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Abstract—With the goal of matching unknown faces against
a gallery of known people, the face identification task has been

studied for several decades. There are very accurate techniques to

perform face identification in controlled environments, particu-
larly when large numbers of samples are available for each face.

However, face identification under uncontrolled environments

or with a lack of training data is still an unsolved problem. We
employ a large and rich set of feature descriptors (with more

than 70 000 descriptors) for face identification using partial least

squares to perform multichannel feature weighting. Then, we

extend the method to a tree-based discriminative structure to

reduce the time required to evaluate probe samples. The method

is evaluated on Facial Recognition Technology (FERET) and

Face Recognition Grand Challenge (FRGC) data sets. Experi-

ments show that our identification method outperforms current

state-of-the-art results, particularly for identifying faces acquired

across varying conditions.

Index Terms—Face identification, feature combination, feature

selection, partial least squares (PLS).

I. INTRODUCTION

F ACE recognition has become a very active research area in

recent years, mainly driven by its broad applications such

as in public security, human–computer interaction, and financial

security. The two primary face recognition tasks are identifica-

tion and verification. In the identification task, an image of an

unknown person is matched to a gallery of known people. In

verification, the task is to accept or deny the identity claimed by

a person. Therefore, given two face images, the goal is to decide

whether the two images are of the same individual or not. The

method described in this paper addresses the identification task.

Previous research has shown that face recognition under

well-controlled acquisition conditions is relatively mature and

provides high recognition rates even when a large number of

subjects is in the gallery [1], [2]. However, when this task is

performed under uncontrolled conditions such as uncontrolled
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lighting and changes in facial expressions, recognition rates

significantly decrease. Face appearances may change when

acquisition conditions are uncontrolled, making the recognition

problem harder. For example, there can be some extreme

illuminations, expressions, and out-of-focus images.

Due to the large size of realistic galleries, not only the

accuracy but also the scalability of a face identification system

needs to be considered. The main scalability issues are the

following. First, the number of subjects in the gallery can be

quite large; hence, common search techniques such as brute

force nearest neighbor employed to match probe faces do

not scale well. Second, in applications such as surveillance

and human–computer interaction, in which new subjects are

incrementally added, the necessity of rebuilding the gallery

models every time a new subject is added compromises the

computational performance of the system.

Focusing on the benefits provided by combining an in-

creasing number of feature descriptors weighted by partial least

squares (PLS) to emphasize those that best discriminate among

different subjects, this paper focuses on the robustness under

uncontrolled acquired images and scalability in large galleries.

In order to reduce the problems associated with data collected

under uncontrolled conditions, we consider a combination of

low-level feature descriptors based on different clues (such ap-

proaches have provided significant improvements in object de-

tection [3], [4] and recognition [5], [6]). Then, feature weighting

is performed by PLS, which handles very high-dimensional data

presentingmulticollinearity andworks well when very few sam-

ples are available [4], [7]–[10]. Finally, a one-against-all classi-

fication scheme is used to model the subjects in the gallery.

A downside of employing a one-against-all classification

scheme is the imbalance of the class distributions. However,

studies have shown that data imbalance presents little influence

on the performance of PLS modeling [11], [12]. Barker and

Rayens [11] pointed out that PLS involves eigendecomposition

of the between-class scatter matrix solely, which only involves

calculation of mean vectors of different classes. This does not

depend on the number of samples in each class. In addition,

Qu et al. [12] showed that the weight estimation performed

by PLS helps it to extract favorable features for unbalanced

classification.

To make the method scalable to the gallery size, we modify

the one-against-all approach to use a tree-based structure. At

each internal node of the tree, a binary classifier based on PLS

regression is used to guide the search for the matching subject

in the gallery. The use of this structure provides substantial re-

duction in the number of comparisons when a probe sample is

matched against the gallery.

The main contributions of this paper are the following: 1) the

use of PLS regression to weight a combination of a large number

of feature descriptors (with more than 70 000 descriptors) that

1057-7149/$26.00 © 2011 IEEE



2246 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 21, NO. 4, APRIL 2012

capture different visual information in a one-against-all classi-

fication scheme with highly unbalanced class distributions with

a single or very few samples in the positive class; and 2) the

application of a tree structure, also based on PLS, to reduce the

computational cost of matching probe samples to the gallery.

Our proposed face identification approach outperforms the

state-of-the-art techniques in most of the comparisons consid-

ering standard face recognition data sets, particularly when data

are acquired under uncontrolled conditions such as in experi-

ment 4 of the FRGC data set. In addition, our approach can

also handle the problem of insufficient training data, i.e., ex-

perimental results show high performance when only a single

sample per subject is available. Finally, due to the incorporation

of the tree-based structure, a significant number of comparisons

can be saved when compared to approaches based on brute force

nearest neighbor search.

The rest of this paper is organized as follows. Section II

reviews the related work in face identification and feature

descriptors. In Section III, we present our face identification

method using large feature sets and PLS in a one-against-all

classification scheme, and then, we describe a tree-based struc-

ture to speed up the identification process. Experimental results

with analysis and comparisons with state-of-the-art methods

are shown in Section IV. Finally, Section V concludes with

some final remarks.

II. RELATED WORK

Face recognition research has achieved significant progress

over the past decade. There are some recent and comprehensive

surveys on face recognition written by Tolba et al. [1] and Zhao

et al. [2]. Most previous works are based on statistical learning

or local matching methods [13]. Methods in the former category

use the whole face region to perform recognition and include

techniques such as subspace discriminant analysis, support

vector machine (SVM), and AdaBoost. These methods suffer

from the generalizability problem due to the unpredictable

distribution of real-world testing face images, which might be

dramatically different from the training samples [14]. Methods

in the latter category first locate several facial features and then

classify faces according to local statistics.

The use of low-level feature descriptors has been an effective

approach in face recognition [5], [14]–[17]. Scale-invariant

feature transform (SIFT) and histogram of oriented gradients

(HOG), which can be viewed as a quantized code of the facial

gradients, are used in face recognition as effective descriptors

[18], [19]. Local binary patterns (LBP) and Gabor filters are de-

scriptors most widely used in face recognition. LBP is invariant

to monotonic photometric change and can be efficiently ex-

tracted. Gabor features are characterized by spatial frequency,

spatial locality, and orientational selectivity for coping with

image variability such as illumination variations. There are sev-

eral combinations or variations based on these LBP and Gabor

descriptors [5], [14]–[16]. In addition, by varying a sampling

radius and combining the LBP images, a multiresolution

representation based on LBP called multiscale LBP (MSLBP)

[20] can be obtained. This representation has been suggested

for texture classification, and the results reported for this appli-

cation show better accuracy than that of the single-scale LBP

method. Recent research has focused on parameter learning

with a HOG-like template [21], [22]. Other LBP variants,

including three-patch-based LBPs, four-patch-based LBPs

[23], and Patterns of Oriented Edge Magnitudes [24] have been

introduced for face recognition.

Most recently developed face recognition systems work well

when images are obtained under controlled conditions or when

the test image is captured under similar conditions to those for

the training images. However, under varying lighting, aging

effects, or blurring images, their performance is still unsat-

isfactory. To perform recognition under fairly uncontrolled

conditions, Tan and Triggs [17] proposed a preprocessing chain

for illumination normalization. They used local ternary patterns

and a Hausdorff-like distance measure. Holappa et al. [25]

used LBP texture features and proposed a filter optimization

procedure for illumination normalization. Aggarwal et al. [26]

presented a physical model using Lambert’s law to generalize

across varying situations. Shih and Liu [27] proposed a new

color space LC C as a linear transformation of the RGB color

space. Using the low-frequency Fourier phase information,

Ojansivu et al. [28] proposed a texture descriptor called local

phase quantization (LPQ), which is insensitive to blurring and

rotation. Liu [29] integrates Gabor image representation, a

novel multiclass kernel Fisher analysis method, and fractional

power polynomial models to improve face recognition perfor-

mance.

In recent years, face recognition via sparse representa-

tion-based classification (SRC) [30] has become very popular.

The method uses an -minimization model, representing a test

sample as the sparse combination of the training dictionary.

Although SRC performs well when sufficient training images

are available, it is still inadequate for many real-world appli-

cations where only a single sample per subject is available.

Lui and Beveridge [31] proposed the use of Grassmann reg-

istration manifolds (GRM), which embed registration images

(synthesized images generated by perturbing affine registration

parameters of an image) on a Grassmann manifold. They use

those perturbed images to form a tangent space and embed

the approximated tangent spaces on a Grassmann manifold. A

chordal distance is then employed to compare subspaces.

Another challenge is that most current face recognition al-

gorithms perform well when several training images are avail-

able per subject; however, they are not adequate for scenarios

where a single sample per subject is available. In real-world ap-

plications, one training sample per subject presents advantages

such as ease of collecting galleries, low cost for storage, and

lower computational cost [32]. In [33], Liu et al. proposed rep-

resenting each single (training and testing) image as a subspace

spanned by synthesized shifted images and designed a new sub-

space distance metric. De la Torre et al. [34] proposed repre-

sentational oriented component analysis (ROCA), an extension

of oriented component analysis (OCA) [35], to perform face

recognition when just one sample per training class is avail-

able. ROCA combines several OCA classifiers based on dif-

ferent image representations of the unique training sample.
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Regarding the scalability issues previously discussed, there

is also previous work focused on scaling recognition systems to

large data sets [36]. A technique for combining rejection clas-

sifiers into a cascade is proposed by Yuan et al. [37] to speed

up the nearest neighbor search for face identification. Guo and

Zhang [38] proposed the use of a constrained majority voting

scheme for AdaBoost to reduce the number of comparisons

needed.

III. PROPOSED METHOD

Here, we first describe the feature extraction process and a

brief review of PLS regression. Then, the proposed face identifi-

cation approach is explained in two steps. Initially, we describe

the one-against-all approach, then we describe the tree-based

structure, which improves scalability when the gallery is large

and reduces the computational cost of matching probe samples.

A. Feature Extraction

After cropping and resizing the faces, each sample is decom-

posed into overlapping blocks, and then, a set of low-level fea-

ture descriptors is extracted from each block. The feature extrac-

tion methods used capture information related to shape (HOG

[39]), texture (captured by LBP [15] and MSLBP [20]), color

information (captured by averaging the intensities of pixels in a

block, referred to as mean feature), and salient visual properties

(captured by Gabor filters [40]).

HOG captures edge or gradient structures that are character-

istic of local shape. According to Dalal and Triggs [39], a conse-

quence is a controllable degree of invariance to local geometric

transformations, providing invariance, for example, to transla-

tions and rotations smaller than the local spatial or orientation

bin size.

LBP characterizes the spatial structure of the local image tex-

ture and is invariant to monotonic transformations of the pixel

gray values [15]. Its original version labels the pixels of an

image by thresholding the 3 3 neighborhood with intensity

with respect to its intensity of the center

pixel , then defines

(1)

Then, the LBP pattern of the image neighborhood is obtained

by summing the corresponding thresholded values

weighted by a binomial factor of as

LBP (2)

Finally, a 256-bin histogram of the resulting labels is used as a

feature descriptor for a patch of the image.

According to the size of the neighborhood employed, there

are different versions of LBP. The 3 3 version described

above is denoted as LBP due to the use of eight adjacent pixels

radially spaced by 45 . LBP can be also employed in a multires-

olution framework by considering concentric circles of different

radii called MSLBP [20]. This method has not been widely used

in face recognition.

In this paper, in addition to the basic single-scale LBP oper-

ator, we consider the MSLBP with setup LBP (8 pixels on

a circle whose radius is 2 pixels) and LBP (8 pixels on a

circle whose radius is 4 pixels). The two resulting histograms

are simply concatenated and used as descriptors.

Gabor filters are widely used in object recognition since they

capture a number of salient visual properties, including spatial

localization, orientation selectivity, and spatial frequency selec-

tivity, quite well [40]. They are robust to illumination varia-

tions since they detect amplitude-invariant spatial frequencies

of pixel gray values. Gabor filters most commonly used in face

recognition have the form

(3)

where and define the orientation and scale of the Gabor ker-

nels , denotes the norm operator, and the wave

vector is where and

with being the maximum frequency and

being the spacing factor between kernels in the frequency do-

main. In this paper, we used , , and .

The Gabor representation of a face is derived from con-

volving the grayscale face image with the Gabor filters. Let

be the face image; its convolution with a Gabor filter is

defined as follows:

(4)

where denotes the convolution operator. Five scales

and eight orientations are

used here, which results in 40 Gabor filters. For each Gabor

filter, one magnitude is computed at each pixel position, re-

sulting therefore in 40 descriptors per pixel. Then, the final

feature vector is obtained by downsampling the Gabor features

by a factor 4 (one per four rows and columns) in order to reduce

the dimensionality of the feature vector to manageable sizes.

After the feature extraction process is performed for all

blocks inside a cropped face, descriptors are concatenated,

creating a high-dimensional feature vector . This vector is

used to describe the face.

B. PLS Regression

PLS is a method for modeling relations between sets of ob-

served variables by means of latent variables. The basic idea of

PLS is to construct new predictor variables, i.e., latent variables,

as linear combinations of the original variables summarized in

a matrix of descriptor variables (features) and a vector of

response variables. Detailed description of the PLS method can

be found in [7], [41], and [42].

Let denote an -dimensional feature space, and let

be a scalar space representing the response variable. Let

the number of samples be . PLS decomposes a mean-centered

matrix and a mean-centered vector into

where and are matrices containing extracted latent

vectors, the matrix and the vector represent

the loadings, and the matrix and the vector

are the residuals. Using the nonlinear iterative PLS (NIPALS)

algorithm [7], a set of weight vectors is constructed, stored in

matrix , such that

cov cov (5)
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Fig. 1. One-against-all face identification approach. (a) Construction of the PLS regression model for a subject in the gallery. (b) Matching of a probe sample
against the subjects in the gallery. The best match for a given probe sample is the one associated with the PLS model presenting the highest regression response.

where denotes the 2-norm of vector , is the th column

of matrix , is the th column of matrix , and cov

is the sample covariance between latent vectors and . After

extracting latent vectors and , matrix and vector are

deflated by subtracting their rank-one approximations based on

and . This process is repeated until the desired number of

latent vectors has been extracted.

Once the low-dimensional representation of the data has been

obtained by NIPALS, regression coefficients can be esti-

mated by

(6)

The regression response for a feature vector is obtained by

(7)

where is the sample mean of .

It is important to point out that, although the number of weight

vectors used to create the low-dimensional representation of

data matrix is , (7) shows that only a single dot product

of a feature vector with the regression coefficients is needed to

obtain the response of a PLS regression model, and it is this re-

sponse that is used to rank faces in a gallery. This characteristic

makes the use of PLS particularly fast for finding matches for

probe samples, in contrast to other methods where the number

of dot product evaluations depends on the number of eigenvec-

tors considered, which is quite large in general [43].

C. One-Against-All Approach

The procedure to learn models for subjects in the gallery

, where represents exemplars of each

subject’s face, is illustrated in Fig. 1(a) and described in detail as

follows. Each is composed of feature vectors extracted from

cropped faces containing examples of the th subject.

Since face identification is a multiclass problem, a

one-against-all scheme is used to learn a PLS regression

model for each subject in the gallery. Therefore, when the th

subject is considered, the remaining samples are used

as counterexamples of the th subject. PLS will automatically

give higher weights to more discriminatory features when

building each model. To build the PLS model, samples be-

longing to the th subject will have response variable

and counterexamples will have . In addition, if the

face data set provides a training set, we also add those samples

(excluding samples from the subject under consideration) as

counterexamples of the th subject. Experiments show that

the addition of training samples as counterexamples improves

recognition rates.

After all models are learned in the gallery, PLS regres-

sion models are stored to be used later to evaluate the responses

for a probe sample. When a probe image is presented, its fea-

ture vector is first extracted and then projected onto each one of

these models. The best match for the probe image is chosen to

be the one associated with the PLS model presenting the highest

response (due to the scheme chosen to label examples and coun-

terexamples, a higher regression response for the th PLS model

indicates that the probe sample is more similar to the subject as-

sociated with this model), as illustrated in Fig. 1(b). Algorithm

1 summarizes both the learning and matching procedures for the

one-against-all scheme employed.

Algorithm 1: One-against-all approach.

Learning:

extract features for all subjects

for to do

set samples of the th subject as positive exemplars

set remaining samples as counterexamples

build the th PLS regression model

save regression coefficients

end

Matching of probe samples:

foreach probe sample do

extract features from

for to do

end

set rank-1 match of to be subject

end
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Fig. 2. Tree-based structure used to optimize the search for matches to a probe sample. Each internal node contains a PLS regression model used to guide the
search, as shown in detail for node , which has a PLS model constructed so that the response directs the search either to node or node . In this example,
the first path to be traversed is indicated by arrows (in this case, it leads to the correct match for this particular probe sample). Alternative search paths are obtained
by adding nodes that have not been visited into a priority queue (in this example, nodes and will be the starting nodes for additional search paths). After
pursuing a number of search paths leading to different leaf nodes, the best match is chosen to be the one presenting the highest response (in absolute value).

D. Optimization Based on a Tree-Based Structure

In terms of scalability, the one-against-all classification

scheme described in the previous section has the drawback that,

in order to find the best match to a probe sample, the feature

vector representing this sample needs to be projected onto all

PLS models learned for the subjects in the gallery (common

problem faced by methods that estimate matching scores using

brute force nearest neighbor search [37]).

To reduce the need for projecting features onto all PLS

models to find the best match for a probe sample, we construct

a binary tree in which each node contains a subset of the

gallery subjects , where , as pre-

viously defined. A splitting procedure is used to decide which

elements of will belong to the left and right children of ,

assigning at least one sample to each child. Each internal node

is associated with a PLS regression model, used afterward to

guide the search when probe samples are analyzed. In order to

build the regression model for a node, the subjects assigned to

the left child are defined to have response 1 and the subjects

assigned to the right child are defined to have response 1.

The splitting procedure and the building of PLS models are

recursively applied in the tree until a node contains only a

single subject (leaf node).

The application of the described procedure for a gallery with

subjects results in a tree containing leaf nodes and

PLS regression models located on the internal nodes.

We consider two approaches to split subjects between the

children nodes. First, a procedure that uses principal component

analysis (PCA) to create a low-dimensional subspace (learned

using samples from a training set) and then the K-means algo-

rithm clusters data into two groups, each one is assigned to one

child. The second approach chooses random splits and divides

the subjects equally into two groups. We evaluate these splitting

procedures in Section IV-C .

When a feature vector describing a probe sample is analyzed

to find its best matching subject in the gallery, a search starting

from the root of the tree is performed. At each internal node, the

feature vector is projected onto the PLS model, and according

to its response, the search continues either from the left or from

the right child. The search stops when a leaf node is reached.

Fig. 2 illustrates this procedure.

According to the experimental results shown in Section IV-C,

the traversal of a few search paths is enough to obtain the best

match for a probe sample. Starting nodes for alternative search

paths are stored in a priority queue. An internal node is

pushed into the priority queue when its sibling is chosen to be in

the current search path. The priority associated with is pro-

portional to its response returned by the PLS regression model

at its parent. Finally, since each search path leads to a leaf node,

the best match for a given probe sample is chosen to be the one

presenting the highest response (in absolute value) among the

leaf nodes reached during the search.

IV. EXPERIMENTS

Here, we evaluate several aspects of our proposed approach.

Initially, we show that the use of the low-level feature descrip-

tors analyzed by PLS in a one-against-all scheme, as described

in Section III-C, improves recognition rates over previous

approaches, particularly when the data are acquired under

uncontrolled conditions (changes in illumination, expression,

and aging effects). Then, we demonstrate that the tree-based

approach introduced in Section III-D obtains comparably high

recognition rates with a significant reduction in the number of

projections.

The method is evaluated on two standard data sets used

for face recognition, namely, Facial Recognition Technology

(FERET) and Face Recognition Grand Challenge (FRGC)

version 1. The main characteristics of the FERET data set are

that it contains a large number of subjects (single image per

subject) in the gallery and the probe sets exploit differences

in illumination, facial expression variations, and aging effects

[44]. Since FRGC contains faces acquired under uncontrolled

conditions [45], we evaluate the influence of several aspects of
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the proposed method, such as the addition of training samples as

counterexamples on the one-against-all classification scheme,

image size for face samples, feature channel combination, and

the use of the multiclass PLS.

We use annotations regarding eyes, nose, andmouth locations

provided by both FERET and FRGC to crop and align facial

samples. Although such process makes the direct application of

the method less suitable to general images, the results shown

allow us to focus only on the discriminative representations

being proposed without interference from problems caused by

detection errors or misalignment of faces. Therefore, we are able

to make a fair comparison with other methods, which also take

advantage of the annotations provided.

All experiments were conducted on an Intel Core i7-860 pro-

cessor, 2.8 GHz with 4 GB of RAM running Windows 7 op-

erating system using a single processor core. The method was

implemented using C++ programming language.

A. Evaluation on the FERET Data set

The frontal faces in the FERET database are divided into five

sets, i.e., (1196 images, used as gallery set containing one

image per person), (1195 images, taken with different ex-

pressions), (194 images, taken under different lighting con-

ditions), (722 images, taken at a later date), and (234

images, taken at least one year apart). Among these four stan-

dard probe sets, and are considered the most difficult

since they are taken with time gaps; hence, some facial features

have changed. The images are cropped and rescaled to 110

110 pixels.

Experimental Setup: Since the FERET data set is taken under

varying illumination conditions, we preprocessed the images for

illumination normalization. Among the best known illumination

normalization methods are the self-quotient image (SQI) [46],

total variation models, and anisotropic smoothing [25]. SQI is

a retinex-based method, which does not require training images

and has relatively low computational complexity; we use it due

to its simplicity.

Once the images are normalized, we perform feature extrac-

tion. For HOG features, we use block sizes of 32 32 and 16

16 with strides of 8 and 4 pixels, respectively. For LBP fea-

tures, we use block size of 32 32 with a stride of 16 pixels.

The mean features are computed from block size of 4 4 with a

stride of 2 pixels. The Gabor features have five scales and eight

orientations, downsampled by a factor of 4. The MSLBP uses

block size of 32 32 with a stride of 16 pixels at radii 2 and

4. The final length of the concatenated features is 74 724. Ex-

periments performed with a number of weight vectors for the

PLS model varying from 13 to 21 provided very similar results;

therefore, we have chosen the number of weight vectors

for all experiments with the FERET data set.

Results and Comparisons: Fig. 3 shows the cumulative

match characteristic curves obtained by the one-against-all ap-

proach described in this paper, referred to as extended PLS, for

all FERET probe sets. We see that our method is robust to facial

expressions , lighting , and aging effect .

Table I shows the rank-1 recognition rates of previously pub-

lished algorithms and ours on the FERET data set. The results

Fig. 3. Cumulative score of the top 15 matches of our identification algorithm
for the FERET probe sets.

TABLE I
RECOGNITION RATES OF OUR IDENTIFICATION ALGORITHM (REFERRED TO

AS EXTENDED PLS) AND COMPARISONS WITH OTHER
ALGORITHMS FOR THE FERET PROBE SETS

of these algorithms can be divided into two groups, i.e., those

using a training set and those not using a training set.1 The

training set is commonly used to build a subspace to obtain

a low-dimensional representation of the features before per-

forming the match. This subspace provides additional informa-

tion regarding the domain of the problem. As shown in the table,

our one-against-all approach, which does not use a training set,

achieves similar results on and and obtains rank-1 recog-

nition rates higher than 85% on the challenging and

sets.

B. Evaluation on the FRGC Data set

We evaluate our method using three experiments from FRGC

version 1 that consider 2-D images. Experiment 1 contains a

single controlled gallery image and a probe with one controlled

still image per subject (183 training images, 152 gallery images,

and 608 probe images). Experiment 2 considers the identifica-

tion of a person given a gallery with four controlled still images

per subject (732 training images, 608 gallery images, and 2 432

probe images). Finally, experiment 4 considers a gallery with

1Different from the pattern recognition context, where the training set consists
of patterns of the same classes as the test set, the set referred to as training set
in face identification contains samples that might not belong to subjects in the
gallery or probe (test set).
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Fig. 4. Recognition rates obtained with different image sizes for experiment 4
of the FRGC data set.

one controlled still image per subject and multiple uncontrolled

probe images per subject (366 training images, 152 gallery im-

ages, and 608 probe images). We strictly followed the published

protocols. The images are cropped and rescaled to 138 160

pixels.

Experimental Setup: For HOG features, we use block sizes of

32 32 and 16 16 with strides of 8 and 4 pixels, respectively.

For LBP features, we use block size of 32 32 with a stride

of 16 pixels. In addition, the mean features are extracted from

block size of 8 8 with a stride of 4 pixels. The Gabor features

have five scales and eight orientations, downsampled by a factor

of 4. The MSLBP uses block size of 32 32 with a stride of 16

pixels at radii 2 and 4. The final length of the concatenated fea-

tures is 162 172. Similar to the FERET data set, the experiments

indicated that the number of weight vectors varying from 13 to

21 provided similar results; therefore, we have chosen

for all experiments with the FRGC data set.

Experiment 4 in FRGC version 1 is considered the most chal-

lenging in this data set. Since it is hard to recognize uncontrolled

faces directly from the gallery set consisting of controlled im-

ages, we attempted to make additional use of the training set to

create some uncontrolled environment information using mor-

phed images. Morphing can generate images with reduced re-

semblance to the imaged person or look-alikes of the imaged

person [48]. The idea is to first compute a mean face from the

uncontrolled images in the training set. Then, we perform tri-

angulation-based morphing from the original gallery set to this

mean face by 20%, 30%, and 40%. This generates three synthe-

sized images. Therefore, for each subject in the gallery, we now

have four samples. Fig. 5 depicts three morphed faces from the

original image from the gallery. We can see that the illumina-

tion is slightly changed and the samples become smoother.

Image Size: To show the influence of image size, which

is directly proportional to the number of feature descriptors

considered, we considered different sizes for the input samples

for experiment 4. The resulting cumulative match character-

istic curves are shown in Fig. 4. Improvements in recognition

rates are obtained with the use of more feature descriptors

Fig. 5. Original gallery image, mean face, and three morphed images used to
learn the PLS regression model.

Fig. 6. Recognition rates obtained by each feature channel individually and its
combination considering experiment 4 of the FRGC data set.

(extracted when larger input images are used). The best results

are obtained with images of 138 160 pixels, which results in

162 172 feature descriptors. These results show that extraction

of a large amount of information provides a sample description

possessing high discriminative power and corroborates that

PLS is able to perform feature weighting for large numbers of

features and small numbers of samples per class.

Combination of Feature Channels: An important aspect to be

evaluated when multiple feature channels are considered is the

contribution that each feature channel provides. Fig. 6 shows

recognition rates obtained for each feature channel individu-

ally and their combination, considering experiment 4. When in-

dividually evaluated, HOG provides the best recognition rates

and LBP provides the worst ones. However, although HOG

achieved satisfactory results, the combination of all features

increased recognition results by more than 25%, going from

67.3% to 86.2%. This shows that the features used are nonre-

dundant and their combination provides a better description for

different subjects.

According to the results achieved with individual feature

channels, it is possible to conclude that features based on shape

provide the most information for face recognition. On the

other hand, texture features do not provide high performance,
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Fig. 7. Addition of training samples as counterexamples in experiment 4 of
the FRGC data set and use of the multiclass PLS instead of the one-against-all
classification scheme.

indicating that texture is not a strongly discriminative feature

for recognition. Finally, although the mean feature is a very

simple descriptor based on color, it provides better information

than texture.

The results shown in Fig. 6 were obtained using the morphed

images, as described in the experimental setup. It is important

to note that the use of such images improves the recognition

rates. For example, in experiment 4, the rank-1 recognition rate

achieved without the morphed images was 80.9%.

Addition of Counterexamples and Multiclass PLS: Fig. 7

shows the improvements obtained when samples from a

training set are added as counterexamples for experiment 4.

The added samples are not from any subject in the gallery,

and half of them are acquired under uncontrolled conditions.

Results show that the addition of counterexamples increased

recognition rates significantly.

Since the gallery for experiment 4 contains only samples

acquired under controlled conditions and probe samples were

acquired under uncontrolled conditions, the PLS models built

without additional samples do not possess information re-

garding the environment in which the system will be tested.

Therefore, feature descriptors presenting high weight might in

fact not be the ones with high discriminative power. The addi-

tion of uncontrolled counterexamples prevents such descriptors

being chosen as the important ones.

Fig. 7 also shows recognition rates achieved when PLS

considers a multiclass problem instead of the one-against-all

classification scheme. In this case, vector (as defined in

Section III-B) is changed to a matrix with the number of

columns equal to the number of classes. We see that the recog-

nition rates reported are significantly lower compared with the

ones obtained by the one-against-all classification scheme with

the addition of counterexamples.

Results and Comparisons: Fig. 8 shows the cumulative

match characteristic curves obtained by the one-against-all ap-

proach for the three probe sets of FRGC, and Table II shows the

rank-1 recognition rates of different algorithms on the FRGC

probe sets. Our method outperforms others in every probe set

Fig. 8. Cumulative score of the top 15 matches of our identification algorithm
for the FRGC probe sets.

TABLE II
RECOGNITION RATES OF OUR IDENTIFICATION ALGORITHM (REFERRED TO

AS EXTENDED PLS) AND COMPARISONS WITH OTHER
ALGORITHMS FOR THE FRGC PROBE SETS

considered, particularly on the most challenging experiment 4.

This is, to the best of our knowledge, the best performance

reported in the literature.

In addition to the comparison with other methods, as shown

in Table II, we also compared the use of PLS with SVM for

experiment 4 of the FRGC data set with the same setup and fea-

tures. Using linear SVM implemented by libSVM [49], the mul-

ticlass SVM achieved rank-1 recognition rate of 21.21% and the

one-against-all setup achieved 65.95%, as compared to 46.88%

and 86.2% achieved using PLS, respectively.

C. Evaluation of the Tree-Based Structure

Here, we evaluate the tree-based structure described in

Section III-D. First, we evaluate procedures used to split the

set of subjects belonging to a node. Second, we test heuristics

used to reduce the search space. Third, we compare the results

previously obtained by the one-against-all approach to the

results obtained when the tree-based structure is incorporated.

Finally, we compare our method to the approach proposed by

Yuan et al. [37].

To evaluate the reduction in the number of comparisons, here,

the axis of the plots no longer displays the rank; instead, it

shows either the percentage of projections performed by the

tree-based approach when compared with the one-against-all
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Fig. 9. Comparison of the recognition rates when random splits and PCA
K-means approach are used.

approach (e.g., Fig. 9) or the percentage of tree traversals when

compared to the number of subjects in the gallery (e.g., Fig. 10).

The axis displays the recognition rates for the rank-1 matches.

We used the probe set from the FERET data set to perform

evaluations here.

Procedure to Split Nodes: Fig. 9 shows that both splitting

procedures described in Section III-D obtain similar recogni-

tion rates when the same number of projections is performed.

Due to the similarity of the results, we have chosen to split the

nodes randomly. The advantages of applying random splits are

the lower computational cost to build the gallery models and

balanced trees are obtained. Balanced trees are important since

the depth of a leaf node is proportional to , which is desir-

able to keep short search paths. For this experiment, the number

of tree traversals was set to 15% and the heuristic based on the

median was not considered (these heuristics will be discussed

in the next paragraphs).

Heuristics to Reduce the Search Space: The first experiment

evaluates the recognition rate as a function of the maximum

number of traversals allowed to find the match subject to a probe

sample; this is limited to a percentage of the gallery size (a tra-

versal is defined as the path between a starting node, which

is obtained from the priority queue, and a leaf node). Fig. 10

shows the maximum recognition rates achievable for a given

percentage. We can see that as low as 15% of traversals are

enough to obtain recognition rates comparable with the results

obtained by the one-against-all approach (95.7% for the probe

set considered in this experiment). Therefore, in the remaining

experiments, we limit the number of traversals to 15% of the

gallery size.

In the second experiment, we consider the following

heuristic. For the initial few probe samples (15 samples), all

search paths are evaluated and the absolute values of the re-

gression responses for the best matches are stored. The median

of these values is computed. Then, for the remaining probe

samples, the search is stopped when the regression response

for a leaf node is higher than the estimated median value (and

Fig. 10. Evaluation of the heuristic based on stopping the search after a max-
imum number of tree traversals is reached.

the subject represented at that leaf node is set to be the best

match for the probe sample). Our experiments show that this

heuristic alone is able to reduce the number of projections to

63% without any degradation in recognition rates.

Results and Comparisons: Using the results obtained from

the previous experiments (random splits and adding both heuris-

tics to reduce the search space), we now compare the recognition

rates obtained when the tree-based structure is used to the results

obtained by the one-against-all approach. Then, we evaluate the

speedup achieved by reducing the number of projections.

Fig. 11(a) and (b) shows the identification results obtained for

FERET and FRGC data sets, respectively. Overall, we see that,

when the number of projections required by the one-against-all

approach is reduced to 20% or 25%, there is a negligible drop in

the recognition rate, as shown in the previous sections. There-

fore, without decreasing the recognition rate, the use of the tree-

based structure provides a clear speedup for performing the

evaluation of the probe set. According to the plots, speedups of

6.66 times are achieved for FERET, and for FRGC, the speedup

is up to 10 times depending on the experiment being consid-

ered. Furthermore, since the number of projections is equal to

the number of internal nodes, only a small number of the nodes

are visited.

In addition to the speedup achieved to match a probe sample

to the gallery, the tree-based structure can be also exploited to

facilitate incremental enrollment, avoiding rebuilding all PLS

models. Due to its hierarchical structure and independence be-

tween subjects in different subtrees, when there is a subject en-

rollment, the only models that need to be rebuilt are those on the

path between the root and the leaf node where the new subject

is added.

Finally, we compare our method to the cascade of rejection

classifiers (CRC) approach proposed by Yuan et al. [37].

Table III shows the speedups over the brute force nearest

neighbor search and rank-1 error rates obtained by both ap-

proaches. We apply the same protocol used in [37] for the

FRGC data set. Higher speedups are obtained by our method

and, different from CRC, no increase in the error rates is noticed

when larger test set sizes are considered.
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Fig. 11. Recognition rates as a function of the percentage of projections performed by the tree-based approach when compared to the one-against-all approach.
(a) FERET. (b) FRGC.

TABLE III
COMPARISON BETWEEN OUR TREE-BASED APPROACH AND THE CRC APPROACH

V. CONCLUSION

We have proposed a face identification method using a set of

low-level feature descriptors analyzed by PLS, which presents

the advantages of being both robust and scalable. Experimental

results have shown that the method works well for single image

per sample, in large galleries, and under different conditions.

The use of PLS regression makes the evaluation of

probe–gallery samples efficient due to the necessity of only

a single dot product evaluation. Optimization is further em-

ployed by incorporating the tree-based structure, which largely

reduces the number of projections when compared with the

one-against-all approach, with a negligible effect on recognition

rates. In addition, experiments had shown that the combination

of multiple feature channels, the use larger image size, and the

addition of counterexamples improve results greatly.
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