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Abstract— In this paper we address the problem of halluci-
nating high-resolution facial images from low-resolution inputs
at high magnification factors. We approach this task with
convolutional neural networks (CNNs) and propose a novel (deep)
face hallucination model that incorporates identity priors into
the learning procedure. The model consists of two main parts:
i) a cascaded super-resolution network that upscales the low-
resolution facial images, and ii) an ensemble of face recognition
models that act as identity priors for the super-resolution network
during training. Different from most competing super-resolution
techniques that rely on a single model for upscaling (even with
large magnification factors), our network uses a cascade of
multiple SR models that progressively upscale the low-resolution
images using steps of 2×. This characteristic allows us to apply
supervision signals (target appearances) at different resolutions
and incorporate identity constraints at multiple-scales. The pro-
posed C-SRIP model (Cascaded Super Resolution with Identity
Priors) is able to upscale (tiny) low-resolution images captured in
unconstrained conditions and produce visually convincing results
for diverse low-resolution inputs. We rigorously evaluate the
proposed model on the Labeled Faces in the Wild (LFW), Helen
and CelebA datasets and report superior performance compared
to the existing state-of-the-art.

Index Terms— Face hallucination, deep learning, CNN,
identity.

I. INTRODUCTION

FACE hallucination (FH) represents a domain-specific
super-resolution (SR) problem where the goal is to

recover high-resolution (HR) facial images from low-
resolution (LR) inputs [1]. Face hallucination techniques
have important applications in various face-related vision
tasks, such as face editing, face detection, 3D face recon-
struction or face recognition [2]–[10], where they are used to
counteract performance degradations caused by low-resolution
input images.

Similarly to general single-image super-resolution tasks,
face hallucination is inherently ill-posed. Given a fixed image-
degradation model, every LR facial image can be shown to
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Fig. 1. Face hallucination results generated with the C-SRIP model. The
figure shows (from left to right): a 24 × 24 low-resolution (LR) input face
image, the 8× super-resolved (SR) image, and the high-resolution (HR)
ground truth. Note that C-SRIP is able to ensure visually convincing super-
resolution results.

have many possible HR counterparts. Thus, the solution space
for FH problems is extremely large and recent models typically
try to produce plausible SR results by learning to “hallucinate”
high-frequency information using relationships between corre-
sponding HR and LR images from a training dataset. While
significant progress has been made in the area of learning-
based (face) super-resolution over recent years [11]–[24],
super-resolving facial images of arbitrary characteristics in a
convincing manner, especially at high magnification factors,
is still an unsolved problem, mainly due to:

• The ambiguous nature of the face hallucination task,
where the solution space is known to grow exponentially
with an increase in the desired magnification factor [9].
Despite strong reconstruction constraints it is exception-
ally difficult to find good solutions and devise methods
that work well for a broad range of LR facial images.
Furthermore, even for domain-specific SR problems, such
as face hallucination, where the solution space is already
constrained by facial appearances, there is still an over-
whelming number of plausible HR solutions that explain
the observed LR input equally well.

• The difficulty of integrating strong priors into FH mod-
els that sufficiently constrain the solution space beyond
solely the visual quality of the reconstructions. Most of
the existing priors utilized for super-resolution relate to
specific image characteristics, such as gradient distribu-
tion [25], total variation [26], smoothness [27] and the
like, and hence focus on the perceptual quality of the
super-resolved results. If discernibility of the semantic
content (e.g., facial features) is the goal of the SR
procedure, such priors may not be the most optimal
choice, as they are not sufficiently task-oriented.

The outlined limitation are most evident for challenging face
hallucination problems where tiny low-resolution images (e.g.,
of size 24 × 24 pixels) of arbitrary characteristics need to be
super-resolved at high magnification factors (e.g., 8×). In this
paper, we try to address some of these limitations with a new
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hallucination model build around deep convolutional neural
networks (CNNs).

Our model, called C-SRIP, uses a Cascade of simple
Super-Resolution models (referred to as SR modules here-
after) for image upscaling and Identity Priors in the form
of pretrained recognition networks as constraints for the
training procedure. Thus, it combines a powerful (general-
purpose) super-resolution network with prior domain knowl-
edge related to face recognition. Specifically, our model uses
multiple SR modules to super-resolve LR input images in
magnification increments of 2× and, consequently, allows
for intermediate supervision at every scale. This intermediate
supervision confines the explosion of the solution-space
size and contributes towards more accurate hallucination
results. To preserve identity-related features in the SR images,
we incorporate pretrained recognition models into the training
procedure, which act as identity constraints for the face
hallucination problem. The recognition models are trained to
respond only to the hallucinated high-frequency parts of the
SR images and ensure that the added facial details are not
only plausible, but as close to the true details as possible.
Due to availability of intermediate SR results, we incorpo-
rate the identity constraints at multiple scales in C-SRIP.
For data fidelity, we use a multi-scale loss derived from
the structural similarity index (SSIM, [28]) that provides a
stronger error signal for model training than the L p-norm-
based loss functions commonly used in this area. As we show
through extensive experiments on the Labeled Faces in the
Wild (LFW), Helen and CelebA datasets, the combination of
reconstruction-oriented and identity-related losses results in
visually convincing super-resolved face images that compare
favourably with state-of-the-art FH models from literature.

The main motivation for using identity information in
C-SRIP is to exploit high-level cues that relate to facial
appearance (i.e., identity) in addition to commonly used
pixel-level cues when learning to super-resolve facial images.
By relying on an optimization objective that combines a data-
reconstruction loss for data fidelity and a recognition loss for
identity preservation we are able to use the best of both worlds
and infuse the model with domain-knowledge that would be
difficult to learn from pixel-comparisons alone.

In summary, we make the following contributions in this
paper:

1) We introduce C-SRIP, a new CNN-based face halluci-
nation model, that integrates identity priors at multiple
scales into the training procedure of a SR network, and
ensures state-of-the-art FH results. To the best of our
knowledge, the model represents the first attempt to
exploit multi-scale identity information to constrain the
solution space of deep-learning based SR models.

2) We introduce a cascaded SR network architecture that
super-resolves images in magnification steps of 2× and
offers a convenient and transparent way of incorporating
supervision signals at multiple scales. Once trained,
the SR network is able to hallucinate tiny unaligned 24×

24 pixel LR images at magnification factors of 8× and
produce realistic and visually convincing hallucination
results as illustrated in Fig. 1.

3) We propose a mechanism for integrating identity priors
into FH models, which constrain the appearance of the
hallucinated (high-frequency) facial details.

4) We make all models, weights and source code used
in the experiments publicly available and provide the
community with strong baselines for future FH research.

II. RELATED WORK

In this section we discuss recent work related to the C-
SRIP model. The reader is referred to some of the existing
surveys on super-resolution and face hallucination for a more
comprehensive coverage of the field, e.g. [29]–[32].

A. Super-Resolution Models

Recent (single-image) super-resolution (SR) solutions are
dominated by learning-based techniques that use pairs of
corresponding HR and LR images to train machine learning
models capable of predicting HR outputs from LR evidence
[11]–[16]. The learning procedures used with these models
typically aim to minimize an objective function that quantifies
the error between the ground truth HR images and the SR
predictions. Common objectives include the L p , Huber or
Lorentzian error-norm losses and more recent error measures
that are closer to human image quality perception, such as
structural similarity or CCN-based perceptual losses [17], [33],
[34]. Our SR model follows the outlined learning paradigm,
but incorporates a novel learning objective related to the
concept of structural similarity [35] (SSIM). Specifically,
it enforces a SSIM loss on the output of every SR module
(i.e., on 2×, 4× and 8× super-resolved images) and naturally
extends the loss to a multi-scale form.

The C-SRIP model is based on convolutional neural net-
works (CNNs) and in this sense is related to contemporary SR
techniques that exploit CNNs for image upscaling, e.g., [12],
[15], [17]–[24]. While these methods are capable of producing
impressive SR results, the majority relies only on LR-HR
image pairs for training and super-resolves images in a single
step. However, recent developments [22], [36], [37] have
shown the prospect of so-called cascaded models, where
image upsampling is performed progressively using smaller
steps (e.g., of 2×) to reach the overall magnification factor
(e.g., 8×). This progressive upsampling strategy significantly
constrains the solution space of the ill-posed super-resolution
problem and contributes toward higher quality results. The
reason for this, as argued by the authors [22], [36], [37], is the
possibility of including intermediate supervision signals that
help to find a better optimum during model learning. Similarly
to these and related approaches [22], [36]–[39], C-SRIP also
upscales LR inputs in a cascaded manner using carefully
designed SR modules that increase the spatial dimension of
the input images in steps of 2×, which in turn allows us
to incorporate reconstruction and identity-related objectives at
multiple scales into the training procedure.

Recent CNN-based SR models, (e.g., [12], [18]) exploit
contemporary network architectures, such as ResNets [40] and
Generative Adversarial Networks (GANs, [41]). These models
are closely related to our work, as we also make heavy use
of residual connections and incorporate a generative and a
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Fig. 2. Illustration of the C-SRIP model. The model consists of a generative SR network and an ensemble of face recognition models that serve as identity
priors during training. The figure shows all architectural details and is best viewed electronically. The kKnNsS notation introduced in [18] is used in the
figure to denote a convolutional layer with N convolutional filters with K × K support, applied with stride S in the spatial dimensions.

discriminative network in our model. While we do not rely
on GANs per se, our model does include a discriminative
(classification) model that constrains the solution space of the
generative SR network. However, our discriminative model
is pre-trained and frozen and is not optimized alternatively
with the generator, which (according to our preliminary exper-
iments) greatly improves training stability and still results in
realistic SR outputs. Finally, our work can also be seen as an
extreme case of the perceptual-loss (ℓp) image transformation
model from [17], which relies on comparisons of high-level
features extracted from a pretrained secondary network as
the learning objective for SR, instead of comparisons at
the pixel level. Our model follows a similar idea, but uses
identity (i.e., information at the highest possible semantic
level) to constrain the solution space of the generative SR
network. Thus, instead of network features, C-SRIP considers
the outputs of pretrained recognition networks during training.

B. Face Hallucination and Identity Constraints

Different from general single-image SR tasks, the solu-
tion space of face hallucination (or face super-resolution)
models is typically constrained to a set of plausible HR
facial appearances. As a result, much better performance
has been achieved with FH models at high magnification
factors than with domain-agnostic SR models [42]. Similarly
to other vision problems, research in FH is moving increas-
ingly towards deep learning and numerous CNN-based FH
models have been presented recently in the literature, e.g.,
[36], [42]–[52]. Here, we contribute to this body of work
with a novel deep face hallucination model. While the SR
network of our model is general and applicable to arbitrary
input images, we infuse domain-specific knowledge into the
model through the use of face images during training as well
as through the pretrained face recognition models that act
as a source of prior information for the SR-model learning
procedure.

Note that using identity information as a prior (or con-
straint) for SR models has been examined before [53], [54].
Henning-Yeomans et al. [55], for example, formulated a joint

optimization approach that maximized for super-resolution and
face recognition performance simultaneously. This approach
is conceptually similar to our work, but our approach is
more general in the sense that it can be applied with any
differentiable classification model. The approach from [55],
on the other hand, is focused only on linear feature extraction
techniques, e.g., PCA [56]. A CNN-based approach relying
on identity information was recently proposed in [57]. Here,
the authors proposed several different approaches for joint
training of a face recognition and face hallucination network.
However, they all involve separate loss functions for the
two separate models. C-SRIP, on the other hand, tries to
maximize the recognition performance of multiple pretrained
recognition models during training (via a cross-entropy loss)
by propagating it through the super-resolution network, and,
while pursuing a similar idea, is conceptually very different
from the procedure in [57].

III. PROPOSED METHOD

In this section we describe the proposed C-SRIP face
hallucination model and discuss its characteristics.

A. Overview of C-SRIP

As illustrated in Fig. 2, C-SRIP consists of two main
components: i) a generative SR network for image upscaling,
build around a powerful cascaded residual architecture, and ii)

an ensemble of face recognition models that serve as a source
of identity information during training.

Formally, C-SRIP aims to define a mapping, fθS R , from a
LR input face image x to a HR counterpart y, i.e.

fθS R : x → y, (1)

where θS R denotes the set of C-SRIP parameters that need to
be learned. To learn this mapping (i.e., the parameters θS R of
the SR network), C-SRIP uses a combination of multi-scale
SSIM and cross-entropy losses that jointly drive the training
procedure. Details on the C-SRIP model and its training
procedure are discussed in the following sections.
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B. The Cascaded SR Network

The generative part of the C-SRIP model, the cascaded SR
network, is a 52-layer CNN that takes a LR facial image as
input and super-resolves it at a magnification factor of 8×.
The network progressively upscales the LR input image using
a cascaded series of so-called SR modules, where each module
upscales the image only by a factor of 2× (see Fig. 2). This
progressive upscaling makes it possible to apply a loss function
on the intermediate SR results and ensures better control of
the training procedure in comparison to competing solutions
that exploit supervision only at the final scale. Furthermore,
the cascaded architecture allows us to solve a series of easier
and better conditioned problems using repeated bottom-up
inference with top-down supervision instead of one complex
problem with an overwhelming amount of possible solutions.

We design the SR network around a fully-convolutional
architecture that relies heavily on residual blocks [40] for all
processing within one SR module and sub-pixel convolutions
(i.e., expanding convolutional layers followed by pixel shuffle
operations, [58]) for image upscaling. Our design choices are
motivated by the success of fully-convolutional CNN models
in various vision problems [40], [59], [60] and the state-of-the-
art performance ensured by the sub-pixel convolutions in prior
SR work [18], [58]. Similarly to [18], the residual blocks of the
SR modules consist of two convolution–batch-norm–activation
sub-blocks, followed by a post-activation element-wise sum.
We ensure a constant memory footprint of all SR modules by
decreasing the number of filters in the convolutional layers
by a factor of 2 with every upscaling step. This maximizes
the capacity of the network and balances the computational
complexity across the SR modules. To upscale the feature
maps at the output of each SR module, we rely on sub-pixel
convolution layers proposed in [58]. These layers increase
the spatial dimensions of the feature maps by reshuffling and
aggregating pixels from multiple LR feature maps and, thus,
for every upscaling step of 2× reduce the number of available
feature maps by a factor of 4. We counteract this effect
by doubling the number of filters in the convolutional layer
preceding the sub-pixel convolutions and, consequently, ensure
that the capacity of the SR modules is not compromised due to
the upscaling procedure. After reaching the target resolution,
the feature maps are passed through one last residual block
and a final convolutional layer (with 3 output channels) that
produce the 8× super-resolved output RGB image.

The network branches off after each SR module to allow
for intermediate top-down supervision during training. Each
branch applies a series of large-filter convolutions to produce
intermediate SR resolution results at different scales (i.e.,
at 2× and 4× the initial scale) that are incorporated into the
loss functions discussed in Section III-D. The large filter (9×9)
convolutions are also applied at the beginning of the network
to increase the model’s receptive field size. Details on the SR
network architecture are given in Fig. 2 and Table I.

C. The Identity Prior

Using prior information to constrain the solution space
of SR models during training is a key mechanism in the
area of super-resolution [8], [25]–[27], [61], [62]. The main

TABLE I

ARCHITECTURE OF THE SR NETWORK. THE NETWORK CONSISTS OF

A SERIES OF SR MODULES. THE STRUCTURE OF THE MODULES IS

SHOWN IN BRACKETS IN THE FORM “[FILTER SIZE, NUMBER OF

FILTERS, STRIDE]”

Fig. 3. Each SR module adds high-frequency facial details during upscaling
(left). The recognition models are pretrained to respond to these details
only (right) and are, therefore, used as identity priors during training.

motivation for incorporating priors into SR models is to
provide a source of additional information for the learning
procedure that supplements the data-fidelity objectives and
contributes towards sharper and more accurate SR results.

An exceptionally strong prior in this context is identity.
Because identity information relates to the semantic content
(i.e.: Who is in the image?) and not the perceptual quality (i.e.:
How visually convincing is the image?) of the SR images,
it represents a natural choice for constraining the solution
space of FH models. In fact, it seem intuitive to think about FH
from both i) an image-enhancement as well as a ii) content-

preservation perspective and to incorporate both views into the
FH model for optimal results. While the image enhancement
perspective is covered in C-SRIP by a reconstruction-based
loss (see Section III-D), the content-preservation aspect is
addressed through an ensemble of face recognition models that
ensure that identity information is not altered during upscaling.

For C-SRIP we associate each recognition model with one
of the SR modules and use it as an identity prior for the
corresponding SR output, as illustrated in Fig. 2. Since each
SR module can be shown to add only high-frequency details to
the input images (see Fig. 3 left), we pre-train all recognition
models to respond only to the hallucinated details and ignore
the low-resolution content that is shared by the input and SR
images (see Fig. 3 right). By focusing exclusively on the added
details, we are able to directly link the recognition models to
the desired SR outputs and penalize the results in case they
alter the facial identity. This mechanism allows us to learn
the parameters of the SR network by considering an identity-
dependent loss in the overall learning objective.
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Fig. 4. Training data generation. The figure shows (from left to right): an example of the training image quadruplets generated with Guassing blurring and
decimation, residual images at three different spatial resolutions (corresponding to the residuals added by the 8×, 4× and 2× super-resolution steps). Note
that the residuals are generated by subtracting a blurred version of the reference image at the given resolution from the original reference image.

While in principle any differentiable recognition model
could be used as the identity prior for the FH model, we select
SqueezeNets for this work [63]. The main reason for our
choice is the lightweight architecture of SqueezeNet, which
does not impose significant runtime slowdowns due to its
relatively small memory and FLOPS footprint.

D. Training Details and SSIM Loss

We train the C-SRIP model in two stages. In the first stage,
we learn the parameters of the SqueezeNet models for all three
SR outputs (i.e, at 2×, 4× and 8× upscaling). In the second
stage, we freeze the the weights of the recognition models and
train the SR network with the combined (reconstruction and
identity) loss. Details of both stages are presented next.

1) Recognition-Model Training: Next to LR and HR image
pairs, we also require two intermediate reference images
between the lowest and the highest resolution to learn the
parameters of the recognition models and SR modules, as
illustrated in Fig. 2. To this end, we take a training set of N

high-resolution facial images {yi }
N
i=1 and apply a simple degra-

dation model on the images to generate N image quadruplets
for training, i.e., {xi , y2×

i , y4×
i , y8×

i }N
i=1, where xi represents

the LR input image, y2×
i and y4×

i stand for the intermediate SR
reference images at 2× and 4× the initial scale, respectively,
and the HR image y8×

i = yi corresponds to the ground
truth for the final 8× super-resolved output. The degradation
model uses Gaussian blurring and image decimation for down-
sampling and produces training data (i.e., image quadruplets
at different scales) as shown in Fig. 4 (left).

To train the recognition models, we construct residual
images that reflect the facial details that need to be learned by
the SR modules. The residual images, shown on the right side
of Fig. 4, are computed by smoothing the ground truth images
by a Gaussian kernel and subtracting the smoothed image from
the original, i.e., �y

j

i = y
j

i − g ∗ y
j

i , for j ∈ {2×, 4×, 8×},
where σ values of σ2× = 1/3, σ4× = 1 and σ8× = 7/3
are used with images at 2×, 4×, and 8× the LR image size,
respectively. We train the SqueezeNet models for classification
based on the generated residual images using the categorical
cross-entropy loss function LC E :

LC E (θS N ,�y) = −

K
∑

k=1

p�y(k) log p̂�y(k), (2)

where p�y denotes the ground truth class probability distrib-
ution of the residual image �y (i.e., p�y ∈ {0, 1}K is a class-
encoded one-hot vector), p̂�y ∈ R

K stands for the output
probability distribution produced by SqueezeNet’s softmax
layer based on �y, K stands for the number of classes in

the training data and θS N represents the parameters of the
network. We learn the parameters of all three recognition
models through backpropagation by minimizing the LC E loss
over the training dataset, i.e.:

θ̂
j

S N = arg min
θ

j
SN

E�y j

[

LC E (θ
j

S N ,�y j )
]

. (3)

The results of this first training stage are three SqueezeNet
face recognition models (parameterized with θ̂2×

S N , θ̂4×
S N , θ̂hr

S N ),
one for each image resolution, that respond only to the hal-
lucinated facial details. These trained models are then frozen
and serve as identity priors for the SR network.

2) SR Network Training: Standard reconstruction-oriented
loss functions used for learning SR models, such as L p error
norms, are known to produce overly smooth and often blurry
SR results [18]. We therefore design a new loss function for
our SR network around the structural similarity index (SSIM,
[28], [35]), and integrate it directly into our learning algorithm.
Specifically, we use a novel multi-scale version of SSIM as a
learning objective for the C-SRIP hallucination model.

Given a ground truth HR image y8× and the corresponding
SR network prediction ŷ8× = fθS R (x), we first define a
(single-scale) SSIM-based loss over the 8× super-resolved
image. Different from the original patch-based SSIM formu-
lation from [28], we formulate SSIM using Gaussian kernels
and convolutional operations that are easily implemented using
common deep learning frameworks. Note that we drop the 8×

superscript in the equations to keep the notation uncluttered:

LSS I M(θS R, y) =
1

2

(

1 − Ex

[

ˆSSI M(y, ŷ)
])

, (4)

where the SR network f is parameterized by θS R, Ex [·] stands
for the expectation operator over the spatial coordinates and

ˆSSI M(y, ŷ) is a spatial similarity map between y and ŷ, i.e.:

ˆSSI M(y, ŷ) =
(2µ12 + C1) � (2σ12 + C2)

(

µ2
1 + µ2

2 + C1
)

�
(

σ 2
1 + σ 2

2 + C2
) , (5)

where

µ1 = y ∗ g, µ2
1 = µ1 � µ1,

µ2 = ŷ ∗ g, µ2
2 = µ2 � µ2,

σ 2
1 = (y � y) ∗ g − µ2

1,

σ 2
2 =

(

ŷ � ŷ
)

∗ g − µ2
2,

µ12 = µ1 � µ2, σ12 =
(

y � ŷ
)

∗ g − µ12.

In the above equations ∗ denotes the convolution operator, �

denotes the Hadamard product, and the open parameters, g, C1

and C2, are defined as per the SSIM reference implementation
(given in [28]), i.e., g is an 11 × 11 Gaussian kernel with
σ = 1.5 and C1 ≈ 6.55, C2 ≈ 58.98. If we define a similar
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loss for the intermediate SR results at 2× and 4× the LR
image size, we arrive at the final multi-scale form of SSIM
that we use to learn the parameters of the SR network of
C-SRIP, i.e.:

L M SS I M(θS R, {y j }) =
∑

j∈D

LSS I M(θS R, y j ), (6)

where D = {2×, 4×, 8×}. It needs to be noted that this
multi-scale form of SSIM is different from existing multi-scale
formulations of structural similarity (e.g., [35]), where images
are down-sampled to capture image statistics at multiple
resolutions. With our multi-scale SSIM formulation, structural
similarity is measured between the ground truth images of dif-
ferent resolutions and the progressively upsampled LR images.
As we discuss in the experimental section, the proposed loss
results in better training characteristics compared to standard
L p norm based losses, which makes it easier to train (very)
deep SR networks, such as the one devised for C-SRIP.

Based on the pre-trained SqueezeNet models and the loss
introduced above, we define the overall loss of the C-SRIP
model as follows:

L(θS R, {y j })=
∑

j∈D

LSS I M(θS R, y j )+αLC E (θ
j

S N ,�y j ), (7)

where D = {2×, 4×, hr}, α is a weight parameter that
balances the relative impact of the reconstruction- and
recognition-based losses and θS R stands for the parameters
of the SR network that we aim to learn. The residual images
�y j are constructed during training as illustrated in Fig. 4
(right). We use backpropagation to minimize the loss over our
training data and find the parameters of the SR network θ̂S R,
i.e., θ̂S R = arg minθS R

Ey j

[

L(θS R, {y j })
]

.
Once the training is complete, we remove the recognition

models and network branches used to generate the interme-
diate SR results at 2× and 4× magnification factors and use
only the main output of the SR network for face hallucination.
The final SR network takes a LR image x of size 24×24 pixels
as input and returns an 8× upscaled 192 × 192 facial image
y8× at the output.

E. Implementation Details

1) Recognition Model: The recognition models for all three
output scales are implemented in accordance with the so-
called complex SqueezeNet architecture from [63]. The models
consist of 9 fire modules with intermediate shortcut con-
nections, followed by a global average pooling layer and
a softmax classifier on top. We train the first recognition
model to classify residual images at 2× the initial LR scale,
i.e., 48 × 48 pixels, the second to classify images at 4× the
initial scale, i.e., 96 × 96 pixels, and the last for recognition
of residual images of 192 × 192 pixels in size. To learn the
model parameters we use backpropagation and the Adam [64]
minibatch gradient descent algorithm, with a batch size of
128 and an initial learning rate of 10−4. The learning rate
is multiplied by a factor of 1

3 every 20 epochs. To avoid
over-fitting, we resort to data augmentation in the form of
random horizontal flipping and random crops. We employ an

early stopping criterion based on accuracy improvements on
the validation set. If no improvements are observed over 10
consecutive training epochs we stop the learning procedure
and assume the recognition model has converged.

2) The SR Network: The SR network consist of three SR
modules that are preceded by a convolutional layer with 512
large-scale filters of size 9 × 9 pixels. The SR modules are
implemented with p = 7 residual blocks that contain 512
filters in the first SR module, 256 filters in the second SR mod-
ule, and 128 filters in the last SR module, as shown in Fig. 2.
We set the number of filters for the final convolutional layer of
the SR modules, to 1024 for the first, 512 for the second and
256 for the third module. All filters are of size 3×3 pixels. For
the activations, we use Leaky Rectified Linear Units (LReLU).
The last residual block of the SR network has 128 filters 3×3
pixels in size. Before generating SR results at the output of
the network and in the off-branches, a convolutional layer with
three 9×9 filters is used followed by a clipping layer to ensure
that the SR RGB images are within the valid intensity range
of [0, 255]. A summary of the architecture is given in Table I.

IV. EXPERIMENTS

In this section, we present extensive experiments to validate
the performance of our model. We start the section with
a description of the datasets and performance metrics used
for the evaluation. Next, we report comparative results with
the state-of-the-art, conduct a fine-grained ablation study to
highlight the impact of our contributions and finally explore
the robustness and limitations of the proposed FH model.

A. Experimental Datasets

We select four popular face datasets for the experiments,
i.e., CASIA WebFace [65], Labeled Faces in the Wild
(LFW) [66], HELEN [66] and CelebA [67].

We use the CASIA WebFace dataset to learn the parameters
of C-SRIP. The dataset contains a total of 494, 414 images of
10, 575 distinct identities, (i.e., N = 494, 414; K = 10, 575)
and represents a mid-sized dataset very well suited for learning
CNNs for various face-related vision tasks. Because the dataset
ships with images of size 250 × 250 pixels that are relatively
loosely cropped around the face, we take only the central
192×192 pixel patches of the images and use these as the basis
for the experiments. Finally, we smooth the images using a
Gaussian kernel (with σ = 0.25 × down-sampling factor) and
sub-sample the images using bicubic interpolation. We do this
several times for each image to produce the image quadruplets
needed for training of the recognition models and the SR
network of C-SRIP - see Fig. 4 for an illustration.

For testing, we use the complete Labeled Faces in the Wild
(LFW) [66] dataset with 13, 233 facial images and 5, 749
subjects as well as images from HELEN [68] CelebA [67].
We select LFW for the experiments because it features images
of variable quality captured in unconstrained conditions and
thus represent a significant challenge for SR models. More
importantly, it contains no overlap with CASIA WebFace in
terms of identity, which is paramount to ensure a fair and
unbiased evaluation of the C-SRIP model. The HELEN and
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Fig. 5. Visual examples of the pre-processed images used in the experiments: (a) CASIA WebFace, (b) LFW, (c) HELEN and (d) CelebA. The presented
images are of size 192 × 192 pixels and represent the high-resolution ground truth. All images are cropped to contain only (or mostly) the facial area.

CelebA datasets, on the other hand, are selected to test the
performance of C-SRIP on images of different characteristics
than LFW and, hence, assess the generalization capabilities of
our FH model.

We observe that the HELEN and CelebA datasets contain
images of high resolutions, but also considerable amounts of
JPEG-compression artifacts. Therefore, we take the following
steps to preprocess the datasets. We first crop the facial regions
using the provided landmark coordinates to achieve similar
crops to the images present in the LFW and CASIA WebFace
datasets. Next, we take the highest-resolution images from
both datasets and down-sample them to 192×192 pixels using
Gaussian blur and bicubic interpolation. We then treat the
resulting square 192 × 192 pixel images as the target high-
resolution images. With this procedure we process a total of
330 images from HELEN and 1126 images from CelebA that
form the test set for our experiments. A comparison of the
face images from the four datasets is shown in Fig. 5.

B. Performance Metrics

To measure the performance of the tested SR techniques
we follow standard methodology from the literature [12], [16],
[18], [37], [69] and report our results using:

• The Peak Signal-to-Noise Ratio (PSNR), which is defined
as follows:

PSN R(y, ŷ) = 20 log10

(

L
√

M SE(y, ŷ)

)

[d B] , (8)

where L is the maximum possible pixel value of an image
(i.e., 255 for images stored with 8 bits per channel) and
MSE is the mean squared error between the original high-
resolution ground truth y and the super-resolved image
ŷ. PSNR transforms the squared-error measure into the
logarithmic space (in decibels) and considers only errors
between individual pixels. It is defined in the range of
(0,∞], where higher values indicate better resemblance
between the ground-truth and the SR images.

• The Structural Similarity (SSIM) index given by [28]:

SSI M(y, ŷ) =
1

M

M
∑

i=1

s(yi , ŷi ), (9)

where the local similarity function s(·, ·) that measures
the structural similarity between the M image patches yi

and ŷi (sampled from y and ŷ), is defined as

s(yi , ŷi ) =
(2µ1µ2 + C1) (2σ12 + C2)

(

µ2
1 + µ2

2 + C1
) (

σ 2
1 + σ 2

2 + C2
) . (10)

TABLE II

RECOGNITION PERFORMANCE OF THE SQUEEZENET MODELS FOR

DIFFERENT IMAGE SIZES OF THE TRAINING AND VALIDATION

DATA. RESULTS ARE REPORTED IN TERMS OF RANK-1
RECOGNITION RATES

In the above equation µ1 and µ2 denote the means of the
local patches yi and ŷi , σ 2

1 and σ 2
2 stand for their local

variances, σ12 represents the local covariance of yi and
ŷi , and C1 and C2 are hyperparameters that are set based
on the reference implementation of the SSIM authors,
i.e., C1 = 6.55, C2 = 58.98. The valid range of the
SSIM index is (0, 1], where 1 indicates that the ground
truth y and the super-resolved image ŷ are identical.

• The Visual Information Fidelity (VIF) [70] which quan-
tifies the fraction of the Shannon information in the
wavelet domain that is shared between the ground truth
face image y and the super-resolution result ŷ relative
to the information contained in y. The range of output
values for VIF is (0, 1], where the value is 1 for identical
ground truth and super-resolved images y and ŷ. It needs
to be noted that most of the SR models included in
the experimental evaluation are (implicitly) trained to
maximize either PSNR or SSIM (by minimizing MSE or
our SSIM-derived loss). Hence, we select VIF as a (third)
unbiased performance measure for the experiments, as it
is not directly related to PSNR or SSIM.

C. Model Training

Training of the C-SRIP model involves two sequential
stages: i) training of the three SqueezeNet face recognition
models that act as constraints for the C-SRIP learning proce-
dure, and ii) training of the actual SR-network.

For the first stage (i.e., the SqueezeNet training) we ran-
domly sample identities from CASIA WebFace, utilizing 90%
of the images for training and 10% for validation. We use
the standard cross-entropy loss and the Adam [64] optimiza-
tion algorithm with an initial learning rate of 10−3 and an
annealing factor of 10 every 50 epochs for the learning
procedure. As shown by the results in Table II, the recognition
models converge to the rank one recognition rate of 0.5138
(0.2974†) with 48 × 48px residual images, 0.7215 (0.4266†)
with 96 × 96px residual images and 0.8569 (0.5713†) with
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Fig. 6. Qualitative comparison with nine state-of-the-art SR models from the literature. The first two rows show sample results from LFW, the second two
rows show results from HELEN and the last two rows show results from the CelebA dataset. The first column of each row shows the input 24 × 24 pixel LR
image, upscaled with nearest neighbor interpolation for display purposes. The figure is best viewed zoomed in.

192 × 192px residual images on the training (†validation)
data. As expected, the performance decreases with a decreas-
ing size of the residual images and is adversely affected
by the lack of low-frequency information during training
(see, e.g., [72] for the expected performance of SqueezeNet for
face recognition). Nevertheless, the models contribute towards
accurate and visually convincing SR results, as evidenced by
the results in the following sections.

In the second training stage, we fix the weights of
the SqueezeNet models and learn the parameters of the
SR-network of C-SRIP. Because we need identity labels in
this stage as well, we again use the 90% vs. 10% data split
per identity for training and validation. With this setup we
train the SR network on 494, 414 CASIA WebFace images
using the objective in Eq. (7) that includes the SSIM-based
image-reconstruction loss and the recognition performance of
the SqueezeNet models. We balance the contribution of both
loss terms with a value of α = 0.001 and use backpropagation
with the Adam [64] minibatch gradient descent algorithm for
training. Due to the large memory footprint of the SR network
and the face recognition models, we select a relatively small
batch size of 8. The initial learning rate is set to 10

3 × 10−3

and is multiplied by 1
3 at the end of epochs 10, 25, 50 and

80. The learning procedure is stopped early if both the SSIM
and MSE values exhibit no improvements over 10 epochs.

We train all models on a workstation with two Nvidia GTX
Titan Xp GPUs. On this hardware, the SqueezeNet training
takes 1, 2, and 5 days, respectively, for the 2×, 4× and 8×

scale models. The training of the SR network with the identity
constraints included takes around 8 days. Once trained, the SR
network is capable of processing images at an average speed

of 19 ms/image on GPU in batch mode, or 30 ms/image in
real-time (i.e., single-sample batch) mode.

D. Comparison to the State-of-the-Art

We compare the C-SRIP model with 9 state-of-the-art SR
and FH models, i.e.: the Super-identity convolutional neural
network (SICNN) from [57], the Super-Resolution Convolu-
tional Neural Network (SRCNN) from [15], the Very Deep
Super Resolution Network (VDSR) from [12], the perceptual-
loss based SR model (ℓp) from [17], the Cascading Residual
Network (CARN) from [37], the Deep Laplacian Pyramid
Super-Resolution Network (LapSRN) from [22], the Super-
Resolution Generative Adversarial Network (SRGAN) from
[18], the Enhanced Deep Residual Network (EDSR) from [71]
and the Ultra Resolving Discriminative Generative Net-
work (URDGN) from [42]. Since some of these models
were introduced for general super-resolution problems, we re-
train all models on the 494, 414 CASIA WebFace dataset
and use open-source implementations of the authors (where
available) for a fair comparison. For ℓp we use features from
the fire2, fire3 and fire4 layers of our full-scale SqueezeNet
recognition network for the perceptual loss during training.
We include results for bicubic interpolation, a standard image
processing technique, as a baseline for the lower bound of
the image reconstruction performance. To make our results
reproducible, we make all code, model definitions and weights
publicly available from https://lmi.fe.uni-lj.si/

en/research/fh/.
1) Comparison at the Highest Magnification Factor: In

our first series of experiments, we compare the performance
of all SR models in the most challenging setting, i.e., with
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TABLE III

COMPARISON OF C-SRIP WITH NINE STATE-OF-THE-ART SR MODELS ON THE MOST CHALLENGING TASKS, WHERE 24 × 24 PIXEL IMAGES ARE

UPSCALED TO THE FINAL SIZE OF 192 × 192 PIXELS USING A MAGNIFICATION FACTOR OF 8×. THE BEST AND SECOND-BEST RESULTS ARE

HIGHLIGHTED IN RED AND BLUE, RESPECTIVELY. OUR C-SRIP MODEL ATTAINS HIGHLY COMPETITIVE PERFORMANCE ON ALL THREE

DATASETS

upsampling factors of 8×. The input to the models are 24×24
pixel images and the task is to generate 192 × 192 pixel
outputs. In this experiment, a staggering amount of 98.43% of
image pixels need to be hallucinated from the low-resolution
inputs.

From the visual results in Figs. 6 we see that with such high
magnification factors general SR models, such as SRCNN and
VDSR, do not manage to generate convincing face hallucina-
tion results and amplify noise present in the LR images. These
models fail to make use of the available facial context due to
their relatively low receptive fields. The LapSRN and CARN
models, which use a cascaded model topology similarly to
C-SRIP, produce better results, but still struggle to produce
crisp high-resolution face images. The EDSR [71] model is
able to generate more facial details despite not including any
priors or face-specific modifications, which is likely due to
its deper structure and higher model capacity. The SRGAN,
URDGN, SICNN and ℓp models further improve on this
by including secondary networks as constraints during SR
training. ℓp is consistently the best-performing model included
in our comparison, only slightly behind C-SRIP. However,
we notice it often adds high-frequency noise when trying to
minimize the perceptual loss of the convolutional maps of the
secondary network. We speculate the reason our model is not
susceptible to these errors is because it uses a global cross-
entropy loss defined over the secondary recognition networks
as opposed to the loss defined over local convolutional features
exploited by ℓp . We also observe competitive performance for
CARN, which performs slightly worse than C-SRIP and ℓp .

The findings made based on the visual results are also sup-
ported by the average PSNR, SSIM and VIF values reported
in Table III. C-SRIP results in the best overall performance in
terms of PSNR, SSIM and VIF values across all three datasets,
followed by ℓp , CARN, SICNN, EDSR, and URDGN, which
all produce strong performance metrics on the test datasets.
While providing reasonably convincing visual results, SRGAN
produces only average PSNR, SSIM and VIF scores and even
results in the lowest SSIM score among all tested models on
LFW. This result is expected and is observed regularly in the
literature [18] with GAN-based SR methods. SRCNN, VDSR
and LapSRN improve upon the Bicubic baseline in terms of

performance scores, but are less competitive in comparison to
the top performers of this experiment.

2) Comparison at Smaller Magnification Factors: The
architecture of C-SRIP allows us to super-resolve images at
several magnification factors (i.e., at 2×, 4×, and 8×) in one
forward pass through the model. To put the quality of the
generated upscaling results at the smaller magnification factors
into perspective, we re-train the nine competing models for the
2× and 4× upscaling tasks and report average PSNR, SSIM
and VIF scores for the three datasets in Table IV. While we
again use 24 × 24 pixel images as input, this problem is still
easier than the one explored in the previous section, as less
image content needs to be filled in by the SR models.

If we compare the reported results to the results in Table III
we see that most methods achieve consistently higher per-
formance scores as the magnifaction factor gets smaller.
C-SRIP is again very competitive and achieves clearly the best
performance among all tested methods for the 4× upsampling
task. For 2× upscaling, the C-SRIP model never ranks worse
than second, but is overall close to the runner up, the SRGAN
model, in this experiment. Interestingly, while the SRGAN
model was among the worst performers (in terms of perfor-
mance metrics, not visual quality) on the more challenging
8× uspcaling problem, it is very competitive in these simpler
tasks. However, we already see a collapse of the VIF score
when going from the 2× to the 4× upscaling tasks for SRGAN
- a trend that is even more evident in the transition from the 4×

to the 8× upsampling problem. We also observe considerable
performance from the ℓp, CARN, EDSR and SICNN models,
which produce relatively competitive performance scores and
result in visually solid HR reconstructions. SRCNN, VDSR,
URDGN and LapSRN clearly outperform the baseline inter-
polation procedure, but produce lower average PSNR, SSIM
and VIF scores on all three datasets compared to the best
performing models. A visual comparison of all SR models
with upscaling factors of 2× and 4× is shown in Fig. 7.

E. Ablation Study

In the next series of experiments, we perform an ablation
study (for the 8× upscaling problem) to assess the contribution
of the individual components of the proposed C-SRIP model.
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TABLE IV

COMPARISON WITH STATE-OF-THE-ART SR MODELS IN TERMS OF AVERAGE PSNR, SSIM AND VIF ACHIEVED ON LFW, HELEN AND CELEBA. THE

TABLE SHOWS RESULTS FOR UPSCALING FACTORS OF 2× AND 4× WITH LOW-RESOLUTION 24 × 24 PIXEL INPUT IMAGES. THE BEST AND

SECOND-BEST RESULTS FOR EACH UPSCALING FACTOR ARE HIGHLIGHTED IN RED AND BLUE, RESPECTIVELY

Fig. 7. Visual comparison of the SR results for magnification factors of 2× and 4×. The left block of images shows results for the magnification factor
of 2× and the right block of images shows results for 4×. Note that C-SRIP achieves the most convincing visual results. GT-48px and GT-96px stands for
ground truth images of size 48 × 48 and 96 × 96 pixels, respectively. The figure is best viewed electronically.

Towards this end, we train the following models using the
methodology and data described in Section IV-C and evaluate
their performance:

• Baseline: A baseline SR model without the cascaded SR
modules and intermediate supervision. The model consist
of 21 residual blocks similarly to the C-SRIP model, but
the three sub-pixel convolution layers for upscaling are all
placed at the end of the model. The model is trained using
standard MSE loss. This model is in essence equivalent
to the generator of the SRGAN approach from [18] and
is included here to demonstrate the importance of the
loss-functions and cascaded architecture used in C-SRIP.

• B+SSIM: The baseline SR model (Baseline), but trained
with the proposed SSIM-based loss. This model is again
equivalent to the SRGAN generator from [18] in terms of
topology and is included in the here to show the impact of
the loss-functions and cascaded architecture of C-SRIP.

• C+SSIM: The cascaded SR model, trained with the
proposed SSIM-based loss, but without the identity priors
and without multi-scale supervision i.e., the loss function
is only applied at the output of the model. This model is
used to demonstrate the effect of the cascaded architecture
and the importance of multi-scale supervision.

TABLE V

SUMMARY OF MODEL CHARACTERISTICS USED IN

THE ABLATION STUDY

• C+SSIM+M: The cascaded SR model, trained with
multi-scale supervision and the proposed SSIM-
based loss function, but without the identity priors.
C+SSIM+M is included in the ablation study to
highlight the importance of the of the multi-scale
supervision, but also the identity prior used during
C-SRIP training.

• C-SRIP: The C-SRIP model with multi-scale SSIM and
identity supervision. The complete C-SRIP model shows
the effect of putting all components together and, specifi-
cally, demonstrates the impact of the identity prior - when
compared to C+SSIM+M.

The main model characteristics of the models used in the
ablation study are summarized in Table V.
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TABLE VI

RESULTS OF THE C-SRIP ABLATION STUDY. THE BEST AND SECOND-BEST RESULTS ARE HIGHLIGHTED IN RED AND BLUE, RESPECTIVELY. WE SEE

THAT WITH EACH ADDITIONAL COMPONENT THE PERFORMANCE OF THE MODEL INCREASES ON AVERAGE. THE OVERALL BEST PERFORMANCE

ACROSS ALL THREE DATASETS IS OBSERVED FOR THE COMPLETE C-SRIP MODEL

Fig. 8. Visual results of the ablation study. The figure shows examples of super-resolved images generated by the models included in the experiments (the
top row of each example) and the details that are added by each model compared to the previous one (bottom row in each example). The images on the left
(marked LR Input) show the low-resolution inputs upscaled using nearest neighbor (NN) interpolation. We see that the Baseline model already ensures better
visual characteristics that the NN interpolation. We also observe significant jumps in visual quality when switching to the cascaded architecture (observe the
increase in image sharpness in the zoomed in images) and when adding identity information (see. for example, the eye details in the first example image).
The impact of including identity information is also clearly visible in the bottom row of each of the two examples, where the high-frequency details that are
added when going from C+SSIM-M to C-SRIP are presented. Best viewed zoomed in.

Fig. 9. Fine-grained ablation study. The graphs show (from left to right): average PSNR, SSIM, and VIF scores achieved across attribute-dependent subsets
of the CelebA dataset. The individual subsets have different numbers of images, i.e.: young (437), old (319), bald (51), hair (83), male (212), female (326),
crisp (247), blurry (52). Results show that the cascaded architecture, the multi-scale supervision and identity prior have the biggest impact on performance.

1) Impact of C-SRIP Components: The first thing to notice
from the results in Table VI is that with each additional
component, the performance of the model increases for the
majority of performance metrics - as indicated by the arrow
next to the performance scores. One performance decrease
we see is when switching from the MSE loss (Baseline)
to the SSIM-based loss (B-SSIM), which slightly lowers
the average PSNR score on LFW and HELEN, but results
in higher SSIM and VIF scores on all three datasets.

This result is expected, as PSNR is directly proportional to
MSE and, thus, SR models optimizing for MSE typically
achieve lower PSNR values than models using other loss
functions. Nevertheless, overall the SSIM-based loss con-
tributes towards improved performance and results in much
better training characteristics, since our models converged
faster and achieved significantly better SSIM and MSE scores
on the training and validation data than the MSE-based
models.
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TABLE VII

EFFECT OF USING DIFFERENT LOSS FUNCTIONS TO TRAIN THE SR NETWORK OF C-SRIP

Fig. 10. Qualitative comparison of the effect of using different loss functions
to train the SR network of the C-SRIP model. The recognition loss of C-SRIP
ensures the most convincing results, followed closely by the super-identity loss
from [57]. Best viewed zoomed in.

When looking at the impact of the cascaded architecture
and multi-scale supervision (going from B-SSIM to C-SSIM
and C-SSIM-M), we again observe considerable performance
improvements for all performance scores on LFW, HELEN
and CelebA. In fact, the change to the cascaded architecture
has the biggest impact of the average VIF scores among all
contributions on all three datasets.

On LFW and HELEN we see the biggest increase in the
average PSNR and SSIM scores when adding the multi-scale
identity supervision - see comparison between C-SSIM-M and
C-SRIP. This addition also results in one of the biggest visual
improvements of the SR images as seen in Fig. 8 - compare
details (e.g., details around the eyes, etc.) in the zoomed in
regions between C-SRIP and C+SSIM+M.

2) Fine-Grained Ablation Study: In order to investigate
the performance of C-SRIP with respect to specific image
characteristics and further assess the impact of the model
components, we perform a fine-grained ablation study using
the attribute labels of the CelebA dataset. Each label in CelebA
is binary and indicates the presence or absence of attribute in
the given image. We conduct our fine-grained ablation study
using the following attributes:

• Age or gender bias: We are interested in whether C-SRIP
performs differently on facial images of different age or
gender groups and how the individual model components
contribute towards the overall performance. To this end,
we run experiments on subsets of the data based on the
“male/female” and “young/old”attributes.

• Image quality: We are interested in how image recon-
struction quality is affected when the ground truth image
is of low quality. We, therefore, evaluate reconstruc-
tion performance on subsets of the dataset using the
“blurry/crisp” attribute, respectively.

Fig. 11. Comparison of hallucination results generated by: i) applying the
recognition networks directly on the (2×, 4× and 8×) hallucination outputs of
the SR modules (left), and ii) using the recognition loss over the hallucinated
residuals (middle column). Both approaches generated similar results, but
the proposed C-SRIP variant with residuals produces slightly less noisy HR
reconstructions - see zoomed in regions for details. Best viewed electronically.

• Hair: Hair is an obvious source of high-frequency details
in face images. We aim at investigating how reconstruc-
tion performance is affected by its absence. To this end,
we split the dataset using the “bald/hair” attribute, and
evaluate each subset separately.

From the results in Fig. 9 we see that our model performs
better on images of young people than the old, which is likely
a consequence of smoother facial features with the young.
We observe no significant gender bias in our model and inter-
estingly also no significant difference between the performance
with crisp and blurry ground truth images. As expected, our
model performs slightly better on images of bald people than
it does on images that contain hair, although in this case the
number of samples in each class is again fairly small - see
caption of Fig. 9.

In terms of contribution of the individual model com-
ponents, the results are similar as in the previous section:
the cascaded architecture results in the biggest performance
increase in terms of the average VIF score across all image
subsets, while the multi-scale supervision and identity con-
straints contribute towards the biggest performance increase
when measured through the average PSNR and SSIM values.

3) Evaluation of the Identity Loss: We now evaluate the
proposed identity loss in detail and compare it to other
alternatives from the literature.

For the first experiment, we train multiple SR models using
our cascaded SR network architecture and replace the C-SRIP
recognition loss defined by Eq. (7) with competing losses
from the literature. Specifically, we compare our loss with the
following loss functions:



2162 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 29, 2020

TABLE VIII

IMPACT OF THE IDENTITY PRIOR ON FACE HALLUCINATION PERFORMANCE WITH UPSAMPLING FACTORS OF 2× AND 4×. RESULTS SHOW THAT USING

IDENTITY INFORMATION DURING TRAINING IS LESS IMPORTANT FOR SIMPLER FH PROBLEMS WITH LOWER UPSCALING FACTORS

TABLE IX

ROBUSTNESS OF C-SRIP TO FACIAL SCALE CHANGES - REPORTED IN

TERMS OF AVERAGE PSNR, SSIM AND VIF SCORES

TABLE X

ROBUSTNESS OF C-SRIP TO FACIAL ROTATIONS - REPORTED IN TERMS

OF AVERAGE PSNR, SSIM AND VIF SCORES

• Perceptual loss (PL): This loss penalizes the difference
between low-level (fire2 and fire3 layer) feature repre-
sentations of the super-resolved and reference HR images
within the pretrained SqueezeNet face recognition model.

• Super-identity loss (SL): Here, we adopt the super-identity
training framework from [57]. Specifically, we train the
super-resolution and recognition networks from scratch
and learn them concurrently with the so-called super-
identity learning objective, which is a combination of
a pixel-wise MSE loss, a MSE loss between normal-
ized high-level embeddings, and a face recognition loss.
We use the authors’ method of training the hallucina-
tion and recognition methods interchangeably in each
iteration.

• Adversarial loss (AL): We also train our super-resolution
network using the GAN framework proposed for super-
resolution by [18]. Here, we use a shallow 8 layer CNN
model as the discriminator for the adversarial training to
improve the training stability in the adversarial setting.

From the results in Table VII and Fig. 10 we see that the
proposed recognition loss is best suited for our SR network
architecture, as the C-SRIP again produces the highest quality
HR reconstructions. Similarly to the original ℓp model, our SR
network trained with the perceptual loss learns to resolve some
facial details, but again results in a high-frequency pattern that
overlays the HR reconstructions. The super-identity loss gen-
erates visually convincing HR reconstructions, but performs
somewhat worse than C-SRIP. The model trained with the
adversarial loss performs slightly better than the model trained
with the perceptual loss and the SRGAN model used in the
comparative experiments in Section IV-D.

In our second experiment, we examine the impact of feeding
the hallucinated residuals instead of complete super-resolution
output to the pretrained recognition models when learning

Fig. 12. Robustness to changes in facial scale: HR reconstructions generated
from 24 × 24 LR faces of different size (top), HR ground truth (bottom). The
figure on the left corresponds to the training setting (i.e., 192px crop).

Fig. 13. Robustness of C-SRIP to image rotations. The top row shows the
HR reconstructions generated from rotated 24×24 LR faces. The bottom row
shows the HR ground truth.

the C-SRIP SR network. To this end, we retrain all three
face recognition networks (for 2×, 4× and 8× magnification
factors) on complete face images (instead of using only the
hallucinated high-frequency residuals) and use them to train
the C-SRIP model from scratch. We again use the multi-scale
SSIM loss as our data fidelity term.

The comparison of both C-SRIP variants is presented
in Table VII and Fig. 11. We observe that both C-SRIP
variants performs similarly well both in terms of performance
scores on all three test datasets, as well as in terms of visual
comparison. We do notice, however, that the C-SRIP variant
trained with complete images (i.e., without penalizing the
residuals) produces slightly noisier results on average, which
can be seen from the zoomed in region at the top of Fig. 11.

So far, we have evaluated the impact of the identity prior
only for the 8× upsampling task. In the third experiment of
this series, we examine the impact of the recognition loss
for smaller upscaling factors, i.e., 2× and 4×. In Table VIII
we show a comparison of the performance scores achieved
when using the C-SSIM-M (cascaded architecture + multi
scale SSIM supervision) and C-SRIP (all components includ-
ing the identity prior) models. Interestingly, adding identity
information for the 2× upscaling tasks does not seem to help
much over a pure reconstruction loss. For the 4× upscaling
tasks results do improve, but not as much as observed in the
most challenging scenario - the 8× upscaling problems. These
results suggest that the identity prior becomes important as
the hallucination problem gets harder. For these challenging
problems the identity information provides additional cues that
contribute to higher-quality FH results, for easier problems,
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Fig. 14. Examples of poor SR results produced by the C-SRIP model considering PSNR, SSIM and VIF scores. The four columns of each image group
correspond to (from left to right): the input LR image, bicubic interpolation, C-SRIP and the target HR image. The captions provide information on the
possible reason for the weak performance.

on the other hand, the identity prior is not as effective. The
reported performance scores also provide insight into the
results from Table IV, where we found the C-SRIP model
to be less dominant compared to other models for smaller
magnification factors.

F. Robustness of C-SRIP

Face detection is a necessary first pre-processing step when
considering face hallucination in a real-life deployment sce-
nario. In this step, the face images may be detected at different
scales and under different rotations. In our next experiments,
we are interested in how well our model can handle variations
in scale and orientation of the input faces. To this end,
we perform two experiments, where we systematically vary
the scale of the faces within the image and where we rotate
the cropped low-resolution faces around their center. We use
images from the LFW dataset for this experiment. For the
scale experiment, we use differently sized crops from the LFW
dataset. We start with the training setting of 192 × 192 pixels
and and gradually increase the size of the crops to the final
size of 250 × 250 pixels. We then rescale the images to a
fixed input size for the C-SRIP model of 24 × 24 pixels.
For the rotation experiment, we rotate images counter-clock
wise from 0◦ to 90◦ with a step size of 15◦ and observe
differences in performance. The generated scale and rotation
variations clearly exceed the variability typically induced by a
face detector, but help to demonstrate the behaviour of C-SRIP
under extreme scale and rotation changes.

From the results in Tables IX and X we observe that C-
SRIP performs relatively well for settings that are close to the
training setup, but start to degrade in performance when larger
deviations from the training setting are present. Nonetheless,
after an initial drop in performance additional scale and
rotation changes have only a limited effect on performance.
If we look at the example hallucination results in Figs. 12
and 13, we see that relatively convincing reconstructions are
achieved for the first two or three scale and rotation variations,
but the results clearly (visually) deteriorate as the difference
to the training setup gets larger.

The reason for the performance drop, we believe, can
be found in the characteristics of the training data, which
contains mostly frontal upright faces with minor scale and

rotation variations. Our model naturally learns to best super-
resolve images matching the training setup and deteriorates
in performance with major deviations from the training char-
acteristics. However, note that the robustness to variations in
scale and rotations could be improved, e.g., by incorporating
additional alignment procedures into the model, similarly
to [51], [73].

G. Limitations of C-SRIP

To evaluate the weaknesses of the C-SRIP model, we exam-
ine in Fig. 14 a few example images that result in the worst SR
results on the datasets used in our experiments. We identify a
few potential reasons for the poor SR performance:

• High-frequency details not related to the face.
Image 14(a), contains a great amount of high-frequency
details (background, hair). Our SR network is guided by
face-recognition models that ignore non-face regions.

• Significant occlusion. In images 14(a) and 14(d), the face
is partially occluded by a foreground object. The
occlusion changes the global facial appearance, which
adversely affects C-SRIP’s reconstruction capabilities.

• Significant pose variations. In 14(c), the subject’s face
is partially obscured due to the profile pose. Few sam-
ples in our training dataset feature profile poses, which
deteriorates performance on this type of facial images.

• Low-quality HR image. Image 14(b) has a significant
amount of noise, which is reduced during down-sampling
and cannot be reconstructed.

H. Qualitative Results on Real-World Images

The results presented so far have focused on images that
were artificially down-sampled using Gaussian blurring and
image sub-sampling. This is a standard approach used in the
super-resolution literature needed to quantify the performance
of the trained upsampling models. In this last section, we use
a few example images from the web and upscale selected
faces using C-SRIP and a couple of baseline techniques.
Note that this task is significantly more challenging that
the experiments presented in the previous sections, as the
degradation function that generated the LR images has not
been used to train the SR models. Since no ground truth HR
images are available, it is not possible to report performance
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Fig. 15. Application of C-SRIP on real-world images taken from the web. The images show crowds with several real-life LR faces. On the right side of each
image are super-resolution results generated with C-SRIP (bottom) and two interpolation baselines for an upscaling factor of 8×. C-SRIP is able to recover
significantly more detail from the input LR images than the nearest neighbour (top) and bicubic interpolation-based upsampling methods (middle).

scores for this experiments and we only show qualitative
results in Fig. 15. We super-resolve images using an upscaling
factor of 8× for the presented examples. As can be seen,
C-SRIP is able to recover more facial detail from the tiny input
images than the nearest neighbour and bicubic interpolation-
based baselines and produces considerably crisper results.

V. CONCLUSION

We have presented a novel CNN-based model for face
hallucination from very low-resolution images (i.e., 24 × 24
pixels) at high magnification factors. We have shown that
the proposed model improves SR results on face images
compared to both existing general super-resolution and face
hallucination models. In terms of future work, we see the
possibility of adapting our model to other modalities, e.g., to
video sequences via recurrent attention models.
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