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Abstract 

A central challenge in face perception research is to understand how neurons encode various face 

identities. However, this challenge has not been met largely due to the lack of simultaneous 

access to the activity of the entire face processing neural network as well as the lack of a 

comprehensive multifaceted model that is able to characterize a large number of facial features. 

In this study, we address this challenge by conducting in silico experiments using a deep neural 

network (DNN) capable of face recognition with a diverse array of stimuli. We identified a 

subset of DNN neurons selective to face identities, and these identity-selective neurons 

demonstrated generalized discriminability to novel faces not involved in the training and in many 

different styles. Visualization of the network explained the response of the DNN neurons and 

manipulation of the network confirmed the importance of identity-selective neurons in face 

recognition. Importantly, using our human single-neuron recordings, we directly compared the 

response of artificial neurons with 490 real human neurons to the same stimuli and found that 

artificial neurons did share a similar representation of facial features as human neurons. We also 

observed a novel region-based feature coding mechanism in DNN neurons as in human neurons, 

which may explain how the DNN performs face recognition. Together, by directly linking 

between artificial and human neurons, our results shed light on how human neurons encode face 

identities. 

Keywords: Face, Identity coding, Deep neural network, Identity-selective neuron, Human 

single-neuron recordings 
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Introduction 

The ability to identify and recognize faces is one of the most important cognitive functions in 

social communications. Primates have a dedicated neural system to process faces. Neurons that 

are selectively responsive to faces (i.e., face-selective neurons) have been observed in a 

distributed network of brain areas, notably including the face patches in the temporal cortex [1] 

(shown in monkeys) as well as the amygdala and hippocampus [2, 3] (shown in both monkeys 

and humans). In particular, there are two extreme hypotheses about how neurons encode and 

represent faces. The exemplar-based model posits that faces are represented by highly selective, 

sparse, but visually invariant neurons [4-7]. This model has been supposed by single-neuron 

recordings in the human amygdala, hippocampus, and other parts of the medial temporal lobe 

(MTL). The feature-based model posits that faces are represented by simultaneous activation of a 

broad and distributed population of neurons and each neuron responds to many pictures with 

similar basic features [8, 9]. This model has been supported by single-neuron recordings in the 

monkey inferotemporal (IT) cortex [10-13]. Although exemplar-based and feature-based models 

are not mutually exclusive because both types of neurons have been observed in different brain 

regions, it remains unclear how to bridge these prior findings and how the brain transitions from 

one model to the other, which is largely due to the lack of simultaneous access to the activity of 

the entire face processing neural network (i.e., the whole population of neurons from all brain 

regions involved in face processing) [14]. 

To address this limitation, in this study, we exploit the opportunity to analyze the activity of all 

neurons from an artificial neural network (ANN) dedicated to face recognition. Importantly, we 

were able to compare the results directly with recordings from the human neurons, which will 

shed light on how the human brain encode face identities. Rapid advances in deep neural 

networks (DNN) have offered new opportunities for studying face perception by providing 

computational proxy models. State-of-the-art DNNs such as the VGG-face [15] and DeepFace 

[16] have achieved excellent face recognition performance and even outperformed humans. 

These DNNs are biologically inspired and therefore have the potential to successfully provide 

insight into the underlying mechanisms of brain functions, especially with respect to the 
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perception and recognition of visual stimuli such as faces. Existing work at the intersection of 

DNNs and face perception can be broadly classified into two categories: face reconstruction 

(decoding models) and face recognition (encoding models). The former includes the 

reconstruction of faces from fMRI patterns [17, 18] (see [19, 20] for more general natural image 

reconstruction). The latter includes a flurry of literature on the convergent evolution of face 

spaces across DNN layers and human face-selective brain areas [21], the neurally plausible 

efficient inverse graphics model for face processing [22], and spontaneous generation of face 

recognition in untrained DNNs [23]. 

The present study continues from our recent work showing feature-based encoding of face 

identities in the human MTL using DNN-extracted visual features [24] (an encoding-related 

study). The motivation for the present study is largely two-fold. First, the sparse coding 

hypothesis for face recognition has been inspected recently under the framework of DNN. It has 

been shown that identity, gender, and viewpoint information all contributes to individual unit 

responses [25, 26], similar to the neuronal coding of facial attributes in the primate brain [9, 24, 

27]. Experimentally, it is difficult to comprehensively characterize the tuning properties of 

neurons from the human brain to a large number of facial attributes; therefore, in this study, we 

will conduct in silico experiments to probe the tuning properties of DNN neurons using a diverse 

array of stimuli, which will in turn shed light on the tuning properties of human neurons. Second, 

several lines of research in DNN (e.g., dropout [28], neural architecture search [29]) have shown 

supporting evidence about the so-called lottery ticket hypothesis [30] (i.e., among all possible 

fully-connected and feedforward architectures, the winning ticket is a sparse subnetwork). This 

hypothesis has important biological implications into both energy efficiency and generalization 

properties, but there is still a missing parallel and convergent connection between the sparse 

coding hypothesis in neuroscience [31] and the lottery ticket hypothesis in deep learning [30].  

To fill in this gap, in this study we used a DNN as a proxy model for studying the tuning 

properties of neurons that encode face identities. For the first time, our present study will directly 

compare and link the sparse coding of face identities between human and DNN neurons. 
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Results 

Identity-selective neurons 

We used 500 natural face images of 50 celebrities (10 faces per identity) to elicit response from a 

pre-trained deep neural network (DNN) VGG-16 trained to recognize faces (see Fig. 1A for 

DNN architecture). The pre-trained DNN had an accuracy of 94.2%±2.3% (mean±SD across 

identities) in identity recognition after fine-tuning. We identified a subset of DNN neurons that 

showed a significantly unequal response to different identities (one-way ANOVA of activation 

for each DNN neuron: P < 0.01; Fig. S1A), and we refer to this population of neurons as 

identity-selective neurons (Fig. 1B). The percentage of identity-selective neurons was higher in 

the later DNN layers (Fig. 1B) because the later DNN layers were closer to the output (note that 

the output was the identity of the input face). Interestingly, we observed that a substantial amount 

of neurons were selective to multiple identities (referred to here as multiple-identity [MI] 

neurons; Fig. 1C; see Methods and Fig. S1A for selection procedure), consistent with prior 

studies with direct recordings from single neurons in the human brain [24, 32]. Compared to 

neurons that were selective to a single identity (referred to here as single-identity [SI] neurons), 

the percentage of MI neurons increased in the later DNN layers (Fig. 1C). Furthermore, some 

identities were encoded by more SI and MI neurons than the other identities (Fig. S1B). 

Identity-selective neurons demonstrated generalized selectivity to face identities 

We next analyzed the selectivity properties of identity-selective neurons. We used a support 

vector machine (SVM) to assess to what extent neurons from a specific DNN layer could 

distinguish the input stimuli. First, with the original stimuli used to select identity-selective 

neurons, we found that the discriminability of all DNN neurons for face identities increased in 

the later DNN layers (Fig. 2A). This was expected because the later DNN layers were closer to 

the output and contained more information about face identities. Notably, such discriminability 

was primarily driven by identity-selective neurons and non-identity-selective neurons alone 
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could not discriminate different identities (Fig. 2A). Interestingly, identity-selective neurons had 

even better discriminability than all neurons in the earlier DNN layers (Fig. 2A). 

Second, we found that the DNN could discriminate identities in a different set of celebrity faces 

(Fig. 2B) as well as the original celebrity faces transformed to various cartoon styles (Fig. 2C-

F), and the response profile was similar to that with the original stimuli (although cartoon faces 

had overall reduced discrimination accuracy): identity-selective neurons primarily drove the 

discrimination and even had better discriminability than all neurons in the earlier DNN layers 

whereas non-identity-selective neurons could not discriminate identities in all these tests.  

Third, we found that identity-selective neurons could still discriminate face identities even with 

very limited information in faces (Fig. 2G). Although the accuracy was reduced to discriminate 

these low-information two-tone Mooney faces (generated from the original celebrity faces), a 

similar pattern of response was observed with identity-selective neurons primarily driving the 

discrimination. 

Fourth, we found that identity-selective neurons could discriminate a different set of celebrity 

caricature faces in an exaggerated cartoon style (Fig. 2H). Although the overall accuracy was 

reduced, identity-selective neurons still played the dominant role in discriminating the identities 

and non-identity-selective neurons did not contribute to the discrimination. It is also worth noting 

that identity-selective neurons as well as all neurons could not discriminate face identities any 

more in earlier layers (Fig. 2H). 

Fifth, we found the DNN could still discriminate inverted faces (Fig. 2I), although the accuracy 

was reduced, consistent with impaired discrimination of inverted face in humans [33]. Such 

discrimination was again driven by identity-selective neurons. However, we found that the DNN 

(all neurons, identity-selective neurons, and non-identity-selective neurons) could barely 

discriminate non-face object categories (Fig. 2J). Therefore, the response could only be 

generalized within faces. 

Lastly, we found that DNN neurons selective to identities from one race (e.g., Caucasian) could 

also discriminate face identities from other races, suggesting that the DNN and identity-selective 
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neurons had cross-race generalizability. Furthermore, we found that DNN neurons selective to 

identities from one gender (e.g., male) could also discriminate face identities from the other 

gender, suggesting that the DNN and identity-selective neurons had cross-gender 

generalizability. In addition, we found that combined SI and MI neurons (i.e., a subset of 

identity-selective neurons selected by an additional criterion that the response for certain 

identities stood out from the global mean response; see Methods and Fig. S1A) demonstrated 

even stronger discriminability of face identities (Fig. S1C). 

Together, our results showed that identity-selective neurons played a general and critical role in 

discriminating face identities under various circumstances, whereas non-identity-selective 

neurons could discriminate face identities in none of the circumstances. Therefore, our results 

suggested that although the discriminability varied as a function of the level of information 

contained in the stimuli, a subset of DNN neurons were consistently involved in the face identity 

discrimination and these neurons demonstrated generalized selectivity to face identities. 

DNN visualization explained the role of identity-selective neurons in face recognition 

We next visualized the response of identity-selective vs. non-identity-selective neurons in order 

to understand why identity-selective neurons but not non-identity-selective neurons played a 

general and critical role in face recognition. First, we found that identity-selective neurons 

indeed corresponded to the critical visual features of the stimuli (Fig. 3A). Second, when we 

constructed a two-dimensional stimulus feature space using t-distributed stochastic neighbor 

embedding (t-SNE) feature reduction for each DNN layer, we found that face identities clustered 

in the feature space constructed by identity-selective neurons but not non-identity-selective 

neurons (Fig. 3B), confirming that identity-selective neurons could discriminate face identities. 

Together, DNN visualization revealed that identity-selective neurons encoded critical stimulus 

features so that they embodied a general discriminability of face identities. 
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Lesion and perturbation of the network 

We next investigated how critical the identity-selective neurons as well as the trained network 

weight structure were to discriminate face identities by lesioning and perturbing the network. 

First, following each convolutional layer, we added a “RandDrop” layer (i.e., a binary mask 

applied to the preceding layer; Fig. 4A) to randomly set a subset of DNN neurons to be 0, which 

partially lesioned the network. Indeed, we found that identity recognition accuracy decreased as 

a function of increasing lesion amount (Fig. 4B-F). With a small amount (10%) of information 

loss (Fig. 4B), the network could still well discriminate face identities and had a comparable 

performance as the intact network (Fig. 2). When 30%-50% of DNN neurons were dropped (Fig. 

4C, D), only earlier layers had a comparable performance as the intact network but later layers 

had a significant decrease of performance. When 70%-90% of DNN neurons were dropped (Fig. 

4E, F), the network could not perform identity discrimination any more. Notably, in all these 

cases, identity-selective neurons still played the dominant role in discriminating the identities 

and non-identity-selective neurons did not contribute to the discrimination. It is also worth noting 

that we dropped the same percentage of neurons for every layer, so information loss would 

accumulate in later layers. Interestingly, we found that dropping neurons from a single layer had 

only limited impact on recognition performance in subsequent layers (Fig. S2; 30% of neurons 

were dropped; only dropping neurons from the very first layer Conv1_1 impacted performance 

in subsequent layers), suggesting that the network had great plasticity. 

Second, we perturbed the network by breaking the optimal weight structure (i.e., connection 

between DNN neurons) derived from training and generated a random permutation of weights 

(i.e., connections between DNN neurons) to evaluate the impact of the model training on identity 

recognition. We employed two approaches. Kernel-wise shuffle (Fig. 4G) randomly permuted 

the weights in a single kernel. Since the kernel size of the network was 3 by 3 for all layers, 

kernel-wise shuffle permuted the 9 weight values for each kernel. We found that the DNN could 

not discriminate face identities any more following kernel-wise shuffle (Fig. 4G). Unlike kernel-

wise shuffle that only rearranged the weights within one kernel, layer-wise shuffle pooled the 
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weights of all kernels from a layer and reorganized the weights to form new kernels. Again, we 

found that the DNN’s ability to discriminate face identities was abolished (Fig. 4H). 

Together, our model manipulation suggested that identity-selective neurons as well as the 

optimal DNN neuron connections derived from training were critical to face identity 

discrimination. 

Establishing the relationship between artificial DNN neurons and real human neurons 

The DNN performs the face recognition task similarly as humans. Does the ensemble of DNN 

neurons share representational similarity with the ensemble of human neurons? In order to 

answer this question, we used the same stimuli (500 natural face images of 50 celebrities) and 

recorded from 490 neurons in the MTL (242 neurons from the amygdala, 186 neurons form the 

anterior hippocampus, and 62 neurons from the posterior hippocampus; firing rate > 0.15 Hz) of 

5 neurosurgical patients (16 sessions in total) [24]. Patients performed a one-back task (Fig. 5A; 

accuracy = 75.7±5.28% [mean±SD across sessions]) and they could well recognize the faces 

[24]. The responses of 46/490 neurons (9.39%) differed between different face identities in a 

window 250-1000 ms following stimulus onset and these neurons were the real human identity-

selective neurons.  

We first used the mean firing rate in a time window 250-1000 ms after stimulus onset as the 

response to each face for human neurons (i.e., the same time window as the selection of human 

identity-selective neurons). We used DNN neurons to construct a face space and correlated that 

with the human neuronal face space using a distance metric (see Methods). Using pairwise 

activation similarities [21], we found that neuronal pairwise distance of human neurons 

significantly matched that from the later DNN layers (Fig. 5B), suggesting that the population of 

human neurons encoded the geometry of the face space similarly as DNN neurons. Such match 

between face spaces was primarily driven by identity-selective neurons: identity-selective 

neurons showed a significant match across all layers (notably peaked at later DNN layers) 

whereas non-identity-selective neurons did not show any significant match across layers (Fig. 
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5B). We further investigated the temporal dynamics of the correspondence between face spaces 

(Fig. 5C-E). Again, we found that the match between the DNN and human neuronal face spaces 

(Fig. 5C) was primarily driven by identity-selective neurons (Fig. 5D) but not non-identity-

selective neurons (Fig. 5E). Moreover, identity-selective neurons seemed to match the earlier 

DNN layers in an earlier time window (Fig. 5D). 

In addition, we found that compared to the human MTL, the DNN had a significantly higher 

percentage of SI neurons in later layers (starting from the layer Pool4; Fig. 5F; χ2-test with 

Bonferroni correction for multiple comparisons). The DNN also had a significantly higher 

percentage of MI neurons in the layers FC6, FC7, and FC8 (Fig. 5G) but a significantly lower 

percentage of MI neurons in all other layers, where we did not expect to observe MI neurons 

because faces of the same identity were not yet clustered. 

Together, for the first time, using human single-neuron recordings we directly compared identity 

selectivity between artificial neurons and real human neurons. Our results have revealed a 

systematic correspondence between the two face recognition systems. 

Analysis of the region-based feature coding in DNN neurons 

We have previously shown a novel region-based feature coding by real neurons in the human 

MTL [24], i.e., neurons encode identities that are clustered in the feature space (in other words, 

neurons encode visually similar identities). Here, we explored whether DNN neurons also 

demonstrated region-based feature coding. We focused on the DNN layers FC6 and FC7, where 

faces of the same identity was clustered; and we primarily observed human MTL neurons 

demonstrating region-based feature coding in the face feature spaces from these layers [24]. 

Notably, the face feature spaces showed an organized structure: for example, Feature Dimension 

2 represented a gender dichotomy, and darker skinned faces were clustered at the bottom left 

corner of the feature space (Fig. 6A). Indeed, we found that a large number of MI neurons in 

these layers (24.9% for FC6 and 36.5% for FC7) encoded identities that were adjacent in the 

feature space (see Fig. 6B, C), demonstrating region-based feature coding. We refer to this 
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subpopulation of MI neurons as feature MI neurons. On the other hand, non-feature MI neurons 

did not have selective identities clustered in the feature space (Fig. 6D), and non-identity-

selective neurons did not encode any particular identities (Fig. 6E). 

At the population level, we found that the tuning region of an individual feature MI neuron 

covered approximately 5-6% of the 2D feature space (Fig. 7A; note that when we calculated the 

tuning region, we adjusted the kernel size to be proportional to the feature dimensions such that 

the percentage of space coverage was not subject to the actual size of the feature space). In 

contrast, the response of an individual SI or non-feature MI neuron covered a significantly 

smaller region in the feature space (Fig. 7A; two-tailed unpaired t-test: P < 0.001 for all 

comparisons). As expected, the distance in the face space between encoded identities was smaller 

for feature MI neurons compared with non-feature MI neurons (Fig. 7B). As a whole, the entire 

DNN neuronal population covered approximately 55-60% of the feature space (Fig. 7C; some 

areas were encoded by multiple neurons), and the covered areas were similar for SI, feature MI, 

and non-feature MI neurons (Fig. 7C). 

Together, we found that as neurons in the human MTL, DNN neurons also demonstrated region-

based feature coding. Region-based feature coding may provide a possible mechanism that 

explains how the DNN performs face recognition. 

Discussion 

In this study, we analyzed the response characteristics of a face recognition DNN and found that 

identity-selective neurons in the DNN could generalize their discriminability to face identities 

shown in various styles as well as face identities that were not involved in the training. By 

establishing the coding similarity with real human neurons, our study provided an important 

method to understand face coding in humans. Furthermore, by analyzing an artificial neural 

network dedicated to face recognition, we will be able to formulate hypotheses that can be 

validated in future studies.  
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Possible caveats 

Although the SVM had substantially more features (i.e., DNN neurons used for classification) 

than observations (i.e., training faces), the high recognition accuracy of identity-selective 

neurons in testing suggested that our results could not be simply explained by overfitting. 

Furthermore, the low recognition accuracy of non-identity-selective neurons in testing provided 

specificity of our approach; and notably, later DNN layers had fewer neurons but a higher 

recognition accuracy. Interestingly, such “overfitting” also appears in the human brain as a large 

number of neurons are often simultaneously activated by a single percept; and the theory of 

backward feature correction can well explain such “overfitting” [34]. 

We identified the DNN neurons critical for identity recognition, and the evolution of identity-

selective neurons across DNN layers (Fig. 1B). The identity-selective neurons in the earlier 

layers primarily corresponded to image pixels containing information about faces, but with the 

increase of kernel size in later layers, identity-selective neurons encoded more holistic 

information about face identities. In particular, the fully connected layers utilized information 

from all neurons from the previous layers. Therefore, identity selectivity could not be solely 

attributed to the receptive field of the DNN neurons. 

In this study, we found that although cartoon faces had a decreased discriminability in general, 

they had a similar pattern of response as natural faces across DNN layers (Fig. 2A, C-F). 

Furthermore, we found that inverted faces elicited a similar response as upright faces in the early 

and middle DNN layers (Fig. 2A, I), suggesting that the DNN used similar information for both 

inverted and upright faces, a form of viewpoint invariance. However, in contrast to all upright 

faces that had increasing discriminability across layers, the discriminability decreased in later 

layers for inverted faces. Therefore, the impaired discriminability of inverted faces in humans 

may stem from neurons downstream in the visual processing stream [33]. Furthermore, we found 

that the response of face identity-selective neurons could well generalize within faces but barely 

generalize to non-face objects, consistent with a dedicated and specialized face perception 
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system [1, 23]. Lastly, consistent with our DNN lesion results (Fig. S2), it has been shown that 

DNN neurons demonstrate distributed and sparse codes to represent different face attributes [26]. 

Comparison between artificial and human neurons 

We found that identity-selective neurons had a general discriminability to face identities shown 

in various styles, consistent with feature-invariant coding of face identities by neurons in the 

human medial temporal lobe (MTL) [6, 7]. Furthermore, identity selectivity could be generalized 

to face identities that were not involved in the training, similar to how memory is formed in the 

human brain [35]. Consistent with our prior findings that only a small proportion (~20%) of 

human neurons are involved in coding a certain task aspect, such as emotion content [36], 

emotion subjective judgment [37], attention [38, 39], task sequence [39], visual selectivity [38], 

eye movement [40], social judgment [41], as well as face identity [24], in the present study we 

found a large population non-identity-selective DNN neurons that did not contribute to coding 

face identities. We further quantitatively compared the proportion of SI and MI neurons between 

the DNN and human brain. Notably, the distribution of identity-selective and non-identity-

selective DNN neurons across layers may provide new insights into understanding the human 

visual processing stream, where our currently available technology does not allow simultaneous 

sampling of neurons along the entire visual processing stream. 

Notably, we found that DNN neurons demonstrated region-based feature coding as neurons in 

the human MTL [24], a novel and important mechanism that may explain how the DNN 

performs face recognition. It has been shown that the higher visual cortex encodes visual features 

of the stimuli [10-13], analogous to feature extraction and representation in the DNN, while the 

MTL encodes semantic categories independent of visual features [6, 7], analogous to the output 

of the DNN. Region-based feature coding, which shows that DNN neurons in the later layers 

encode a region in the feature space using information from the earlier layers and are selective to 

identities that fall in this region, therefore bridges the representation of image features in the 

earlier layers and the representation of semantic categories (e.g., face identities) in the later 
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layers. Such processing hierarchy is similar to how the brain transitions from a perception-driven 

representation of features in the higher visual cortex to a memory-driven representation of 

semantics in the MTL. Region-based feature coding may also provide an account for object 

recognition (e.g., using the AlexNet) and visual selectivity (also observed in human MTL 

neurons): objects falling within the coding region of a neuron may elicit an elevated response. 

Again, this mechanism applies to both artificial and human neurons. 

Contribution of DNNs to understanding visual processing 

It is worth noting that most previous studies of face space had to use computer-generated faces in 

order to parametrically vary the faces [10, 42, 43]. Rapid advances in computer vision and 

development of DNNs have provided an unprecedented opportunity to extract features from real 

human faces and subsequently manipulate these features to generate new unique faces while 

providing well controlled stimuli to investigate differences in neural responses to feature 

changes. Inspired by the primate visual system, DNNs have made impressive progress on the 

complex problem of recognizing faces across variations of camera distance, viewpoint, 

illumination, and changes in expression. It has been widely used to study face recognition and 

representation (see [44] for a review). DNNs may help researchers to understand the functional 

architecture of human brains and incorporating neuroscience findings into DNNs can test the 

computational benefits of fundamental organizational features for the visual system [45]. The 

DNNs do share similarities with the primate visual system and can therefore help us to better 

understand visual processing in primates [46]. For example, within a class of biologically 

plausible hierarchical neural network models, there is a strong correlation between a model’s 

categorization performance and its ability to predict single-neuron responses from the IT cortex 

[47]. In addition, both human neuroimaging studies [17] and intracranial electroencephalogram 

(EEG) studies [48] have shown that features in DNNs can be represented in the human brain, 

which in turn can explain our ability to recognize individual faces. Notably, recent studies in 

monkeys have shown that images synthesized by DNN can control neural population activity 
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[11] and evolution of synthetic images given online neural feedback can even drive neural 

response to the maximum [12]. 

Future directions 

It is worth noting that most faces in the present study had a frontal view and were primarily 

emotionally neutral. A future study will further test faces from different angles (e.g., profile 

faces) and/or emotional faces. Furthermore, an interesting future study will be to compare DNN 

lesion results with behavior of human brain lesion patients, who demonstrate impaired face 

perception (e.g., [36]). 

A central challenge in cognitive neuroscience is to understand how the brain encodes faces. In 

particular, it remains largely unclear how visual experience, learning, and memory shape face 

perception and recognition. There are two competing hypotheses about the emergence of face-

selective neurons. One hypothesis argues that face-selective neurons require visual experience to 

develop, and this hypothesis has been supported by fMRI studies in the monkey fusiform face 

areas [49]. The other hypothesis argues that face-selective neurons have an innate origin, and this 

hypothesis has been supported by studies from human infants and adults without visual 

experience of faces [50-53]. Along this line, a future study will be needed to explore if identity-

selective neurons can spontaneously emerge from untrained neural network. Although the DNN 

used in the present study was a pre-trained ANN, it demonstrated strong ability to generalize to 

new faces, comparable to the human visual system. Importantly, in silico experiments allow us to 

test a large set of parameters and better control experimental conditions, which is often not 

feasible when directly working with human or animal subjects. Together, our present study not 

only highlights the importance of the direction of training and visual experience in shaping the 

neural response to face identities, but also provides a useful approach to test these hypotheses 

and reconcile previous findings. 
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Methods 

Stimuli 

We employed the following stimuli in this study (Fig. 2).  

(1) For the original stimuli, we used faces of celebrities from the CelebA dataset [54], and we 

selected 50 identities with 10 images for each identity, totaling 500 face images. The identities 

were selected to include both genders and multiple races (see  also Fig. 6A).  

(2) We selected another 500 faces from 50 different identities (10 images per identity) from the 

CelebA dataset as a testing set.  

(3) We generated four versions of cartoon faces (Hayao, Hosoda, Paprika, Shinkai) of the 

original stimuli using CartoonGAN [55].  

(4) We generated Mooney faces by first transforming the original images into gray scale. We 

then filtered the images with a two-dimensional Gaussian smoothing kernel with standard 

deviation of 0.5. We lastly thresholded the images using a threshold determined for each 

individual face based on its luminance (threshold = mean luminance of the cropped image center 

− 0.03).  

(5) We randomly selected 500 caricature faces of 50 identities (10 images per identity) from the 

IIIT-CFW dataset [56].  

(6) We randomly selected 500 non-faces objects from 50 categories (10 objects per category) 

from the ImageNet database [57]. 

Deep neural network (DNN) 

We used the well-known deep neural network (DNN) implementation based on the VGG-16 

convolutional neural network (CNN) architecture [15] (see Fig. 1A for details). We fine-tuned 

the layer FC8 with the original CelebA stimuli to confirm that this pre-trained model was able to 

Page  of 16 29

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 14, 2021. ; https://doi.org/10.1101/2021.05.12.443829doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.12.443829


discriminate the identities (accuracy > 90%). To visualize the DNN response, we subsequently 

applied a t-distributed stochastic neighbor embedding (t-SNE) method to convert high-

dimensional features into a two-dimensional feature space. t-SNE is a variation of stochastic 

neighbor embedding (SNE) [58], a commonly used method for multiple class high-dimensional 

data visualization [59]. We applied t-SNE for each layer, with the cost function parameter (Prep) 

of t-SNE, representing the perplexity of the conditional probability distribution induced by a 

Gaussian kernel, set individually for each layer. We also used t-SNE to construct a face feature 

space so that we were able to investigate region-based feature coding for both DNN and human 

neurons [24]. 

Selection of identity-selective neurons 

To select identity-selective neurons, we used a one-way ANOVA to identify identity-selective 

neurons that had a significantly unequal response to different identities (P < 0.01; Fig. S1A). We 

further imposed an additional criterion to identify a subset of identity-selective neurons with 

selective identities (Fig. S1A): the response of an identity was 2 standard deviations (SD) above 

the mean of responses from all identities. These identified identities whose response stood out 

from the global mean were the encoded identities. We refer to the neurons that encoded a single 

identity as single-identity (SI) neurons and we refer to the neurons that encoded multiple 

identities as multiple-identity (MI) neurons. 

Single-neuron recordings in human neurosurgical patients 

To acquire the neuronal response from humans, we conducted single-neuron recordings from 5 

neurosurgical patients (16 sessions in total). All participants provided written informed consent 

using procedures approved by the Institutional Review Board of West Virginia University 

(WVU). The detailed procedure has been described in our previous study [24]. Briefly, we 

employed a 1-back task for the original CelebA stimuli (Fig. 5A). In each trial, a single face was 
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presented at the center of the screen for a fixed duration of 1 second, with uniformly jittered inter 

trial interval (ITI) of 0.5-0.75 seconds. Patients pressed a button if the present face image was 

identical to the immediately previous image. Each face was shown once unless repeated in one-

back trials; and we excluded responses from one-back trials to have an equal number of 

responses for each face. 

We recorded from implanted depth electrodes in the amygdala and hippocampus from patients 

with pharmacologically intractable epilepsy. Bipolar wide-band recordings (0.1-9000 Hz), using 

one of the eight microwires as reference, were sampled at 32 kHz and stored continuously for 

off-line analysis with a Neuralynx system. The raw signal was filtered with a zero-phase lag 

300-3000 Hz bandpass filter and spikes were sorted using a semi-automatic template matching 

algorithm as described previously [60]. Units were carefully isolated and recording and spike 

sorting quality were assessed quantitatively. Only units with an average firing rate of at least 0.15 

Hz (entire task) were considered. Only single units were considered. Trials were aligned to 

stimulus onset and we used the mean firing rate in a time window 250 ms to 1000 ms after 

stimulus onset as the response to each face. 

Pairwise distances in the face space 

We further employed a pairwise distance metric [21] to compare neural coding of face identities 

between human and DNN neurons. For each pair of identities, we computed two distance 

metrics. The human neuronal distance metric was the Euclidean distance between firing rates of 

all recorded neurons. The DNN distance metric was the Euclidean distance between feature 

weights of all DNN neurons. We then correlated the human neuronal distance metric and the 

DNN distance metric. A significant correlation indicated that the human neuronal face space 

matched the DNN face space [21]. We computed the correlation for each DNN layer so that we 

could determine the specific layer that the neuronal population encoded. For each face identity, 

we averaged the response of all faces of that identity to get one mean firing rate. To get temporal 

dynamics, we used a moving window with a bin size of 500 ms and a step size of 50 ms. The 
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first bin started −300 ms relative to trial onset (bin center was thus 50 ms before trial onset), and 

we tested 19 consecutive bins (the last bin was thus from 600 ms to 1100 ms after trial onset). 

Selection of feature neurons 

We employed the same procedure to select DNN feature neurons as we did with human neurons 

[24]. We first estimated a continuous spike density map in the feature space by smoothing the 

discrete activation map using a 2D Gaussian kernel (kernel size = feature dimension range * 0.2, 

SD = 4). We then estimated statistical significance for each pixel by permutation testing: in each 

of the 1000 runs, we randomly shuffled the labels of faces. We calculated the p-value for each 

pixel by comparing the observed spike density value to those from the null distribution derived 

from permutation. We lastly selected the region with significant pixels (permutation P < 0.01, 

cluster size > 0.23 * pixel number in the whole space). We also applied a mask to exclude pixels 

from the edges and corners of the spike density map where there were no faces because these 

regions were susceptible to false positives given our procedure. If a neuron had a region with 

significant pixels, the neuron was defined as a “feature neuron” and demonstrated “region-based 

feature coding”. We selected feature neurons for each individual DNN layer. 

Data availability 

All data and statistical analysis code are available on GitHub (https://github.com/JingeW/

ID_selective). 
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Figure Legends 

Fig. 1. Identity-selective neurons in a pre-trained VGG-16 deep neural network (DNN). (A) 

Structure of the VGG-16 DNN. The convolutional neural network (CNN) consisted of a feature 

extraction section (13 convolutional layers) and a classification section (3 fully connected [FC] 

layers). The feature extraction section was consistent with the typical architecture of a CNN. A 

3×3 filter with 1-pixel padding and 1-pixel stride was applied to each convolutional layer, which 

followed by Rectified Linear Unit (ReLU) operation. Every convolutional block was followed by 

a max-pool operation with a stride of 2. There were 3 FC layers in each classification section: the 

first two had 4096 channels each, and the third performed an K-way classification. Each FC layer 

was followed by a ReLU and 50% dropout to avoid overfitting. A nonlinear Softmax operation 

was applied to the final output of VGG-16 network to make the classification prediction of 50 

identities. (B) Percentage of identity-selective neurons for each DNN layer. (C) Percentage of 

single-identity (SI; blue) and multiple-identity (MI; orange) neurons for each DNN layer. 

Fig. 2. Selectivity properties of identity-selective neurons. (A) Original faces used to identify 

identity-selective neurons. (B) Faces from a different set of 50 identities randomly selected from 

the CelebA database. (C) Original faces in the cartoon style Hayao. (D) Original faces in the 

cartoon style Hosoda. (E) Original faces in the cartoon style Paprika. (F) Original faces in the 

cartoon style Shinkai. (G) Original faces in the Mooney style. (H) A different set of celebrity 

caricature faces. (I) Original faces in inversion. (J) A set of non-face objects selected from the 

ImageNet stimuli. Identity recognition accuracy is shown for each deep neural network (DNN) 

layer. Error shade denotes one standard deviation across 5-fold cross validation. Blue: all 

neurons from each DNN layer. Red: identity-selective neurons. Gray: non-identity-selective 

neurons. 

Fig. 3. Visualization of the deep neural network (DNN). (A) Example activation maps for a 

subset of DNN layers. Left: all neurons. Middle: identity-selective neurons. Right: non-identity-
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selective neurons. (B) Visualization in the t-SNE space for DNN layers Conv5_3 (upper row) 

and FC7 (lower row). Each color-shape combination represents a face identity (10 faces per 

identity). The feature dimensions are in arbitrary units (a.u.). Left column: identity-selective 

neurons. Right column: non-identity-selective neurons. 

Fig. 4. Manipulation of the deep neural network (DNN). (A) Illustration of how random dropout 

of DNN neurons was performed. We added a binary mask following every convolutional layer in 

the original DNN architecture to randomly deactivate a subset of DNN neurons. The percentage 

of dropped DNN neurons was controlled by the percentage of zeros in the binary mask and 

varied from 10% to 90%. (B-F) Recognition accuracy following a random dropout of DNN 

neurons. (G) Recognition accuracy following kernel-wise shuffle. (H) Recognition accuracy 

following layer-wise shuffle. Legend conventions as in Fig. 2. 

Fig. 5. Comparison between the deep neural network (DNN) and real human neurons. (A) Task 

used to acquire single-neuron responses from humans. We employed a one-back task, in which 

patients responded whenever an identical famous face was repeated. Each face was presented for 

1 s, followed by a jittered inter-stimulus-interval (ISI) of 0.5 to 0.75 s. (B) Correlation between 

pairwise distance in the human medial temporal lobe (MTL) neuronal face space and pairwise 

distance in the DNN face space. Here we used the mean firing rate in a time window 250 ms to 

1000 ms after stimulus onset as the response to each face, and we averaged the responses to 10 

faces for each face identity. Blue: pairwise distance calculated using all human neurons and all 

DNN neurons. Red: pairwise distance calculated using human identity-selective neurons (SI and 

MI neurons) and DNN identity-selective neurons. Gray: pairwise distance calculated using 

human non-identity-selective neurons and DNN non-identity-selective neurons. Solid circles 

represent a significant correlation (Spearman’s correlation: P < 0.05, corrected by false discovery 

rate [FDR] [61] for Q < 0.05) and open circles represent a non-significant correlation. (C-E) 

Temporal dynamics of correlation of pairwise distance between human neurons and DNN 
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neurons (bin size = 500 ms, step size = 50 ms). Color coding indicates the Spearman’s 

correlation coefficient. (C) All neurons. (D) Identity-selective neurons. (E) Non-identity-

selective neurons. (F) Percentage of SI neurons in each DNN layer and comparison with neurons 

from the human MTL. (G) Percentage of MI neurons in each DNN layer and comparison with 

neurons from the human MTL. Asterisks indicate a significant difference in the proportion of 

neurons using χ2-test with Bonferroni correction for multiple comparisons. *: P < 0.05, **: P < 

0.01, and ***: P < 0.001. 

Fig. 6. Region-based feature coding in DNN neurons. (A) The face feature space constructed by 

t-distributed stochastic neighbor embedding (t-SNE) for the DNN layer FC6. All stimuli are 

shown in this space. (B-E) Example DNN neurons. (B, C) Two example MI neurons that 

demonstrated region-based feature coding (i.e., the neurons encoded a region in the feature 

space). (D) An example MI neuron that did not demonstrate region-based feature coding (i.e., the 

encoded identities were not adjacent to each other in the feature space). (E) A non-identity-

selective neuron (i.e., the neuron did not encode any particular identities). All examples were 

from the DNN layer FC6. (Left) DNN neuron responses to 500 faces (50 identities; grouped by 

individual identity) in arbitrary units (a.u.). Error bars denote ±SEM across faces. (Middle) 

Projection of the DNN activation onto the feature space. Each color represents a different 

identity (names shown in the legend). The size of the dot indicates the level of activation. (Right) 

Estimate of the spike density in the feature space. By comparing observed (upper) vs. permuted 

(lower) responses, we could identify a region where the observed neuronal response was 

significantly higher in the feature space. This region was defined as the tuning region of a neuron 

(delineated by the red/cyan outlines). 

Fig. 7. Summary of region-based feature coding for SI and MI neurons. (A) Percentage of 

feature space covered by tuning regions of SI and MI neurons. Note that here we did not apply 

the threshold for minimal cluster size for SI and non-feature MI neurons in order to compare 
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between different types of neurons. (B) Normalized distance between MI neuron’s selective 

identities in the feature space. To be comparable for different layers, Euclidean distance was 

normalized by the maximum distance (i.e., diagonal line) of the feature space. Error bars denote 

±SEM across neurons. Asterisks indicate a significant difference between feature MI neurons and 

non-feature MI neurons using two-tailed unpaired t-test. ***: P < 0.001. (C) The aggregated 

tuning regions of the neuronal population. Color bars show the counts of overlap between 

individual tuning regions. Numbers above the density map show the percentage of feature space 

covered by the tuning regions of the neuronal population. 

Page  of 24 29

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 14, 2021. ; https://doi.org/10.1101/2021.05.12.443829doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.12.443829


Supplemental Figure Legends 

Fig. S1. Additional results for identity-selective neurons. (A) Procedure for selecting identity-

selective neurons. We used a one-way ANOVA to identify identity-selective neurons that had a 

significantly unequal response to different identities (P < 0.01). We further imposed an additional 

criterion to identify a subset of identity-selective neurons with selective identities: the response 

of an identity was 2 standard deviations (SD) above the mean of responses from all identities. 

These identified identities whose response stood out from the global mean were the encoded 

identities. We refer to the neurons that encoded a single identity as single-identity (SI) neurons 

and we refer to the neurons that encoded multiple identities as multiple-identity (MI) neurons. 

(B) The encoding frequency of each face identity in each deep neural network (DNN) layer. 

Color coding indicates the encoding frequency of each DNN layer (i.e., the number of DNN 

neurons encoding an identity divided by the total number of DNN neurons of a layer). (C) 

Combined SI and MI neurons demonstrated even better discriminability of face identities than 

identity-selective neurons. Identity recognition accuracy is shown for each DNN layer. Error 

shade denotes one standard deviation across 5-fold cross validation. Magenta: combined SI and 

MI neurons. Red: identity-selective neurons. 

Fig. S2. Recognition accuracy following a random dropout of a single layer of DNN neurons.  

30% of neurons were dropped. The label in each plot indicates the layer that dropout was 

performed. Legend conventions as in Fig. 2. 
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