop significantly.

That is not surprising. As discussed above, without these two

components, the training can easily trap into local minima and

fail to generate realistic faces.

TABLE V
ABLATION STUDY IN TERMS OF RECOGNITION ACCURACY (%) ON

MULTI-PIE.

Methods ±15
◦ ±30

◦ ±45
◦ ±60

◦ mean

w/o Ldc 95.3 94.3 92.1 87.3 92.3
ℓ2 pixel loss 98.5 98.0 96.1 92.9 96.4
w/o mirroring method 98.7 98.9 92.3 88.5 94.6
w/o Ladv 98.5 98.2 95.6 92.9 96.3

A3F-CNN 98.7 98.9 95.8 92.7 96.5

V. CONCLUSIONS AND DISCUSSIONS

In this work, we have proposed a face frontalization method,

which we refer to as Appearance Flow based Face Frontal-

ization Convolutional Neural Network (A3F-CNN). Instead

of directly estimating pixel values as alternative CNN-based

methods do, A3F-CNN is trained to learn the dense corre-

spondence between non-frontal and frontal face images, while

the desired output is synthesized by sampling pixels from the

input. In addition, an appearance flow guided learning strategy
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is introduced to alleviate the training problem together with

a face mirroring method which is used to handle the self-

occlusion problem. Compared to competing methods, A3F-

CNN can generate frontal faces with rich texture details as

well as preserve identity information. However, A3F-CNN has

relatively weak capacity for face frontalization with extreme

poses (i.e., profile faces). In this case the facial textures

in many major facial regions (e.g., eyes, mouth, etc.) are

totally different in profile and frontal face images. Another

weakness of A3F-CNN is that the boundary between face and

background in the synthetic images tend to be blurred. This

is because the correspondence of pixels around the boundary

can vary widely, which confounds the recovery process. De-

spite these, A3F-CNN can still be seen as a powerful face

frontalization method due to its detail preserving capability.
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