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Abstract

In this paper, we study face hallucination, or synthesizing a high-resolution face image from

an input low-resolution image, with the help of a large collection of other high-resolution face

images. Our theoretical contribution is a two-step statistical modeling approach that integrates

both a global parametric model and a local nonparametric model. At the first step, we derive a

global linear model to learn the relationship between the high-resolution face images and their

smoothed and down-sampled lower resolution ones. At the second step, we model the residue

between an original high-resolution image and the reconstructed high-resolution image after

applying the learned linear model by a patch-based non-parametric Markov network, to capture

the high-frequency content. By integrating both global and local models, we can generate

photorealistic face images. A practical contribution is a robust warping algorithm to align

the low-resolution face images to obtain good hallucination results. The effectiveness of our

approach is demonstrated by extensive experiments generating high-quality hallucinated face

images from low-resolution input with no manual alignment.



1. Introduction

Many computer vision tasks require inferring a missing high-resolution image from the low-

resolution input. Of particular interest is to infer high-resolution (abbr. high-res) face images

from low-resolution (abbr. low-res) ones. This problem was introduced by Baker and Kanade

[1] as face hallucination. This technique has many applications in image enhancement, image

compression and face recognition. It can be especially useful in a surveillance system where

the resolution a of face image is normally low in video, but the details of facial features which

can be found in a potential high-res image may be crucial for identification and further analysis.

However, hallucinating faces is challenging because people are so familiar with the face. A

small error, e.g. an asymmetry of the eyes, might be significant to human perception, whereas

for super resolution of generic images the errors in textured regions, e.g. leaves, are often over-

looked. This specialized perception of faces requires that a face synthesis system be accurate

at representing facial features. A similar problem was encountered with a face cartoon system

[7].

We propose that a successful face hallucination algorithm should meet the following three

constraints:

(a) Data constraint. The result must be close to the input image when smoothed and down-

sampled.

(b) Global constraint. The result must have common characteristics of a human face, e.g.

eyes, mouth and nose, symmetry, etc. The facial features should be coherent.

(c) Local constraint. The result must have specific characteristics of this face image, with

photorealistic local features.

The first requirement can easily be met. For example, it can be simply formulated as a linear

constraint on the result. The second and third constraints are more difficult to formulate, but

it is important to satisfy all the three requirements in order to hallucinate faces well. Without

constraints on specific face features, the result can be too smooth. Without the global face

similarity constraint, the result could be noisy or not in agreement with ordinary facial features.

Such global and local constraints motivate us to design a hybrid approach in this paper. We

combine a global parametric model which generalizes well for common faces, with a local

nonparametric model which learns local textures from example faces. This approach can be

applied to modeling visual patterns other than faces, in particular for structured objects with

both global coherence such as contour, symmetry, or illumination effects, and precise local

textures or patterns, analogous to skin and hair, such as spokes or leaves.
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(a) Low-res input (b) Hallucinated by our system (c) Original high-res

Figure 1. Illustration of face hallucination (from Figure 9 (e)). Note that the detailed facial features

such as eyes, eyebrows, nose, mouth and teeth of the hallucinated face (b) are different from the

ground truth (c), but perceptually we see it as a valid face image. The processing from (a) to (b) is

entirely automatic.

We incorporate all the constraints in a statistical face model and find the maximum a posteri-

ori (MAP) solution for the hallucinated face. The data constraint is modeled as a Gaussian dis-

tribution (a soft constraint), or simply as an equality constraint (a hard constraint). The global

constraint assumes a Gaussian distribution learned by principal component analysis (PCA). The

local constraint utilizes a patch-based nonparametric Markov network to learn the statistical re-

lationship between the global face image and the local features. A two-step approach is then

used in hallucinating faces. First, an optimal global face image is pursued in the eigen-space

when constraints (a) and (b) are satisfied. Second, an optimal local feature image is inferred

from the optimal global image by minimizing the energy of the Markov network with constraint

(c) applied. The sum of the global and local image forms the final result. An example of hal-

lucinated image from an input low-resolution image is shown in Figure 1. Although the facial

feature details of the hallucinated face are different from those in the original, we may perceive

it as a valid human face taken by a camera.

At a practical matter, the other challenge in face hallucination is the difficulty of aligning

faces at low-res images. Many learning-based image synthesis models require alignment be-

tween the test sample and the training examples, e.g. [7]. Even a small amount of misalignment

can dramatically degrade the synthesized result. However, the facial features may contain very

few pixels; in real images the faces are normally not upright; the scale and position must be

estimated at sub-pixel level. Therefore, alignment at low-res requires that very accurate mea-

surements be made from very little data.

To address the alignment challenge, we design a face alignment algorithm to align faces at

low-res. The alignment algorithm finds an affine transform to warp the input image to a tem-
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plate to maximize the probability of low-res face image, determined from an eigenspace repre-

sentation. To make that alignment step robust, multiple candidate starting points are explored

through a stochastic algorithm from which the best alignment result is selected automatically.

We demonstrate through many examples that our system is able to find and hallucinate high-res

face image with vivid details from low-res pictures, without manual intervention.

Our work is built upon Takeo Kanade’s pioneering work on image registration [26] and face

hallucination [1]. We acknowledge his contributions to computer vision that inspired our work

in this paper.

This paper is organized as follows. After reviewing related work in Section 2, we introduce

the details of our global and local face modeling in Section 3. Many examples of a toy ex-

periment where the low-res input is well registered at high-res are shown in Section 4. Face

alignment on the low-res image is introduced in Section 5, and the hallucination results using

the aligned low-res images are shown in Section 6. Other applications such as random face syn-

thesis are also explored in Section 6. Discussion is given in Section 7 and Section 8 concludes

the paper.

2. Related Work

Finding a high resolution image, given a low-resolution input, is an under-constrained prob-

lem: many images can yield the input after being smoothed and down-sampled. We find it

natural to divide super resolution work into two categories, based on which additional con-

straints are used to infer the high-res image.

(a) The constraints come from a direct, temporal correspondence over multiple frames. The

hallucinated high-res information should be consistent from frame to frame.

(b) The constraints come from an indirect, spatial correspondence with other samples. This

can be described in a parametric form, or else by examples, learning the statistical corre-

lation between low-res and high-res information from a database of training images.

Obviously these two categories may be applied at very different scenarios. But both of them

can address face hallucination problem. They may also be combined as in [10].

2.1 Direct, Temporal Correspondence

We may have multiple (noisy) observations for a still or temporally slowly changing scene.

Through motion analysis, the observations are registered from frame to frame and a high res-

olution image can be inferred from matching each frame. Early work on video-based super
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resolution includes [19, 28]. In [4] motion blur was taken into account. Multiple sequences

are used in [35] for both spatial and temporal super resolution. Utilizing a video sequence can

significantly enhance the resolution of an image, and should be exploited where possible. In

this paper, however, we focus on the application scenario where only a single input image is

provided.

2.2 Indirect Spatial Correspondence

Where can we find the high-frequency information for a single input low-res image? It can

be obtained from either parametric or nonparametric methods. Parametric approaches to super-

resolution, also known as image interpolation, have had some success [18, 34, 29, 16]. How-

ever, using parametric methods it is often difficult to interpolate details well within texture and

corner-like local regions of intensities. In estimating such details, example-based approaches

often perform better.

The general idea of example-based approach is to collect a database, learn the statistical

correlation between the low-res and high-res, and apply it to the input image. The problem

under this category can be generic, where the input can be any image, or object-specific, where

we assume that only images of a certain object category are input, such as face.

2.2.1 Generic image super-resolution

Most learning-based super-resolution algorithms such as [15, 17, 14, 13] assume homogeneous

Markov random field (MRF) for images. Let L denote an image lattice, and v a certain position

on the lattice with Iv as the pixel value. I−
v represents all pixels on L other than Iv. I is a

Markov random field if

p(Iv|I
−
v ) = p(Iv|Nv), (1)

where Nv is the neighborhood of v. This definition indicates what a pixel is only relies on the

pixels in its neighborhood. Further I is a homogeneous MRF if the conditional density function

is independent of the position v.

Although originally proposed for texture synthesis, the multi-resolution nonparametric sam-

pling method developed by De Bonet [5] infers the high-frequency texture features from the

low-frequency features named parent structure. His texture synthesis results indicate that in

homogeneous MRF, the high-frequency component locally depends on the low-frequency part.

Freeman et al. [15] proposed a parametric Markov network to learn the statistics between the

“scene” and “image”, as a framework to handle various low-level vision tasks, including super-

resolution. In their work the conditional density function of each image patch given its scene
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patch is also homogeneous. If the scene is the high-frequency part and image the low-frequency

input, Markov network can be applied in super resolution work. They elaborated this applica-

tion in [14]. Hertzmann et al. [17] and Efros & Freeman [12] generalize local feature transform

methods. When given a pair of training images, an analogous image is inferred from the in-

put by the local similarity between the training pair. “Image analogies” [17] can fulfill super

resolution work if the training pairs are low-resolution and high-resolution images respectively.

All of above methods do local feature transfer/inference on low-level vision. People also

tried to approach generic image super resolution at a higher level. In [37], a primal sketch

is estimated from the low-res image to guide finding the edge in high-res image. In [38] a

graphical model based on multiple local regressors is proposed to make the inference problem

tractable.

2.2.2 Face hallucination

The generic super resolution algorithms perform well in hallucinating images provided (a) the

training image details generalize to the test image, and (b) the synthesized image details are pri-

marily textures, not semantically important structures. They often fail in hallucinating structural

visual patterns which break the homogeneous assumptions, such as the human face. To special-

ize to face hallucination, the homogeneous MRF assumption has to be abandoned, leading to

the work by Baker and Kanade[1]. They only follow that the size of each pixel’s neighborhood

is equal. The statistics between the low-res and high-res images at each position is learnt in a

nonparametric way by a number of training pairs. Similar to [5], the features on high-frequency

image are inferred from the parent structure by nearest neighbor searching. The final gray level

image is then obtained by gradient descent to fit the constraints by the inferred local features.

They also discuss the limits on super resolution and how to break them in their method [2]. The

images hallucinated by [1] appear to be noisy at places. In their model, the global constraint is

not incorporated. The global properties of face, such as explicit contour, coherent illumination

and symmetry are somewhat missing.

It is interesting to note that all previous models use local feature inference in MRF without

global correspondence being taken into account. Such global modeling is, however, essen-

tial to pursue good performance in face hallucination. Principal component analysis (PCA)

can be used to model the global variance of facial appearance in an eigen-space: it has been

successfully used for face recognition [40] and generative face modeling by ASM and AAM

[8]. Encouraged by recent success of patch-based nonparametric sampling for texture synthe-

sis [22, 12], we built a non-parametric patch-based Markov network as in [14] to model the

statistics between the local feature image and the global face image in eigen-space.
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The early version of this global and local modeling appeared in [24]. A subspace-based

super resolution approach similar to our global face model was proposed at the same time in

[6]. A number of papers on face hallucination appeared subsequently. In [10] both temporal

correspondence and a prior model are used to hallucinate faces. In [42], a mask is designed to

do face hallucination on the inner part of the face only to avoid artifacts on hair and background,

though these artifacts can be properly handled by local modeling and appropriate smoothing in

this paper. In [21, 20] the task was generalized to handle different poses.

In this paper we focus on facial appearance modeling as in [24], but address additional prac-

tical considerations. We elaborate more on the global face modeling, in particular on hard

constraint and show that it may generate results more faithful to the low-res. Importantly, we

also show how to apply face hallucination to unregistered images, resulting in high quality

high-res face images synthesized from low-res face input, using no manual intervention.

3. Theory and Algorithms

3.1 A Bayesian Formulation to Face Hallucination

Let IH and IL denote the high-resolution and low-resolution face images respectively. If IL

is reduced from IH by a factor of s, following [1], we compute IL by

IL(m, n) =
1

s2

s−1
∑

i=0

s−1
∑

j=0

IH(sm + i, sn + j) (2)

where s is always an integer. We take s = 4 unless otherwise specified. Eq. (2) combines a

smoothing step and a down-sampling step, more consistent with image formation as integration

over the pixel [1]. To simplify the notation, if IH and IL are N-D and M-D long vectors

respectively (M =N/s2), Eq. (2) can be rewritten as

IL = AIH (3)

where A=[a1, a2, · · · , aM ]T is a M×N matrix. Each row vector aT
i in A smooths a s×s block

in IH to one pixel in IL.

To compute IH from IL is straightforward in (3), but the inverse process is full of uncertainty.

It is clear that many IH satisfy the constraint of Eq. (3). Thus we should find the optimal one

to maximize the posterior probability p(IH |IL), based on the maximum a posteriori (MAP)

criterion. Bayes’ rule for this estimation problem is:

p(IH |IL) =
p(IL|IH)p(IH)

p(IL)
. (4)
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Since p(IL) is the evidence remaining constant, MAP actually maximizes the product of the

likelihood p(IL|IH) and prior p(IH). The MAP estimate of optimal solution is under the prior

p(IH)

I∗
H = arg max

IH

p(IL|IH)p(IH). (5)

3.2 Global and Local Face Modeling

Note that equation (5) contains the prior distribution of a face image p(IH). Looking for a

sophisticated face prior model has been a long term research goal in computer vision. Current

face prior models either capture the common features of faces in a parametric way, for example

through eigenfaces [40] and AAM [8], or represent the individual characteristics such as local

features [1] in a nonparametric way. But both the common features and the individual char-

acteristics of faces are required in face hallucination. Therefore we develop a mixture model

combining a global parametric model called the global face image I g
H which carries the com-

mon features of face, and a local nonparametric one called the local feature image I l
H which

records the local individualities. The full-resolution face image is their sum,

IH = I l
H + Ig

H . (6)

Since IL is the low-frequency part of IH , the global face Ig
H contributes the main part of AIH

and the local features I l
H lie on the high-frequency band. Mathematically,

AIg
H = AIH , AI l

H = 0. (7)

To ensure that AI l
H = 0, I l

H can be defined in terms of wavelets, but we find it unnecessary to

do that in practice. We decompose the prior model of the face as

p(IH) = p(I l
H , Ig

H) = p(I l
H |I

g
H)p(Ig

H). (8)

Now we shall reformulate the MAP problem (5) under this mixture model for faces. The

likelihood p(IL|IH) can be simply regarded as a soft constraint on IH . If each pixel on IL is

identically treated, the distribution has a Gaussian form

p(IL|IH) =
1

Z
exp{−

1

2σ2
(AIH − IL)T(AIH − IL)}, (9)
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where Z is a normalization constant and σ2 evaluates the variance of the assumed additive

Gaussian noise. Using Eq. (7), Eq. (9) can be rewritten as

p(IL|IH) =
1

Z
exp{−

1

2σ2
(AIg

H − IL)T(AIg
H − IL)}

=p(IL|I
g
H)

(10)

In the limit of no observation noise the likelihood function can alternatively be formulated as a

delta function

p(IL|IH) = δ(IL − AIH) = δ(IL −AIg
H) (11)

From Equations (8), (10) and (11), the MAP inference problem, Eq. (5), can be rewritten as

I∗
H = arg max

I
g

H
,Il

H

p(IL|I
g
H)p(Ig

H)p(I l
H |Ig

H) (12)

It is clear that p(IL|I
g
H)p(Ig

H) and p(I l
H |I

g
H) constrain Ig

H and I l
H respectively. The optimization

strategy is naturally divided into two steps. At the first step we find the optimal global face

Ig∗
H by maximizing p(IL|I

g
H)p(Ig

H). At the second stage the optimal local feature image I l∗
H is

computed by maximizing p(I l
H |Ig∗

H ). Finally I∗
H =Ig∗

H +I l∗
H is our desired result.

3.3 Global modeling: a linear parametric model

We apply PCA to modeling the global face image I g
H . Given a set of training face im-

ages {I(i)
H }k

i=1, we can compute the eigenvectors {bi}r
i=1(bi ∈ R

N , i = 1, · · · , r), eigenvalues

{σ2
i }

r
i=1 and mean face μ by standard singular value decomposition (SVD) [32]. The orthog-

onal eigenvectors construct the eigen-subspace Ω = span(b1, · · · , br)∼R
r. Thus Ig

H is in fact

the reconstructed image of IH in Ω

Ig
H = BX + μ, X = BT (IH − μ), (13)

where B =[b1,· · · , br]N×l, and X =(x1,· · · , xr)
T is a vector in Ω. Intuitively, I g

H is linearly

controlled by the coefficients xi with corresponding eigenvectors bi. Since the eigenvectors are

analyzed from the training data, they represent the irrelevant common properties of the face,

such as lighting, scale and pose etc. Thus I g
H retains the common features of IH with individual

characteristics lost.

Since the random variable Ig
H is determined by X in (13), its distribution can be replaced

by X . Maximizing p(IL|I
g
H)p(Ig

H) in (12) is equivalent to maximizing p(IL|X)p(X). We

approximate the prior p(X) by a simple Gaussian:
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p(X) =
1

Z ′
exp{−

1

2
XTΛ−1X}, (14)

where Λ = diag(σ2
1, · · · , σ2

l ) and Z ′ is a normalization constant. For the likelihood p(IL|X)

we have two choices, corresponding to a choice of hard or soft constraints.

3.3.1 Hard constraint

When r > N , i.e. the number of eigenvectors is greater than the dimension of the IL, then X is

under constrained, or there is enough freedom to precisely formulate the constraint. The hard

constraint for the eigenspace representation of the high-res image rendering to the observed

low-res image is

A(BX + μ) = IL (15)

Let C = AB∈R
N×r. Note that it is not necessary to explicitly write down A, a huge sparse

matrix in order to compute C. The i, jth entry Cij is the average of the ith block (in scan

line order) of eigenvector bj . In other words, each column vector of C is a smoothed and

downsampled eigenvector. The above equation can be rewritten as

CX = IL − Aμ (16)

Let QR decomposition [36] of CT be

CT = [Q1 Q2]

[

R1

0

]

(17)

where [Q1 Q2] ∈ R
r×r is a unitary matrix, forming a set of bases in the space of X . The span

of the column vectors of Q2 forms the null space of C. Let

X = [Q1 Q2]

[

u1

u2

]

= Q1u1 + Q2u2, (18)

and we have

CX = [RT
1 0]

[

QT
1

QT
2

]

[Q1 Q2]

[

u1

u2

]

= RT
1 u1 = IL − Aμ (19)
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In this model R1 is an invertable square matrix. So we have

u1 = (RT
1 )−1(IL − Aμ) (20)

Now we combine Eq. (18) to (20) to maximize p(IL|X)p(X), or equivalently minimize the

following function:

F (X)= XTΛ−1X

= (uT
1 QT

1 + uT
2 QT

2 )Λ−1(Q1u1 + Q2u2)

= uT
1 QT

1 Λ−1Q1u1 + 2uT
2 QT

2 Λ−1Q1u1 + uT
2 QT

2 Λ−1Q2u2 (21)

As u1 is determined by the low-res image IL through Eq.(20), the optimal u2 is given as

u∗
2 = −(QT

2 Λ−1Q2)
−1QT

2 Λ−1Q1u1 (22)

Combining Eq.(18), (20) and (22), we obtain

X∗ = (I− Q2(Q
T
2 Λ−1Q2)

−1QT
2 Λ−1)Q1(R

T
1 )−1(IL − Aμ) (23)

In practice, we first solve u1 based on Eq. (20) and u∗
2 based on Eq. (22), and then combine

them to find X based on Eq. (18). In this way we can avoid computing an inverse matrix. All

the matrices are computed off-line in the training step.

3.3.2 Soft constraint

When r < N , i.e. the number of eigenvectors is smaller than the dimension of IL, X would

be over-constrained in Eq. (15). We shall formulate the likelihood as a soft constraint. The

likelihood, Eq. (10), becomes

p(IL|X)=
1

Z
exp{−

1

σ2
[A(BX + μ) − IL]T [A(BX + μ) − IL]}. (24)

The optimal X∗ maximizing p(IL|X)p(X) is

X∗ = arg min
X

σ2XTΛ−1X + [A(BX + μ) − IL]T [A(BX + μ) − IL]. (25)

Since the objective function is a quadratic form, the solution is straightforward:

X∗ = (BTATAB + σ2Λ−1)−1BTAT (IL −Aμ)

= (CTC + σ2Λ−1)−1CT (IL − Aμ) (26)
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Figure 2. (a) Illustration of the patch-based nonparametric Markov network. The compatibility

function ψ(·) is defined on the similarity of the two neighboring patches on the overlapping area.

(b) The corresponding factor graph.

To ensure numerical stability, the inverse of BTATAB + σ2Λ−1 is computed by SVD. The

optimal global face image I g∗
H =BX∗+μ. Since matrix B, Λ and μ are learnt by PCA, and A

is constant as a smoothing and down-sampling function, all matrices on the right side of (26)

can be computed offline. Furthermore, we want to allow the “softness” parameter σ2 to be as

small as possible. When σ → 0, Eq.(26) becomes

X∗ = (CTC)−1CT (IL − Aμ) (27)

Will the soft constraint approach the hard constraint when σ → 0? When r < N , it is impossi-

ble to apply hard constraint. When r > N , the inverse of CTC does not exist. Therefore, the

soft constraint is not equivalent to the hard constraint in any circumstances.

Once given IL as input, Ig∗
H can be computed very quickly through solving linear systems.

Ig∗
H is a smoothed version of a human face, which will be improved by the local model in next

subsection.

3.4 Local modeling: patch-based nonparametric Markov Network

In most cases when PCA is used, the random variable is regarded as a composition of two

parts: the principal components and an unmodeled residue which is always assumed indepen-

dent of the former. But in our mixture modeling, the residue I l
H = IH − Ig

H is the highest

11



frequency component, dependent on the lower frequency part [15], i.e., I g
H . That independence

assumption fails in our model. To carefully model p(I l
H |Ig

H), we use patch-based nonparamet-

ric Markov network [15, 14] and do inference using max-product belief propagation [11]. Such

a patch-based nonparametric approach has been used in texture synthesis [22, 12] as well. An

early version of this Markov network optimized by simulated annealing is in [24].

Following [15], we assume the high-frequency band to be conditionally independent of the

low-frequency band given the middle-frequency band. Mathematically

p(I l
H |I

g
H) = p(I l

H |I
g
M) (28)

where

Ig
M = Ig

H − f ∗ Ig
H . (29)

f is a Gaussian filter.

The likelihood function in Eq. (28) can be written as

p(I l
H |I

g
M) =

1

Z

∏

(m,n)

φ(I l
H(m, n), Ig

M(m, n))
∏

(m,n),(m′,n′)∈ε

ψ(I l
H(m, n), I l

H(m′, n′)) (30)

where I l
H(m, n) and Ig

M(m, n) denote the patches centered at (ms+s/2, ns+s/2) with patch

size s + 2. We choose s = 4, though other choices give similar results. ε denotes the set of

neighbors. We choose a 4-neighbor system. Neighboring patches overlap at a 2 pixel width

strip where compatibility function ψ is computed.

Following [15], the compatibility functions φ(·, ·) are computed in a nonparametric man-

ner. From the collected face database (see Section 4 for the details) we have training pairs

{(Y l(i)
H , Y

g(i)
M )}K

i=1 where Y has the same dimension as I . For an input patch I g
M(m, n) we may

obtain a set of training samples that match this patch within a small tolerance ǫ

Ω(m, n) = {Y l(i)
H (m, n) | ‖Y g(i)

M − Ig
M(m, n)‖ < ǫ i = 1, · · · , K}. (31)

We rewrite the set as Ω(m, n) = {Y ∗l(j)
H (m, n)}rmn

j=1 , where rmn is the number of elements.

Intuitively, this set contains all the local face patches at the location (m, n) whose corresponding

global face patches (middle frequency component) match the given global face patch. The

compatibility function is defined as

φ(I l
H(m, n) = Y

∗l(j)
H (m, n), Ig

M(m, n)) = exp{−
1

2σ2
φ

‖Y g(i)
M − Ig

M(m, n)‖2} (32)
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This function is indeed defined on a discrete set with rmn states. This method is nonparametric

because φ(·) is defined on observed samples.

Compatibility function ψ is simply defined such that neighboring patches agree with each

other on the overlapping area. Without losing generalization, the ψ for two horizontally neigh-

boring patches are defined as

ψ(I l
H(m, n), I l

H(m + 1, n)) = exp{−
1

2σ2
ψ

‖Rl
H(m, n) −Ll

H(m + 1, n)‖2} (33)

where R and L denote the right most 2 columns and left most 2 columns of a patch, respectively.

Function ψ for vertically neighboring patches are defined similarly.

Once the Markov network is set, we use max-product belief propagation to minimize the

energy. Please refer to [15, 11] for the details of belief propagation.

3.5 Post-Processing

When PCA is applied to reconstruct an image we may see a ghosting effect, similar to the

Gibbs effect when a signal is reconstructed by Fourier bases [30]. Inevitably this artifact is

propagated to the final reconstructed high-res face images through the Markov network. This

is partially caused by the misalignment of face images. In the training database we try to

align facial feature points, but other image features, such as hair strings and clothes are not

necessarily well aligned. To avoid this problem some other researchers tried to only do face

hallucination in the interior region of face [42, 9]. However, we found that this artifact can be

easily removed by a post-processing step.

The artifacts as shown in Figure 7 row (c) can be regarded as noise, which can be removed

by bilateral filtering [39] by appropriately setting the spatial and intensity variance. But the

artifacts or noise mainly distribute around the image boundary. Inspired by the adaptive bilateral

filtering work [23], we design the parameters of the bilateral filter to be dependent on image

coordinates. The rule of thumb is to smooth less in the center but more around the boundary.

We could have encoded local image statistics in the face modeling, e.g. modeling the

marginal of the band-pass filtering responses [45]. Leaving this as our future work, we find

that current modeling is sufficient to generate good results.

4. Experiment on a Simplified Scenario

In this section, we study the effectiveness of our face hallucination algorithm by assuming

that the face images are well aligned in both training and test as in [1, 24]. The practical
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issue of face alignment in low-res images will be discussed in the next section, resulting in

a fully automatic algorithm. Only for investigation in this current section do we use manual

intervention to register the low-res images.

In our experiments, the high-res faces are collected from public face databases such as AR

[27] and FERET [31], and MSRA Cartoon face database [7]. There are a total of 4,476 samples,

including Caucasian, Asian and Black, both male and female adults, frontal faces. The lighting

of the images is mostly from an indoor environment. We use face detection [43] and alignment

[44] algorithms to register face images. We choose the 87 feature point system as proposed in

[7], and allow the user to modify any misalignments.

After registration we compute the mean shape of facial feature points, and warp each face

image to the mean shape by affine transform. This affine transform is estimated to minimize the

sum of matching errors. Even though an affine transform may distort the face if the pose is not

strictly upright or the facial shape is different from the mean, in the real application we shall use

affine transformation to extract low-res face images. After affine warping, the facial features are

almost registered, eye to eye and mouth to mouth, but not exactly (for exact registration more

sophisticated warping techniques are needed), and we do not need exact registration. From the

total 4,476 high-res samples after warping and cropping we extract 46 images and downsample

them for testing, using the remaining 4430 for training.

The mean face and the top ten eigen-faces corresponding to the ten largest eigenvalues com-

puted by SVD are displayed in Figure 3. To better visualize the eigenfaces in Figure 3(a), we

multiply each eigenface by ±3σ, add to the mean face (d) and display the results in (b) and (c),

respectively. Clearly the facial properties such as lighting, pose, race and gender are modified

by the different eigenfaces [40]. For instance, side lighting is controlled by the 5th eigenface,

race appears to be modified by the 1st, 2nd and 3rd eigenfaces, gender is affected by many,

e.g. 1st to 4th, 6th and 10th, pose is changed by 8th, and background lighting is controlled by

1st, 2nd and 6th. Interestingly, each eigenface normally changes a mixture of facial properties,

e.g. the 1st and 2nd eigenfaces appear to change gender, race and lighting simultaneously. The

ability of the eigenfaces to model these various facial properties makes them a useful model for

the global face.

The results of reconstructing the global face from a low-res input using the soft constraint are

shown in Figure 5. We have chosen 8 typical samples out of 40 for illustration. The number of

eigenvectors r varies from 20, 100, 500 to 1, 000, and the corresponding results are shown from

(b) to (e). Not surprisingly, the fewer eigenvectors, the smoother and closer to the mean face the

reconstruction is. The reconstruction with insufficient eigenvectors lacks the individual facial

features such as the correct lighting effects. The change of the reconstruction from r = 500
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Figure 3. Eigenface [40]. (a) Top 10 eigenvectors corresponding to the 10 largest eigenvalues. (b)

Eigenvectors (eigenfaces) are multiplied by 3σ where σ is the square root of eigenvalue and added

to the mean face. (c) Eigenvectors are multiplied by −3σ and added to the mean face. (d) Mean

face. (e) The logarithm of eigenvalues.

to r = 1, 000 is too subtle to perceive. Therefore, we choose r = 500 for the soft constraint

reconstruction.

The global face reconstructions from hard constraint are shown in Figure 6. From Eq. (17)

the number of eigenvectors r should be larger than the dimension of the low-res N : r > N

(N = 32 × 24 = 768). We gradually increase r from 1, 000 to 2, 500 in steps of 500, and

display the results from (b) to (e). When r = 1, 000, namely the number of eigenvectors

are just above the low-res dimension, the reconstruction is poor because the main function

of the eigenvectors is to satisfy the hard constraint, i.e. Eq. (15), and there is little freedom

to maximize the posterior. As r increases, the eigenvectors have more freedom to maximize

the posterior while satisfying the hard constraint, and therefore the reconstruction has fewer

artifacts, as shown in (c) and (d). There is little visual difference between the reconstruction
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Figure 4. The energy converges quickly in max-product belief propagation.

from r = 2, 000 and r = 2, 500, so we choose r = 2, 000 for the hard constraint reconstruction.

After the global face is reconstructed, we use the patch-based nonparametric Markov network

model to infer the optimal local face, i.e. adding local details. For each patch we search in the

database for the top 20 closest candidates, and use max-product belief propagation to minimize

the energy. This algorithm converges in about 15 steps, as shown in Figure 4. The global faces

(soft constraint) and the inferred high-res faces (global+local) are listed in Figure 7 (b) and

(c). The ghosting effects are noticeably removed after the adaptive bilateral filtering is applied,

as shown in (d). The results of the hard constraint (global+local+bilateral) are shown in (e).

Comparing (d) and (e), we may observe that the soft constraint generates cleaner and sharper

features with strong facial features such as eyeballs and teeth, but the results are close to the

mean face. A typical example is the hair of the 6th sample from left to right, whose hair gets

blurred by the soft constraint-based hallucination. The hard constraint generates images that

well preserve the distinguished features of the low-res images, e.g. the hair details of the 6th

sample are hallucinated, even though they are different from the original image. Nevertheless,

the results generated using the hard constraint lack the crisp features of those generated using

the soft constraint. In summary, soft constraint beautifies face in hallucination, whereas hard

constraint faithfully reproduces facial details.

A significant advantage of the soft constraint over the hard constraint is the low memory

load: the hard constraint requires 224MB memory whereas the soft constraint requires 50MB.

The load of the Markov Network is about 800MB, but it can be significantly reduced when a

clustering-based technique is used. In this paper we do not address the engineering work of

reducing memory requirement.

We also compare our results with other approaches, e.g. bicubic interpolation and the in-

homogeneous Markov Network [15] in Figure 7 (f) and (g). Note that this Markov Network

implementation is the same as the local face part in our modeling, except that I g
H is replaced
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(a)
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Figure 5. Experimental results on reconstructing the global face I
g
H using the soft constraint. (a)

Input 24×32 low-res images. From (b) to (f) are global faces inferred using the soft constraint with

different eigenspace dimensions. (b) r=20, (c) r=100, (d) r=500 and (e) r=1000. (f) Original

96×128 high-res images. With fewer eigenvectors the reconstruction is smooth, close to the mean

face, but lacks the distinguishing facial feature of the input low-res face. With more eigenvectors

the reconstruction is closer to the individual face image, but we observe ghosting effects at edges,

similar to the Gibbs effect in reconstructing step edges by Fourier basis.

17



(a)
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Figure 6. Experimental results on reconstructing the global face I
g
H using the hard constraint. (a)

Input 24×32 low-res images. From (b) to (e) are global faces inferred using the hard constraint

with different eigenspace dimensions. (b) r = 1000, (c) r = 1500, (d) r = 2000, (e) r = 2500.

(f) Original 96 × 128 high-res images. With fewer eigenvectors the reconstructions were noisy,

because there is not much freedom to maximize the probability in the eigenspace given the low-res

constraint. With more eigenvectors, however, most of the errors diminish. In (b) and (c) we may

observe similar ghosting effect to the reconstruction using the soft-constraint.
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by the enlarged IL. Theoretically this model is similar to that of Baker and Kanade [1]. As we

have pointed out in the introduction and related work, we may see that even though the Markov

Network is doing even a better job in hallucinating the local facial feature details, the global

facial features, such as symmetry, are missing. We also evaluate peak signal to noise ratio

(PSNR) between the hallucinated and the original images by the three approaches, namely soft

constraint, hard constraint and Markov Network, in Table 1. Clearly the proposed approaches

(soft and hard constraints) outperform the Markov Network in terms of PSNR, and the hard

constraint produces better results than soft constraint, though this is perceptually debatable.

PSNR Soft constraint Hard constraint Freeman et. al.

mean 26.81 27.40 26.42

max 32.25 32.67 30.85

min 22.80 23.28 22.85

Table 1. The statistics of PSNR for three face hallucination approaches.

In this section, we have used the toy domain of manually aligned face images to understand

effects of parameter variations independently of alignment issues. In the next section we return

to the more general problem of unaligned faces and fully automatic processing.

5. Accurate Alignment of Low-Res Face Image

Face alignment is key to the success of an automatic face hallucination algorithm. In practice,

we cannot assume that any low-res face has been accurately aligned although the approximate

localization of the low-res face is given by face detection. We have used the face detector

presented in [43, 41] to detect all the possible faces from a single image. The face detector

outputs the top-left and bottom-right coordinates of each face. This is the initialization for the

face alignment algorithm, which has two components, affine warping and multiple randomized

initializations.

5.1 Alignment by Affine warping

Let the input image be I . Let z = {zi} = {(xi, yi)} be the coordinate of the face template.

We want to know a warping function W(z,p) so that the warped I(W(z,p)) is close to a face

image. Here affine transformation is chosen as the warping function

W(z,p) =

[

p1 p3 p5

p2 p4 p6

]

⎡

⎢

⎣

x

y

1

⎤

⎥

⎦
(34)
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Figure 7. Comparison of different algorithms. (a) Input low-res face images. (b) Reconstruction by global

face model (soft constraint). (c) Reconstructed by combining the global with the local face model, obtained

from the nonparametric Markov network. Many local facial details are added from (b) to (c), e.g. highlights

in eyeballs, teeth. (d) Results after post-processing by smart bilateral filtering. Some noise and ghosting

artifacts caused by PCA reconstruction are removed. (e) Hallucinated results by hard constraint. We also

compare our algorithm with others. (f) Bicubic interpolation. (g) Freeman et. al. [14]’s approach, adapted

to be inhomogeneous to meet [1]. Although facial detailed features can be reconstructed locally, the global

facial features are in general lost via this approach. (h) Original high-res images.
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where p = (p1, · · · , p6)
T . Let the mean and covariance of the faces on the template be μ and

Σ. We want to find the optimal affine warp parameter p∗ so that

p∗ = arg min
p

(I(W(z,p)) − μ)TΣ−1(I(W(z,p)) − μ) (35)

This objective function is nonlinear because function I(W(·)) is nonlinear. The problem can

be addressed by a gradient descent algorithm. Base on current p, we want to compute an update

p ← p + ∆p (36)

so that the objective function can be optimized. Similar to Lucas-Kanade approach [26, 3] the

objective function in Eq. (35) is linearized by first order Taylor expansion

I(W(z,p + ∆p)) = I(W(z,p)) + ∇I
∂W

∂p
∆p (37)

The optimization problem becomes

∆p∗ = arg min
∆p

(∇I
∂W

∂p
∆p + I(W(z,p))− μ)TΣ−1(∇I

∂W

∂p
∆p + I(W(z,p))− μ) (38)

For affine motion, the Jacobian ∂W

∂p
is

∂W

∂p
=

[

x 0 y 0 1 0

0 x 0 y 0 1

]

(39)

Let matrix D = ∇I ∂W
∂p

∈ R
M×6. The solution to Eq. (38) is

∆p∗ = (DTΣ−1D)−1DTΣ−1(μ − I(W(z,p))) (40)

Note that it is not necessary to compute Σ−1 which is normally ill-conditioned. From the

low-res images of the training data we get the principal components BL and the corresponding

eigenvalues ΛL. The inverse covariance matrix can be approximated by

Σ−1 ≈ BLΛ
−1
L BT

L (41)
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Low-Res Face Alignment Algorithm

• Given initial guess of centroid z0, scale s0, orientation θ0 (from face detector),

and number of iterations n and number of samples m (from computational con-

siderations).

• Set z∗ = z0, s∗ = s0, θ∗ = θ0. Error J∗ = ∞.

• For i=1:m

• z0 = z∗, s0 = s∗, θ0 = θ∗

• For i=1:n

• Sample z ∼ N (z0, σ
2
zI), s ∼ N (s0, σ

2
s), θ ∼ N (θ0, σ

2
θ).

• Initialize affine parameter p using z, s and θ.

• Optimize parameter p and get the minimal error J .

• If J < J∗ then J∗ = J, p∗ = p, z∗ = z, s∗ = s, θ∗ = θ.

• Output p∗.

Figure 8. The algorithm of robustly aligning faces at low-res. It outputs reliable alignment when

n = 4 and m = 20. The parameter setting is σz = 1, σθ = 0.05, and σs = 0.06.

5.2 Robust alignment by randomization

The algorithm above is very sensitive to the initialization. It works well if the scale and

orientation are nearly correct. Unfortunately, the initialization given by face detection algorithm

contains errors in position, scale and orientation of the face. Our alignment algorithm needs to

take the inaccuracy of initialization into account. Therefore, we have designed a randomized

algorithm for the alignment with the pseudo code shown in Figure 8. The basic idea is to

randomize the position, scale and orientation from the initialization, find the best transform p∗,

and restart randomization again from p∗. Even though this algorithm is not efficient, we find

it robust enough to align faces in low-res images. This is essential for automatic operation.
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(a) (b)

(c)
(d)

(f)
(e)

(g)

Figure 9. High-res hallucination from low-res faces using automatic detection and alignment of

low-res face images. For each example, the input image is at left, the extracted, aligned low-res in

the middle, and the high-res hallucinated at the right. All processing was using the soft constraint

except for (e) and the bottom row of (g), which used the hard constraint (see text).
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(a)

(b)

(c)

(d)

(1) (2) (3) (4)

Figure 10. Our system is applied to hallucinating low-res faces in a group picture. Both the detec-

tion and synthesis processing was entirely automatic.
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Figure 11. A failure case. The input picture is of very low quality and the face hallucination

system cannot overcome such degradation, which are significantly different than those modeled in

the training set. The hallucinated faces contain artifacts.

6 Experimental results

6.1 Face hallucination

We use CMU face database [33] and some other images to test the face hallucination system.

We first run the system on a number of images and the result for a collection of test images is

shown in Figure 9. The pairs of low-res and hallucinated high-res are displayed to the right of

the original image from which the low-res faces are detected, registered and extracted. The

results are shown at 128 × 96 resolution. The results in (e) and the bottom two in (g) are

generated using the hard constraint, and the rest of them are generated using the soft constraint.

The input images might be noise contaminated, and thus it is not necessary to use the hard

constraint to enforce the hallucinated image to be exactly the same as the input when smoothed

and downsampled, e.g. (a), (b) and (f). Meanwhile, the soft constraint tends to produce sharper

facial features, producing clear eyelids and teeth, e.g. in (c) and (d). We also find that the soft

constraint is more robust to the misalignment of the face. In (d) we may see that the registered
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faces are not exactly upright, but the soft constraint is able to hallucinate reasonable results.

However, for the top right example of (g), the soft constraint fails in hallucinating the details of

the eyes.

The soft constraint tends to hallucinate results more like the mean face, as shown in the first

row of (d). The hard constraint, on the other hand, faithfully represents the information in the

low-res image, e.g. in (e) and the bottom row of (g). In (e) we see very strong facial features

from the hard constraint. In the bottom row of (g), the face on the left wears eyeglasses and

the right has a non-frontal pose. Because these two cases do not appear in the training, the soft

constraint again tries to rectify the faces to the mean face, whereas the hard constraint is able

to reproduce the information even though there are artifacts.

Our system is able to produce reasonable results even though the test images are drastically

different from the training examples. An interesting example is the second row of (c) where

an artificial mask is on the upper part of the face. Our face modeling handles well the unusual

textures on the mask, as well as successfully hallucinating the facial details.

What if you have forgotten some faces of your classmates yet the old class photo is small

and blurred? Our face hallucination system may be able to help, as shown in Figure 10. All the

results are generated using the soft constraint. Our system is able to hallucinate the details of

facial features, particularly eyes, eyebrows, mouth and nose though they are not visible in the

low-res. However, we may observe that the symmetry of eyes is sometimes broken as in (a3),

(b2) and (d1), which might be caused by the inaccurate registration.

As the image quality deteriorates further, or the size of the low-res face is significantly lower

than 32×24, or the image contains some faces very different from those in the training, as shown

in Figure 11, the hallucinated results do not improve the resolution as before. This shows again

the characteristics of a learning-based vision system which requires certain amount of similarity

between test and training samples.

6.2 Random Face Synthesis

Our probabilistic model for face appearance is not restricted to super resolution application.

For instance, if we can model p(IL) and draw sample IL ∼ p(IL) in Eq. (12), then our model

can be applied to synthesizing random faces1.

To model p(IL) we first apply PCA to the low-res images and reduce the dimension to 40

which preserves 92.58% energy. A gaussian mixture model with 6 kernels is estimated in this

subspace using the EM algorithm. In the sampling part, the Gaussian kernel is first sampled

1Note that this is not strictly the correct way to sample faces, which should also draw samples from I H ∼

p(IH |IL) instead of Bayesian MAP inference.

26



Figure 12. Random synthesized faces. The male and female samples are arranged manually.
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according to the weight, and then a sample is drawn by the Gaussian kernel. Projecting this

sample to the low-res image space by the eigenvectors, we obtain a sample IL. Then we use

our face hallucination system (hard constraint) to hallucinate the high-res face IH .

We randomly select 64 examples out of 1,000 random faces samples and display them in

Figure 12. We manually arrange the males samples at the top four rows and females at bottom

four for the sake of better comparison. The synthesized faces cover different race, lighting

and expression, though the boundary part of the face is blurred. This is caused by the simple

p(IL) model. We believe that more sophisticated model will further improve the quality of the

synthesized faces.

7. Discussion

7.1 Face resolution

What resolution of face is needed to do face hallucination? Obviously there are two extreme

cases. When the input is only one pixel, then face hallucination becomes a problem random

face synthesis constrained by that the average intensity is given. When the input has very high

resolution, e.g. 128×96, then there is no need to do hallucination, either. Therefore, there exists

a range of resolutions in which face hallucination makes sense. In this paper we have chosen

low-res at 32×24 for face hallucination. Most face detection systems have been designed using

a 20×20 or 24×24 templates [33, 41, 43].

7.2 Why global and local modeling?

Theoretically we can solve face hallucination by Bayesian MAP in one step I ∗
H = arg maxIH

p(IL|IH)p(IH), then why do we bother to decompose p(IH) into two steps of global and local

modeling? The resolution of the high-res face image is 128×96 = 12288, requiring too many

training examples to estimate a reasonable probability distribution p(IH) even using advanced

machine learning algorithms, e.g. [25]. We designed a hybrid model for p(IH), i.e. a global

face model by eigenfaces to capture the global facial features, and a local face model by Markov

network to capture the local facial details.

7.3 Soft constraint vs. hard constraint

The likelihood model in the Bayesian MAP framework can be either formulated as a soft

constraint, which implies Gaussian noise to the observation, or a hard constraint, which em-

phasizes that the reconstruction should be exactly the same as the input after being smoothed

and downsampled. From a different perspective, when the number of eigenvectors is fewer
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than the dimension of the low-res face, we can only apply the soft constraint. When there are

more eigenvectors, we can enforce the hard constraint. The experimental results show that three

times more eigenvectors are needed for the hard constraint than for the soft constraint.

From the experimental results we observe that the soft constraint tends to generate sharp

facial details, be less sensitive to inaccurate registration, pose variation and noise, but smooth

out the distinguished facial features of the input low-res face. The hard constraint, on the

other hand, faithfully reproduces the distinguished facial features, but is very sensitive to any

inaccurate registration and noise.

7.4 Face hallucination of a single person?

In our current system we use a database containing all kinds of faces. What if only a database

of one person is applied? Since we are able to get a database for one person from daily digital

pictures, face hallucination might be integrated with a face identification system to synthesize

high-res image for a particular person. We feel that this would be an interesting direction for

both face recognition and computational photography.

8. Conclusion

We have designed a two-step approach to hallucinating low-res face images by decomposing

face appearance into a global eigenface model and a local Markov network model. To apply

the hallucination system to real images we designed a low-res face registration tool to follow

face detection so that high-res faces can be automatically hallucinated from low-res images

with no manual intervention. We have both developed a theoretical framework for our hybrid

approach, as well as addressed implementation details to solve practical issues that affect syn-

thesis quality. The successful experimental results prove that face hallucination can be applied

in real applications to enhance the resolution of face for both face recognition and face image

editing. We also showed other applications of our face appearance modeling, e.g. random face

synthesis.
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