
FACE IMAGE ANALYSIS
BY UNSUPERVISED LEARNING

MARIAN STEWART BARTLETT
Institute for Neural Computation
University of California, San Diego

Kluwer Academic Publishers
Boston/Dordrecht/London



Contents

Acknowledgments xi

1. SUMMARY 1

2. INTRODUCTION 5
2.1 Unsupervised learning in object representations 5

2.1.1 Generative models 6
2.1.2 Redundancy reduction as an organizational principle 8
2.1.3 Information theory 9
2.1.4 Redundancy reduction in the visual system 11
2.1.5 Principal component analysis 12
2.1.6 Hebbian learning 13
2.1.7 Explicit discovery of statistical dependencies 15

2.2 Independent component analysis 17
2.2.1 Decorrelation versus independence 17
2.2.2 Information maximization learning rule 18
2.2.3 Relation of sparse coding to independence 22

2.3 Unsupervised learning in visual development 24
2.3.1 Learning input dependencies: Biological evidence 24
2.3.2 Models of receptive field development based on correlation

sensitive learning mechanisms 26
2.4 Learning invariances from temporal dependencies in the input 29

2.4.1 Computational models 29
2.4.2 Temporal association in psychophysics and biology 32

2.5 Computational Algorithms for Recognizing Faces in Images 33

3. INDEPENDENT COMPONENT REPRESENTATIONS FOR FACE
RECOGNITION 39

3.1 Introduction 39
3.1.1 Independent component analysis (ICA) 42
3.1.2 Image data 44

3.2 Statistically independent basis images 45
3.2.1 Image representation: Architecture 1 45
3.2.2 Implementation: Architecture 1 46

vii



viii FACE IMAGE ANALYSIS

3.2.3 Results: Architecture 1 48
3.3 A factorial face code 53

3.3.1 Independence in face space versus pixel space 53
3.3.2 Image representation: Architecture 2 54
3.3.3 Implementation: Architecture 2 56
3.3.4 Results: Architecture 2 56

3.4 Examination of the ICA Representations 59
3.4.1 Mutual information 59
3.4.2 Sparseness 60

3.5 Combined ICA recognition system 62
3.6 Discussion 63

4. AUTOMATED FACIAL EXPRESSION ANALYSIS 69
4.1 Review of other systems 70

4.1.1 Motion-based approaches 70
4.1.2 Feature-based approaches 71
4.1.3 Model-based techniques 72
4.1.4 Holistic analysis 73

4.2 What is needed 74
4.3 The Facial Action Coding System (FACS) 75
4.4 Detection of deceit 78
4.5 Overview of approach 81

5. IMAGE REPRESENTATIONS FOR FACIAL EXPRESSION
ANALYSIS: COMPARATIVE STUDY I 83

5.1 Image database 84
5.2 Image analysis methods 85

5.2.1 Holistic spatial analysis 85
5.2.2 Feature measurement 87
5.2.3 Optic flow 88
5.2.4 Human subjects 90

5.3 Results 91
5.3.1 Hybrid system 93
5.3.2 Error analysis 94

5.4 Discussion 96

6. IMAGE REPRESENTATIONS FOR FACIAL EXPRESSION
ANALYSIS: COMPARATIVE STUDY II 101

6.1 Introduction 102
6.2 Image database 103
6.3 Optic flow analysis 105

6.3.1 Local velocity extraction 105
6.3.2 Local smoothing 105
6.3.3 Classification procedure 106

6.4 Holistic analysis 108
6.4.1 Principal component analysis: “EigenActions” 108
6.4.2 Local feature analysis (LFA) 109



Foreword

Computers are good at many things that we are not good at, like sorting a
long list of numbers and calculating the trajectory of a rocket, but they are not
at all good at things that we do easily and without much thought, like seeing
and hearing. In the early days of computers, it was not obvious that vision was
a difficult problem. Today, despite great advances in speed, computers are still
limited in what they can pick out from a complex scene and recognize. Some
progress has been made, particularly in the area of face processing, which is
the subject of this monograph.

Faces are dynamic objects that change shape rapidly, on the time scale
of seconds during changes of expression, and more slowly over time as we
age. We use faces to identify individuals, and we rely of facial expressions to
assess feelings and get feedback on the how well we are communicating. It is
disconcerting to talk with someone whose face is a mask. If we want computers
to communicate with us, they will have to learn how to make and assess facial
expressions. A method for automating the analysis of facial expressions would
be useful in many psychological and psychiatric studies as well as have great
practical benefit in business and forensics.

The research in this monograph arose through a collaboration with Paul
Ekman, which began 10 years ago. Dr. Beatrice Golomb, then a postdoctoral
fellow in my laboratory, had developed a neural network called Sexnet, which
could distinguish the sex of person from a photograph of their face (Golomb
et al., 1991). This is a difficult problem since no single feature can be used to
reliably make this judgment, but humans are quite good at it. This project was
the starting point for a major research effort, funded by the National Science
Foundation, to automate the Facial Action Coding System (FACS), developed
by Ekman and Friesen (1978). Joseph Hager made a major contribution in the
early stages of this research by obtaining a high quality set of videos of experts
who could produce each facial action. Without such a large dataset of labeled
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images of each action it would not have been possible to use neural network
learning algorithms.

In this monograph, Dr. Marian Stewart Bartlett presents the results of her
doctoral research into automating the analysis of facial expressions. When she
began her research, one of the methods that she used to study the FACS dataset,
a new algorithm for Independent Component Analysis (ICA), had recently been
developed, so she was pioneering not only facial analysis of expressions, but
also the initial exploration of ICA. Her comparison of ICA with other algorithms
on the recognition of facial expressions is perhaps the most thorough analysis
we have of the strengths and limits ICA.

Much of human learning is unsupervised; that is, without the benefit of an
explicit teacher. The goal of unsupervised learning is to discover the underly-
ing probability distributions of sensory inputs (Hinton and Sejnowski, 1999).
Or as Yogi Berra once said, "You can observe a lot just by watchin’." The
identification of an object in an image nearly always depends on the physical
causes of the image rather than the pixel intensities. Unsupervised learning can
be used to solve the difficult problem of extracting the underlying causes, and
decisions about responses can be left to a supervised learning algorithm that
takes the underlying causes rather than the raw sensory data as its inputs.

Several types of input representation are compared here on the problem of
discriminating between facial actions. Perhaps the most intriguing result is that
two different input representations, Gabor filters and a version of ICA, both
gave excellent results that were roughly comparable with trained humans. The
responses of simple cells in the first stage of processing in the visual cortex of
primates are similar to those of Gabor filters, which form a roughly statistically
independent set of basis vectors over a wide range of natural images (Bell and
Sejnowski, 1997). The disadvantage of Gabor filters from an image processing
perspective is that they are computationally intensive. The ICA filters, in
contrast, are much more computationally efficient, since they were optimized
for faces. The disadvantage is that they are too specialized a basis set and could
not be used for other problems in visual pattern discrimination.

One of the reasons why facial analysis is such a difficult problem in visual
pattern recognition is the great variability in the images of faces. Lighting
conditions may vary greatly and the size and orientation of the face make the
problem even more challenging. The differences between the same face under
these different conditions are much greater than the differences between the
faces of different individuals. Dr. Bartlett takes up this challenge in Chapter 7
and shows that learning algorithms may also be used to help overcome some
of these difficulties.

The results reported here form the foundation for future studies on face
analysis, and the same methodology can be applied toward other problems in
visual recognition. Although there may be something special about faces, we
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may have learned a more general lesson about the problem of discriminating
between similar complex shapes: A few good filters are all you need, but each
class of object may need a quite different set for optimal discrimination.

Terrence J. Sejnowski
La Jolla, CA



Chapter 1

SUMMARY

One of the challenges of teaching a computer to recognize faces is that we
do not know a priori which features and which high order relations among
those features to parameterize. Our insight into our own perceptual processing
is limited. For example, image features such as the distance between the
eyes or fitting curves to the eyes give only moderate performance for face
recognition by computer. Much can be learned about image recognition from
biological vision. A source of information that appears to be crucial for shaping
biological vision is the statistical dependencies in the visual environment. This
information can be extracted through unsupervised learning

�
. Unsupervised

learning finds adaptive image features that are specialized for a class of images,
such as faces.

This book explores adaptive approaches to face image analysis. It draws
upon principles of unsupervised learning and information theory to adapt pro-
cessing to the immediate task environment. In contrast to more traditional
approaches to image analysis in which relevant structure is determined in
advance and extracted using hand-engineered techniques, this book explores
methods that learn about the image structure directly from the image ensemble
and/or have roots in biological vision. Particular attention is paid to unsuper-
vised learning techniques for encoding the statistical dependencies in the image
ensemble.

Horace Barlow has argued that redundancy in the sensory input contains
structural information about the environment. Completely non-redundant stim-
uli are indistinguishable from random noise, and the percept of structure is

�
“Unsupervised” means that there is no explicit teacher. Object labels and correct answers are not provided

during learning. Instead, the system learns through a general objective function or set of update rules.

1



2 FACE IMAGE ANALYSIS

driven by the dependencies (Barlow, 1989). Bars and edges are examples of
such regularities in vision. It has been claimed that the goal of both unsuper-
vised learning, and of sensory coding in the neocortex, is to learn about these
redundancies (Barlow, 1989; Field, 1994; Barlow, 1994). Learning mecha-
nisms that encode the dependencies that are expected in the input and remove
them from the output encode important structure in the sensory environment.
Such mechanisms fall under the rubric of redundancy reduction.

Redundancy reduction has been discussed in relation to the visual system
at several levels. A first-order redundancy is mean luminance. Adaptation
mechanisms take advantage of this nonrandom feature by using it as an expected
value, and expressing values relative to it (Barlow, 1989). The variance, a
second-orderstatistic, is the luminancecontrast. Contrast appears to be encoded
relative to the mean contrast, as evidenced by contrast gain control mechanisms
in V1 (Heeger, 1992). Principal component analysis is a way of encoding
second order dependencies in the input by rotating the axes to correspond to
directions of maximum covariance. Principal component analysis provides a
dimensionality-reduced code that separates the correlations in the input. Atick
and Redlich (Atick and Redlich, 1992) have argued for such decorrelation
mechanisms as a general coding strategy for the visual system.

This book argues that statistical regularities contain important information
for high level visual functions such as face recognition. Some of the most
successful algorithms for face recognition are based on learning mechanisms
that are sensitive to the correlations in the face images. Representations such
as "eigenfaces" (Turk and Pentland, 1991) and "holons" (Cottrell and Metcalfe,
1991), are based on principal component analysis (PCA), which encodes the
correlational structure of the input, but does not address high-order statistical
dependencies. High order dependencies are relationships that cannot be cannot
be captured by a linear predictor. A sine wave �������
	����� is such an example.
The correlationbetween  and � is zero, yet � is clearlydependent on  . In a task
such as face recognition, much of the important information may be contained
in high-order dependencies. Independent component analysis (ICA) (Comon,
1994) is a generalization of PCA which learns the high-order dependencies
in the input in addition to the correlations. An algorithm for separating the
independent components of an arbitrary dataset by information maximization
was recently developed (Bell and Sejnowski, 1995). This algorithm is an
unsupervised learning rule derived from the principle of optimal information
transfer between neurons (Laughlin, 1981; Linsker, 1988; Atick and Redlich,
1992). This book applies ICA to face image analysis and compares it to other
representations including eigenfaces and Gabor wavelets.

Desirable filters may be those that are adapted to the patterns of interest and
capture interesting structure (Lewicki and Sejnowski, 2000). The more the
dependencies that are encoded, the more structure that is learned. Information
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theory provides a means for capturing interesting structure. Information maxi-
mization leads to an efficient code of the environment, resulting in more learned
structure. Such mechanisms predict neural codes in both vision (Olshausen and
Field, 1996a; Bell and Sejnowski, 1997; Wachtler et al., 2001) and audition
(Lewicki and Olshausen, 1999).

Chapter 2 reviews unsupervised learning and information theory, including
Hebbian learning, PCA, mimimum entropy coding, and ICA. Relationships
of these learning objectives to biological vision are also discussed. Self-
organization in visual development appears to be mediated by learning mecha-
nisms sensitive to the dependencies in the input. Chapter 3 develops represen-
tations for face recognition based on statistically independent components of
face images. The ICA algorithm was applied to a set of face images under two
architectures, one which separated a set of independent images across spatial
location, and a second which found a factorial feature code across images. Both
ICA representations were superior to the PCA representation for recognizing
faces across sessions and changes in expression. A combined classifier that
took input from both ICA representations outperformed PCA for recognizing
images under all conditions tested.

Chapter 4 reviews automated facial expression analysis and introduces the
Facial Action Coding System (Ekman and Friesen, 1978). Chapters 5 and 6
compare image representations for facial expression analysis, and demonstrate
that learned representations based on redundancy reduction of the graylevel
face image ensemble are powerful for face image analysis. Chapter 5 showed
that PCA, which encodes second-order dependencies through unsupervised
learning, gave better recognition performance than a set of hand-engineered
feature measurements. The results also suggest that hand-engineered features
plus principal component representations may be superior to either one alone,
since their performances may be uncorrelated.

Chapter 6 compared the ICA representation described above to more than
eight other image representations for facial expression analysis. These in-
cluded analysis of facial motion through estimation of optical flow; holistic
spatial analysis based on second-order image statistics such as principal com-
ponent analysis, local feature analysis, and linear discriminant analysis; and
representations based on the outputs of local filters, such as a Gabor wavelet
representations and local PCA. These representations were implemented and
tested by my colleague, Gianluca Donato. Performance of these systems was
compared to naive and expert human subjects. Best performance was obtained
using the Gabor wavelet representation and the independent component rep-
resentation, which both achieved 96% accuracy for classifying twelve facial
actions. The results provided converging evidence for the importance of pos-
sessing local filters, high spatial frequencies, and statistical independence for
classifying facial actions. Relationships between Gabor filters and independent
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component analysis have been demonstrated (Bell and Sejnowski, 1997; Si-
moncelli, 1997).

Chapter 7 addresses representations of faces that are invariant to changes
such as an alteration in expression or pose. Temporal redundancy contains
information for learning invariances� . Different views of a face tend to appear
in close temporal proximity as the person changes expression, pose, or moves
through the environment. There are several synaptic mechanisms that might
depend on the correlation between synaptic input at one moment, and post-
synaptic depolarization at a later moment. Chapter 7 modeled the development
of viewpoint invariant responses to faces from visual experience in a biological
system by encoding spatio-temporal dependencies. The simulations combined
temporal smoothing of activity signals with Hebbian learning (Földiák, 1991)
in a network with both feed-forward connections and a recurrent layer that
was a generalization of a Hopfield attractor network. Following training on
sequences of graylevel images of faces as they changed pose, multiple views
of a given face fell into the same basin of attraction, and the system acquired
representations of faces that were approximately viewpoint invariant.

These results support the theory that employing learning mechanisms that
encode dependencies in the input and remove them from the output is a good
strategy for object recognition. A representation based on the second-order
dependencies in the face images outperformed a representation based on a set
of hand-engineered feature measurements for facial expression recognition, and
a representation that separated the high order dependencies in addition to the
second-order dependencies outperformed representations that separated only
the second-order dependencies for both identity recognition and expression
recognition. In addition, learning strategies that encoded the spatio-temporal
redundancies in the input extracted structure relevant to visual invariances.

�
“Invariance” in vision refers to the consistency of object identity despite alterations in the input due to

translation, rotation, changes in lighting, and changes in scale. One goal is to learn object representations
that are unaltered by (invariant to) such changes in the input



Chapter 2

INTRODUCTION

1. UNSUPERVISED LEARNING IN OBJECT
REPRESENTATIONS

How can a perceptual system learn to recognize properties of its environment
without being told which features it should analyze, or whether its decisions are
correct? When there is no external teaching signal to be matched, some other
goal is required to force a perceptual system to extract underlying structure.
Unsupervised learning is related to Gibson’s concept of discovering “affor-
dances” in the environment (Gibson, 1986). Structure and information are
afforded by the external stimulus, and it is the task of the perceptual system
to discover this structure. The perceptual system must learn about the under-
lying physical causes of observed images. One approach to self-organization
is to build generative models that are likely to have produced the observed
data. The parameters of these generative models are adjusted to optimize the
likelihood of the data within constraints such as basic assumptions about the
model architecture. A second class of objectives is related to information
preservation and redundancy reduction. These approaches are reviewed here.
The two approaches to unsupervised learning are not mutually exclusive, and
it is often possible, as will be seen below, to ascribe a generative architec-
ture to an information preservation objective, and to build generative models
with objectives of information preservation. See (Becker and Plumbley, 1996)
for a thorough discussion of unsupervised learning. Hinton and Sejnowski’s
Unsupervised Learning: Foundations of Neural Computation (Hinton and Se-
jnowski, 1999) contains an anthology of many of the works reviewed in this
chapter. A recommended background text is Dana Ballard’s Introduction to
Natural Computation (Ballard, 1997).

5
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1.1. Generative models
One approach to unsupervised learning attempts to develop a representation

of the data by characterizing its underlying probability distribution. In this
approach, a prior model � , is assumed which constrains the general form of the
probability density function. The particular model parameters are then found
by maximizing the likelihood of the model having generated the observed data.
A mixture of Gaussians model, for example, assumes that each data point was
generated by a combination of causes ��� , where each cause has a Gaussian
distribution with a mean ��� , variance ��� , and prior probabilities or mixing
proportions, ��� . The task is to learn the parameters �����������������
� for all � that
were most likely to have generated the observed data.

Let  !�#"  �%$&$&$ �')( denote the observed data where the 	 samples are inde-
pendent. The probability of the data given the model is given by* �� ,+-�.� �0/ � * �� ,+ ���1� * �2���1� (2.1)�4365 / � * �� 5 + ���
� * �2���1� (2.2)

The probability of the data is defined in terms of the prior probability of
each of the submodels

* �2���1� and the posterior probability of the data given
the submodel,

* �� ,+ ���1� , where ��� is defined as �����������������
� . The parameters of
each of the submodels, �����������������1� , are found by performing gradient ascent
on 2.2. The log probability, or likelihood, is usually maximized in order to
facilitate calculation of the partial derivatives of 2.2 with respect to each of the
parameters. Such models fall into the class of “generative” models, in which
the model is chosen as the one most likely to have generated the observed data.

Maximum likelihood models are a form of a Bayesian inference model (Knill
and Richards, 1996). The probability of the model given the data is given by* �
�6+  7�8� * �� ,+-�9� * �
�9�* �� 7� (2.3)

The maximum likelihood cost function maximizes
* �� ,+-�.� , which, under the

assumption of a uniform prior on the model
* �
�9� , also maximizes

* �
�:+  7� ,
since

* �� 7� is just a scaling factor.
A variant of the mixture of Gaussians generative model is maximum like-

lihood competitive learning (Nowlan, 1990). As in the mixture of Gaussians
model, the posterior probability ;<�� 5 + � � � is given by a Gaussian with center��� . The prior probabilities of the submodels

* �2���
� , however, are learned from
the data as a weighted sum of the input data, passed through a soft-maximum
competition. These prior probabilities give the mixing proportions, ��� .

In generative models, the model parameters are treated as network weights
in an unsupervised learning framework. There can be relationships between the
update rules obtained from the partial derivative of such objective functions and
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other unsupervised learning rules, such as Hebbian learning (discussed below in
Section 1.6). For example, the update rule for maximum likelihood competitive
learning (Nowlan, 1990) consists of a normalized Hebbian component and a
weight decay.

A limitation of generative models is that for all but the simplest models,
each pattern can be generated in exponentially many ways and it becomes
intractable to adjust the parameters to maximize the probability of the observed
patterns. The Helmholtz Machine (Dayan et al., 1995) presents a solution to
this combinatorial explosion by maximizing an easily computed lower bound
on the probability of the observations. The method can be viewed as a form of
hierarchical self-supervised learning that may relate to feed-forward and feed-
back cortical pathways. Bottom-up "recognition" connections convert the input
into representations in successive hidden layers, and top-down "generative"
connections reconstruct the representation in one layer from the representation
in the layer above. The network uses the inverse (“recognition”) model to
estimate the true posterior distribution of the input data.

Hinton (Hinton et al., 1995) proposed the “wake-sleep” algorithm for mod-
ifying the feedforward (recognition), and feedback (generative) weights of the
Helmholtz machine. The “wake-sleep” algorithm employs the objective of
“minimum description length” (Hinton and Zemel, 1994). The aim of learning
is to minimize the total number of bits that would be required to commu-
nicate the input vectors by first sending the hidden unit representation, and
then sending the difference between the input vector and the reconstruction
from the hidden unit representation. Minimizing the description length forces
the network to learn economical representations that capture the underlying
regularities in the data.

A cost function = is defined as the total number of bits required to describe
all of the hidden states in all of the hidden layers, > , plus the cost of describing
the remaining information in the input vector ? given the hidden states.=@�A>���?B�8�0=C�A>D�E=C�A?F+ >G� (2.4)

The algorithm minimizes expected cost over all of the hidden statesH �I=C�A>,��?J�E���4KELNMC�A>O+ ?J�E=C�A>,��?J� (2.5)

The conditional probability distribution over the hidden unit representationsMC�A>O+ ?J� , needs to be estimated in order to compute the expected cost. The
“wake-sleep” algorithm estimates M@�A>P+ ?B� by driving the hidden unit activities
via recognition connections from the input. These recognition connections are
trained, in turn, by activating the hidden units and estimating the probability
distributions of the input by generating “hallucinations” via the generative
connections. Because the units are stochastic, repeating this process produces
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may different hallucinations. The hallucinations provide an unbiased sample
of the network’s model of the world.

During the "wake" phase, neurons are driven by recognition connections, and
the recognition model is used to define the objective function for learning the
parameters of the generative model. The generative connections are adapted
to increase the probability that they would reconstruct the correct activity
vector in the layer below. During the “sleep” phase, neurons are driven by
generative connections, and the generative model is used to define the objective
function for learning the parameters of the recognition model. The recognition
connections are adapted to increase the probability that they would produce the
correct activity vector in the layer above.

The description length can be viewed as an upper bound on the negative log
probability of the data given the network’s generative model, so this approach is
closely related to maximum likelihood methods of fitting models to data (Hinton
et al., 1995). It can be shown that Bayesian inference models are equivalent
to a minimum description length principle (Mumford, 1996). The generative
models described in this section therefore fall under rubric of efficient coding.
Another approach to the objective of efficient coding is explicit reduction of
redundancy between units in the input signal. Redundancy can by minimized
with the additional constraint on the number of coding units, as in minimum
description length, or redundancy can be reduced without compressing the
representation in a higher dimensional, sparse code.

1.2. Redundancy reduction as an organizational principle
Redundancy reduction has been proposed as a general organizational princi-

ple for unsupervised learning. Horace Barlow (Barlow, 1989) has argued that
statistical redundancy contains information about the patterns and regularities
of sensory stimuli. Completely non-redundant stimuli are indistinguishable
from random noise, and Barlow claims that the percept of structure is driven
by the dependencies. The set of points on the left of Figure 2.1 was selected
randomly from a Gaussian distribution, whereas half of the points on the right
were generated by rotating an initial set of points about the centroid of the dis-
tribution. This simple dependence between pairs of dots produced a structured
appearance.

According to Barlow’s theory, what is important for a system to detect is
new statistical regularities in the sensory input that differ from the environment
to which the system has been adapted. Barlow termed these new dependencies
“suspicious coincidences.” Bars and edges, for example, are locations in the
visual input at which there is phase alignment across multiple spatial scales,
and therefore constitute a “suspicious coincidence” (Barlow, 1994).

Learning mechanisms that encode the redundancy that is expected in the
input and remove it from the output enable the system to more reliably detect
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Figure 2.1. The percept of structure is driven by the dependencies. LEFT: A set of points
selected from a Gaussian distribution. RIGHT: Half of the points were selected from a Gaussian
distribution, and the other half were generated by rotating the points QSR about the centroid of the
distribution. Figure inspired by Barlow (1989).

these new regularities. Learning such a transformation is equivalent to mod-
eling the prior knowledge of the statistical dependencies in the input (Barlow,
1989). Independent codes are advantageous for encoding complex objects that
are characterized by high order combinations of features because the prior
probability of any particular high order combination is low. Incoming sensory
stimuli are automatically compared against the null hypothesis of statistical
independence, and suspicious coincidences signaling a new causal factor can
be more reliably detected.

Barlow pointed to redundancy reduction at several levels of the visual system.
Refer to Figure 2.2. A first-order redundancy is mean luminance. Adaptation
mechanisms take advantage of this nonrandom feature by using it as an expected
value, and expressing values relative to it (Barlow, 1989). The variance, a
second-orderstatistic, is the luminancecontrast. Contrast appears to be encoded
relative to the local mean contrast, as evidenced by the “simultaneous contrast”
illusion, and by contrast gain control mechanisms observed in V1 (Heeger,
1992).

1.3. Information theory
Barlow proposed an organizational principle for unsupervised learning based

on information theory. The information provided by a given response  is
defined as the number of bits required to communicate an event that has prob-
ability

* ���� under a distribution that is agreed upon by the sender and receiver
(Shannon and Weaver, 1949):T ��F�8�VU.WAX�Y � * ��F� (2.6)
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a.

b.

Figure 2.2. Redundancy reduction in the visual system. a. Luminance adaptation. The center
squares are the same shade of gray, but the square on the left appears darker than the square on the
right. b. Contrast adaptation. The center squares have the same contrast, but the square on the
left appears to have higher contrast than the square on the right. This is called the simultaneous
contrast effect.

Information is inversely proportional to the probability, and can be thought of
as “surprise.” The entropy of a response distribution, Z[��F� , is the expected
value of the information:Z[��F���\U K * �����W�X]Y � * ��F� (2.7)

Entropy is maximized by a uniform distribution, and is minimized by highly
kurtotic (sharplypeaked) distributions. The joint entropy between two variables � and  � can be calculated asZ[�� � �E � �8�^Z[�� � ��_[Z[�� � �7U T �� � �E � � (2.8)

where

T �� � �E � � is the mutual information between  � and  � , which is calcu-
lated from 2.6 using the joint probability density

* �� � �E � � .
Barlow argued for minimum entropy coding as a general representational

strategy. Minimum entropy, highly kurtoticcodes, have low mutual information
between the elements. This is because the joint entropy of a multidimensional
code is defined as the sum of the individual entropies minus the mutual in-
formation between the elements (2.8). Since the joint entropy of the code
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stays constant, by minimizing the sum of the individual entropies, the mutual
information term is also minimized. Another way to think of this is moving
the redundancy from between the elements to redundancy within the distribu-
tions of the individual elements (Field, 1994). The distributions of individual
elements with minimum entropy are redundant in the sense that they almost
always take on the same value.

Atick and Redlich (Atick and Redlich, 1992) approach the objective of
redundancy reduction from the perspective of efficient coding. They point
out that natural stimuli are very redundant, and hence the sample of signals
formed by an array of sensory receptors is inefficient. Atick (Atick, 1992)
described evolutionary advantages of efficient coding such as coping with
information bottlenecks due to limited bandwidth and limited dynamic range.
Atick argued for the principle of efficiency of information representation as a
design principle for sensory coding, and presented examples from the blowfly
and the mammalian retina.

1.4. Redundancy reduction in the visual system
The large monopolar cells (LMC) in the blowfly compound eye eliminate

inefficiency due to unequal use of neural response levels (Laughlin, 1981). The
most efficient response gain is the one such that the probability distribution of
the outputs is constant for all output states (maximum entropy). The solution is
to match the gain of the transfer function to the cumulative probability density
of the input. Laughlin (Laughlin, 1981) measured the cumulative probability
density of contrast in the fly’s environment, and found a close match between
the gain of the LMC neurons and the cumulative probability density function.

Atick made a similar argument for the modulation transfer function (MTF)
of the mammalian retina. The cumulative density of the amplitude spectrum
of natural scenes is approximately `�acb where b is frequency

�
(Field, 1987).

The MTF makes an efficient code by equalizing the response distribution of
the output over spatial frequency. Atick demonstrated that multiplying the
experimentally observed retinal MTF’s by `�acb produces an approximately flat
output for frequencies less than 3 cycles per degree. Atick refers to such transfer
functions as whitening filters, since they equalize the response distribution of
the output over all frequencies.

Macleod and von der Twer (Macleod and von der Twer, 1996) generalized
Laughlin’s analysis of optimal gain control to the presence of noise. In the
noiseless case, the gain that maximizes the information transfer is the one that
matches the cumulative probability density of the input, but in the presence of
noise, the optimal transfer function has a shallower slope in order to increase�

Spatial frequency is determined by a Fourier transform on the wave form defined by brightness as a function
of spatial position. In 2D images, a 1-D analysis is repeated at multiple orientations.
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the signal-to-noise ratio. Macleod and von der Twer defined an optimal transfer
function for color coding, which they termed the “pleistochrome,” that max-
imizes the quantity of distinguishable colors in the presence of output noise.
The analysis addressed the case of a single input  and output � , and used a
criterion of minimum mean squared reconstruction error of the input, given
the output plus output noise with variance � . The minimum squared error
criterion performs principal component analysis which, as will be discussed
in the next section, maximizes the entropy of the output for the single unit
case. In the presence of noise, the optimal transfer function was a gain propor-
tional to �ed * �f �����g , which was less than the cumulative probablility density,
and modulated by the amount of noise, � . Macleod and von der Twer found
that the pleistochrome based on the distribution of cone responses along theh Ui�Aj6_lkN� axis � accounted well for the spectral sensitivity of the blue-yellow
opponent channel observed at higher levels in the primate visual system.

These analyses have presented means for maximizing efficiency of coding
for a single input and output. Principal component analysis is a means of
reducing redundancies between multiple outputs. Atick and Redlich (Atick
and Redlich, 1992) have argued for compact decorrelating mechanisms such as
principal component analysis as a general coding strategy for the visual system.
PCA decorrelates the input through an axis rotation. PCA provides a set of axes
for encoding the input in fewer dimensions with minimum loss of information,
in the squared error sense. Principal component analysis is an example of a
coding strategy that in Barlow’s formulation, encodes the correlations that are
expected in the input and removes them from the output.

1.5. Principal component analysis
Principal component analysis (PCA) finds an orthonormal set of axes point-

ing in the directions of maximum covariance in the data. Let m be a dataset
in which each column is an observation and each row is a measure with zero
mean. The principal component axes are the eigenvectors of the covariance
matrix of the measures,

�n memeo , where p is the number of observations. The
corresponding eigenvalues indicate the proportion of variability in the data for
which each eigenvector accounts. The first principal component points in the
direction of maximum variability, the second eigenvector points in the direc-
tion of maximum variability orthogonal to the first, and so forth. The data are
recoded in terms of these axes by vector projection of each data point onto
each of the new axes. Let

*
be the matrix containing the principal component

eigenvectors in its columns. The PCA representation for each observation is

�
Blue-yellow axis. S, M, and L stand for short, medium, and long wavelength selective cones. These

correspond roughly to blue, green, and red. L+M corresponds to yellow.
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obtained in the rows of q by

q��^m o * (2.9)

The eigenvectors in
*

can be considered a set of weights on the data, m ,
where the outputs are the coefficients in the matrix, q . Because the principal
component eigenvectors are orthonormal, they are also basis vectors for the
dataset m . This is shown as follows: Since

*
is symmetric and the columns

of
*

are orthonormal,
*:* o\� T

, where

T
is the identity matrix, and right

multiplication of 2.9 by
* o gives q * o �0m . The original data can therefore

be reconstructed from the coefficients q using the eigenvectors in
*

now as
basis vectors. A lower dimensional representation can be obtained by selecting
a subset of the principal components with the highest eigenvalues, and it can
be shown that for a given number of dimensions, the principal component
representation minimizes mean squared reconstruction error.

Because the eigenvectors point in orthogonal directions in covariance space,
the principal component representation is uncorrelated. The coefficients for
one of the axes cannot be linearly predicted from the coefficients of the other
axes. Another way to think about the principal component representation is
in terms of the generative models described in Section 1.1. PCA models the
data as a multivariate Gaussian where the covariance matrix is restricted to be
diagonal. It can be shown that a generative model that maximizes the likelihood
of the data given a Gaussian with a diagonal covariance matrix is equivalent
to minimizing mean squared error of the generated data. PCA can also be
accomplished through Hebbian learning, as described in the next section.

1.6. Hebbian learning
Hebbian learning is an unsupervised learning rule that was proposed as a

model for activity dependent modification of synaptic strengths between neu-
rons (Hebb, 1949). The learning rule adjusts synaptic strengths in proportion
to the activity of the pre and post-synaptic neurons. Because simultaneously
active inputs cooperate to produce activity in an output unit, Hebbian learning
finds the correlational structure in the input. See (Becker and Plumbley, 1996)
for a review of Hebbian learning.

For a single output unit, it can be shown that Hebbian learning maximizes
activity variance of the output, subject to saturation bounds on each weight,
and limits on the total connection strength to the output neuron (Linsker, 1988).
Since the first principal component corresponds to the weight vector that maxi-
mizes the variance of the output, then Hebbian learning, subject to the constraint
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that the weight vector has unit length, is equivalent to the finding first principal
component of the input (Oja, 1982).

For a single output unit, � , where the activity of � is the weighted sum of the
input, �C�0/ �sr �A�� , the simple Hebbian learning algorithmt r � �^>7 � � (2.10)

with learning rate > will move the vector r �u" r � � $&$&$ � r ' ( towards the first
principal component of the input  . In the simple learning algorithm, the length
of r is unbounded. Oja modified this algorithm so that the length of r was
normalized after each step. With a sufficiently small > , Hebbian learning with
length normalization is approximated byt r �^>7�F��lU r ��� $ (2.11)

This learning rule converges to the unit length principal component. The U r � �
term tends to decease the length of r if it gets too large, while allowing it to
increase if it gets too small.

In the case of p output units, in which the p outputs are competing for
activity, Hebbian learningcan span the space of the first p principalcomponents
of the input. With the appropriate form of competition, the Hebb rule explicitly
represents the p principal components in the activities of the output layer (Oja,
1989; Sanger, 1989). A learning rule for the weight r 5 to output unit � 5 that
explicitly finds the first p principal components of the data ist r 5 �^>v� 5 ��lU r 5 � 5 _[w 5yx �Kzy{ � � (2.12)

The algorithm forces successive outputs to learn successive principal compo-
nents of the data by subtracting estimates of the previous components from the
input before the connections to a given output unit are updated.

Linsker (Linsker, 1988) also demonstrated that for the case of a single output
unit, Hebbian learning maximizes the information transfer between the input
and the output. The Shannon information transfer rate| � T ��v�E���8�^Z[�����<U}Z[����+ �� (2.13)

gives the amount of information that knowing the output � conveys about the
input  , and is equivalent to the mutual information between them,

T ��v�E��� .
For a single output unit � with a Gaussian distribution, 2.13 is maximized by
maximizing the variance of the output (Linsker, 1988). Maximizing output
variance within the constraint of a Gaussian distribution produces a response
distribution that is as flat as possible (i.e. high entropy). Maximizing output
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entropy with respect to a weight r maximizes 2.13, because the second term,Z~����+ F� , is noise and does not depend on r .
Linsker argued for maximum information preservation as an organizational

principle for a layered perceptual system. There is no need for any higher layer
to attempt to reconstruct the raw data from the summary received from the
layer below. The goal is to preserve as much information as possible in order to
enable the higher layers to use environmental information to discriminate the
relative value of different actions. In a series of simulations described later in
this chapter, in Section 3, Linsker (Linsker, 1986) demonstrated how structured
receptive fields � with feature-analyzing properties related to the receptive fields
observed in the retina, LGN, and visual cortex could emerge from the principle
of maximum information preservation. This demonstration was implemented
using a local learning rule� subject to constraints. Information maximiza-
tion has recently been generalized to the multi-unit case (Bell and Sejnowski,
1995). Information maximization in multiple units will be discussed below in
Section 2. This monograph examines representations for face images based on
information maximization.

1.7. Learning rules for explicit discovery of statistical
dependencies

A perceptual system can be organized around internally derived teaching
signals generated from the assumption that different parts of the perceptual
input have common causes in the external world. One assumption is that the
visual input is derived from physical sources that are approximately constant
over space. For example, depth tends to vary slowly over most of the visual
input except at object boundaries. Learning algorithms that explicitly encode
statistical dependencies in the input attempt to discover those constancies. The
actual output of such invariance detectors represents the extent to which the
current input violates the network’s model of the regularities in the world
(Becker and Plumbley, 1996). The Hebbian learning mechanism described in
the previous section is one means for encoding the second order dependencies
(correlations) in the input.

The GMAX algorithm (Pearlmutter and Hinton, 1986) is a learning rule for
multiple inputs to a single output unit that is based on the goal of redundancy
reduction. The algorithm compares the response distribution,

*
of the output

unit to the response distribution, M , that would be expected if the input wasf
A receptive field of a neuron is the input that influences its activity rate. Many neurons in the retina and

lateral geniculate nucleus of the thalamus (LGN) have receptive fields with excitatory centers and inhibitory
surrounds. These respond best to a spot of light surrounded by a dark annulus at a particular location in the
visual field. Many neurons in the primary visual cortex respond best to oriented bars or edges.�

Local learning rules may be more biologically plausible than rules that evaluate information from all units,
given the limited extent of synaptic connections
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entirely independent. The learning algorithm causes the unit to discover the
statistical dependencies in the input by maximizing the difference between

*
and M .

*
is determined by the responses to the full set of data under the current

weight configuration, and M can be calculated explicitly by sampling all of thew ' possible states of the 	 input units. The GMAX learning rule is limited to
the case of a single output unit, and probabilistic binary units.

Becker (Becker, 1992) generalized GMAX to continuous inputs with Gaus-
sian distributions. This resulted in a learning rule that minimized the ratio of
the output variance to the variance that would be expected if the input lines
were independent. This learning rule discovers statistical dependencies in the
input, and is literally an invariance detector. If we assume that properties of
the visual input are derived from constant physical sources, then a learning
rule that minimizes the variance of the output will tell us something about
that physical source. Becker further generalized this algorithm to the case of
multiple output units. These output units formed a mixture model of different
invariant properties of the input patterns.

Becker and Hinton (Becker and Hinton, 1992; Becker and Hinton, 1993)
applied the multi-unit version of this learning rule to show how internally
derived teaching signals for a perceptual system can be generated from the
assumption that different parts of the perceptual input have common causes
in the external world. In their learning scheme, small modules that look at
separate but related parts of the perceptual input discover these common causes
by striving to produceoutputs that agree with each other. The modules may look
at different modalities such as vision and touch, or the same modality at different
times, such as the consecutive two-dimensional views of a rotating three-
dimensional object, or spatially adjacent parts of the same image. The learning
rule, which they termed IMAX, maximizes the mutual information between
pairs of output units, ��� and ��� . Under the assumption that the two output units
are caused by a common underlying signal corrupted by independent Gaussian
noise, then the mutual information between the underlying signal and the mean
of � � and ��� is given by T �^� $�� WAX]YG� ��� � _������� ��� � U������ (2.14)

where � is the variance function over the training cases. The algorithm can
be understood as follows: A simple way to make the outputs of the two
modules agree is to use the squared difference between the module outputs as
a cost function (the denominator of 2.14). A minimum squared difference cost
function alone, however will cause both modules to produce the same constant
output that is unaffected by the input, and thereforeconvey no information about
the input. The numerator modified the cost function to minimize the squared
difference relative to how much both modules varied as the input varied. This
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forced the modules to respond to something that was common in their two
inputs.

Becker and Hinton showed that maximizing the mutual information be-
tween spatially adjacent parts of an image can discover depth in random dot
stereograms of curved surfaces. The simulation consisted of a pair of 2-layer
networks, each with a single output unit, that took spatially distinct regions
of the visual space as input. The input consisted of random dot stereograms
with smoothly varying stereo disparity. Following training, the module outputs
were proportional to depth, despite no prior knowledge of the third dimen-
sion. The model was extended to develop population codes for stereo disparity
(Becker and Hinton, 1992), and to model the locations of discontinuities in
depth (Becker, 1993).

Schraudolph and Sejnowski (Schraudolph and Sejnowski, 1992) proposed
an algorithm for learning invariances that was closely related to Becker and
Hinton’s constrained variance minimization. They combined a variance-
minimizing anti-Hebbian term, in which connection strengths are reduced in
proportion to the pre-and post synaptic unit activities, with a term that prevented
the weights from converging to zero. They showed that a set of competing units
could discover population codes for stereo disparity in random dot stereograms.

Zemel and Hinton (Zemel and Hinton, 1991) applied the IMAX algorithm to
the problem of learning to represent the viewing parameters of simple objects,
such as the object’s scale, location, and size. The algorithm attempts to learn
multiple features of a local image patch that are uncorrelated with each other,
while being good predictors of the feature vectors extracted from spatially
adjacent input locations. The algorithm is potentially more powerful than
linear decorrelating methods such as principal component analysis because it
combines the objective of decorrelating the feature vector with the objective of
finding common causes in the spatial domain. Extension of the algorithm to
more complex inputs than synthetic 2-D objects is limited, however, due to the
difficulty of computing the determinants of ill-conditioned matrices (Becker
and Plumbley, 1996).

2. INDEPENDENT COMPONENT ANALYSIS
2.1. Decorrelation versus independence

Principal component analysis decorrelates the input data, but does not ad-
dress the high-order dependencies. Decorrelation simply means that variables
cannot be predicted from each other using a linear predictor. There can still
be nonlinear dependencies between them. Consider two variables,  and � that
are related to each other by a sine wave function, �C�����
	���F� . The correlation
coefficient for the variables  and � would be zero, but the two variables are
highly dependent nonetheless. Edges, defined by phase alignment at multiple
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spatial scales, are an example of a high-order dependency in an image, as are
elements of shape end curvature.

Second-order statistics capture the amplitude spectrum of images but not the
phase (Field, 1994). Amplitude is a second-order statistic. The amplitude spec-
trum of a signal is essentially a series of correlations with a set of sine-waves.
Also, the Fourier transform of the autocorrelation function of a signal is equal
to its power spectrum (square of the amplitude spectrum). Hence the amplitude
spectrum and the autocorrelation function contain the same information. The
remaining information that is not captured by the autocorrelation function, the
high order statistics, corresponds to the phase spectrum.�

Coding mechanisms that are sensitive to phase are important for organizing a
perceptual system. Spatial phase contains the structural information in images
that drives human recognition much more strongly than the amplitude spectrum
(Oppenheim and Lim, 1981; Piotrowski and Campbell, 1982). For example, A
face image synthesized from the amplitude spectrum of face A and the phase
spectrum of face B will be perceived as an image of face B.

Independent component analysis (ICA) (Comon, 1994) is a generalization of
principal component analysis that separates the high-order dependencies in the
input, in addition to the second-order dependencies. As noted above, principal
component analysis is a way of encoding second order dependencies in the
data by rotating the axes to correspond to directions of maximum covariance.
Consider a set of data points derived from two underlying distributions as
shown in Figure 2.3. Principal component analysis models the data as a
multivariate Gaussian and would place an orthogonal set of axes such that the
two distributions would be completely overlapping. Independent component
analysis does not constrain the axes to be orthogonal, and attempts to place
them in the directions of maximum statistical dependencies in the data. Each
weight vector in ICA attempts to encode a portion of the dependencies in the
input, so that the dependencies are removed from between the elements of the
output. The projection of the two distributions onto the ICA axes would have
less overlap, and the output distributions of the two weight vectors would be
kurtotic (Field, 1994).� Algorithms for finding the independent components of
arbitrary data sets are described in Section 2.2

2.2. Information maximization learning rule
Bell and Sejnowski (Bell and Sejnowski, 1995) recently developed an al-

gorithm for separating the statistically independent components of a dataset
through unsupervised learning. The algorithm is based on the principle of�

Given a translation invariant input, it is not possible to compute any statistics of the phase from the
amplitude spectrum (Dan Ruderman, personal communication.)�

Thanks to Michael Gray for this observation.
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Figure 2.3. Example 2-D data distribution and the corresponding principal component and
independent component axes. The data points could be, for example, grayvalues at pixel 1 and
pixel 2. Figure inspired by Lewicki & Sejnowski (2000).

maximum information transfer between sigmoidal neurons. This algorithm
generalizes Linsker’s information maximization principle (Linsker, 1988) to
the multi-unit case and maximizes the joint entropy of the output units. An-
other way of describing the difference between PCA and ICA is therefore that
PCA maximizes the joint variance of the outputs, whereas ICA maximizes the
joint entropy of the outputs.

Bell and Sejnowski’s algorithm is illustrated as follows: Consider the case of
a single input,  , and output, � , passed through a nonlinear squashing function:

�i� r �_ r9� �C��Y����F��� ``,_!� x�� $ (2.15)

As illustrated in Figure 2.4, the optimal weight r on  for maximizing infor-
mation transfer is the one that best matches the probability density of  to the
slope of the nonlinearity. The optimal r produces the flattest possible output
density, which in other words, maximizes the entropy of the output.

The optimal weight is found by gradient ascent on the entropy of the output,� with respect to r : �� r Z~�����8�
�� r U[K * ������WAX]Y � * ����� $ (2.16)

Maximizing the entropy of the output is equivalent to maximizing the mutual
information between the input and the output (i.e. maximizing information
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Figure 2.4. Optimal information flow in sigmoidal neurons. The input Ã is passed through
a nonlinear function, Ä�Å&Ã�Æ . The information in the output density Ç�È�Å&É]Æ depends on matching
the mean and variance of Ç�ÊsÅ&Ã�Æ to the slope and threshold of Ä�Å&ÃËÆ . Right: Ç È Å&ÉsÆ is plotted for
different values of the weight, Ì . The optimal weight, Ì�ÍAÎEÏ transmits the most information.
Figure from Bell & Sejnowski (1995), reprinted with permission from MIT Press, copyright
1995, MIT Press.

transfer). This is because

T ��7�E�����^Z~����Ë_ÐZ[�����ÑU@Z[����+ F� , where only Z[�����
depends on the weight r since Z[����+ �� is noise.

When there are multiple inputs and outputs, mÒ�Ó�� � �E � � $&$&$ � , ÔV�Ó��� � �E� � �$&$&$ � maximizing the joint entropy of the output encourages the individual out-
puts to move towards statistical independence. To see this, we refer back to
Equation 2.8: Z~��� � �E� � �D�^Z[��� � ��_±Z[��� � ��U T ��� � �E� � � . Maximizing the joint
entropy of the output Z[��� � �E� � � $&$&$ � encourages the mutual information between
the individual outputs

T ��� � �E� � � $&$&$ � to be small. The mutual information is guar-
anteed to reach a minimum when the nonlinear transfer function Y matches the
cumulative distribution of the independent signals responsible for the data in , up to scaling and translation (Nadal and Parga, 1994; Bell and Sejnowski,
1997). Many natural signals, such as sound sources, have been shown to have
a super-Gaussian distribution, meaning that the kurtosis of the probability dis-
tribution exceeds that of a Gaussian (Bell and Sejnowski, 1995). For mixtures
of super-Gaussian signals, the logistic transfer function has been found to be
sufficient to separate the signals (Bell and Sejnowski, 1995).

Since �Ð�\Y���F� and Y is monotonic, the probability
* ����� in Equation 2.16

can be written in terms of
* ��F� in the single unit case as (Papoulis, 1991)* �����D�ÖÕ<×ÙØ�ÚÛ ÈÛ Ê and in the multiunit case as

* �AÔ��D�ÜÕ<×ÙÝOÚÞ ßJÞ
where +�à,+ is the determinant of the Jacobian, à . à is the matrix of partial
derivatives áyâ�ãá Ø ã . Hence
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Z[�AÔ��8�\U Håä WAX�Y � * ��m��+�à,+±æ �çZ[��mè�7_ H �2WAX]Y � +�à,+é� $ (2.17)
Since Z~��m�� does not depend on ê , the problem reduces to maximizing +�à,+
with respect to ê . Computing the gradient of +�à,+ with respect to ê results in
the following learning rule: ët êì�^>±dc�
ê o � x � _~�JíÙ o g (2.18)

where � í � ááyâ�ã áyâ�ãá � ã � áá � ã W�	 áyâ�ãá � ã $
Bell & Sejnowski improved the algorithm in 1997 by using the natural

gradient (Amari et al., 1996). They multiplied the gradient equation by the
symmetric matrix ê o ê which removed the inverse and scaled the gradient
differently along different dimensions. The natural gradient addresses the prob-
lem that the metric space of W is not necessarily Euclidean. Each dimension
has its own scale and the natural gradient normalizes the metric function for
that space. This resulted in the following learning rule:t êî�^>P� T _��Ñíï o ê o �Eê (2.19)

Although it appears at first contradictory, information maximization in a
multidimensional code is consistent with Barlow’s notion of minimum entropy
coding. Refer again to Equation 2.8. As noted above, maximizing the joint
entropy of the output encourages the mutual information between the outputs
to be small, but under some conditions other solutions are possible for which
the mutual information is nonzero. Given that the joint entropy stays constant
(at its maximum), the solution that minimizes the mutual information will also
minimize the marginal (individual) entropies of the output units.

An application of independent component analysis is signal separation. Mix-
tures of independent signals can be separated by a weight matrix that minimizes
the mutual information between the outputs of the transformation. Bell & Se-
jnowski’s information maximization algorithm successfully solved the “cock-
tail party” problem, in which a set random mixtures of auditory signals were
separated without prior knowledge of the original signals or the mixing process
(Bell and Sejnowski, 1995). The algorithm has also been applied to separating
the sources of EEG signals (Makeig et al., 1996), and fMRI images (McKeown
et al., 1998).

Independent component analysis can be considered as a generative model of
the data assuming independent sources. Each data point  is assumed to be a
linear mixture of independent sources, ð�^qñ� , where q is a mixing matrix, andò

The step from 2.17 to 2.18 is presented in the Appendix of (Bell and Sejnowski, 1995).
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maximization approach of Bell and Sejnowski (MacKay, 1996; Pearlmutter
and Parra, 1996). In the maximum likelihood approach, a likelihood function
of the data is generated under the model ð�^qñ� , where the probabilities of the
sources � are assumed to be factorial. The elements of the basis matrix q and
the sources � are then obtained by gradient ascent on the log likelihood function.
Another approach to independent component analysis involves cost functions
using marginal cumulants (Comon, 1994; Cardoso and Laheld, 1996). The
adaptive methods in the information maximization approach are more plausible
from a neural processing perspective than the cumulant-based cost functions
(Lee, 1998).

A large variety of algorithms have been developed to address issues includ-
ing extending the information maximization approach to handle sub-Gaussian
sources (Lee et al., 1999), estimating the shape of the distribution of input
sources with maximum likelihood techniques (Pearlmutter and Parra, 1996),
nonlinear independent component analysis (Yang et al., 1998), and biolog-
ically inspired algorithms that perform ICA using local computations (Lin
et al., 1997). I refer you to (Lee, 1998) for a thorough review of algorithms for
independent component analysis.

2.3. Relation of sparse coding to independence
Atick argued for compact, decorrelated codes such as PCA because of ef-

ficiency of coding. Field (Field, 1994) argued for sparse, distributed codes
in favor of such compact codes. Sparse representations are characterized by
highly kurtotic response distributions, in which a large concentration of values
are near zero, with rare occurrences of large positive or negative values in
the tails. Recall that highly kurtotic response distributions have low entropy.
Maximizing sparseness of a response distribution is related to minimizing its
entropy, and sparse codes therefore incur the same advantages as minimum
entropy codes, such as separation of high-order redundancies in addition to the
second-order redundancy. In such a code, the redundancy between the elements
of the input is transformed into redundancy within the response patterns of the
individual outputs, where the individual outputs almost always give the same
response except on rare occasions.

Given this relationship between sparse codes and minimum entropy, the
advantages of sparse codes as outlined in (Field, 1994) are also arguments in
favor of Barlow’s minimum entropy codes (Barlow, 1989). Codes that minimize
the number of active neurons can be useful in the detection of suspicious
coincidences. Because a nonzero response of each unit is relatively rare, high
order relations become increasingly rare, and therefore more informative when
they are present in the stimulus. Field contrasts this with a compact code
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such as principal components, in which a few cells have a relatively high
probability of response, and therefore high order combinations among this
group are relatively common. In a sparse distributed code, different objects
are represented by which units are active, rather than by their rate of activity.
These representations have an added advantage in signal-to-noise, since one
need only determine which units are active without regard to the precise level
of activity. An additional advantage of sparse coding for face representations is
storage in associative memory systems. Networks with sparse inputs can store
more memories and provide more effective retrieval with partial information
(Palm, 1980; Baum et al., 1988).

Field presented evidence that oriented Gabor filters produce sparse codes
when presented with natural scenes, whereas the response distribution is Gaus-
sian when presented with synthetic images generated from `�acb noise. Because
the two image classes had the same amplitude spectra and differed only in
phase, Field concluded that sparse coding by Gabor filters depends primarily
on the phase spectra of the data. Olshausen and Field (Olshausen and Field,
1996b; Olshausen and Field, 1996a) showed that a generative model with a
sparseness objective can account for receptive fields observed in the primary
visual cortex. They trained a network to reconstruct natural images from a lin-
ear combination of unknown basis images with minimum mean-squared error.
The minimum squared error criterion alone would have converged on a linear
combination of the principal components of the images. When a sparseness
criterion was added to the objective function, the learned basis images were
local, oriented, and spatially opponent, similar to the response properties of
V1 simple cells. ó Maximizing sparseness under the constraint of information
preservation is equivalent to minimum entropy coding.

Bell & Sejnowski also examined an image synthesis model of natural scenes
using independent component analysis (Bell and Sejnowski, 1997). As ex-
pected given the relationship between sparse coding and independence, Bell &
Sejnowski obtained a similar result to Olshausen and Field, namely the emer-
gence of local, spatially opponent receptive fields. Moreover, the response
distributions of the individual output units were indeed sparse. Decorrelation
mechanisms such as principal components resulted in spatially opponent re-
ceptive fields, some of which were oriented, but were not spatially local. In
addition, the response distributions of the individual PCA output units were
Gaussian. In a related study, Wachtler, Lee, and Sejnowski (Wachtler et al.,
2001) performed ICA on chromatic images of natural scenes. Redundancy re-
duction was much higher in the chromatic case than in the grayscale case. The

ô
“Simple cells” in the primary visual cortex respond to an oriented bar at a precise location in the visual

field. There is a surrounding inhibitory region, such that the receptive field is similar to a sine wave grating
modulated by a Gaussian.
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resulting filters segmented into color opponent and broadband filters, parallel-
ing the color opponent and broadband channels in the primate visual system.
These filters had very sparse distributions, suggesting that color opponency in
the human visual system achieves a highly efficient representation of colors.

3. UNSUPERVISED LEARNING IN VISUAL
DEVELOPMENT

3.1. Learning input dependencies: Biological evidence
There is a large body of evidence that self-organization plays a considerable

role in the development of the visual system, and that this self-organization
is mediated by learning mechanisms that are sensitive to dependencies in the
input. The gross organization of the visual system appears to be governed
by molecular specificity mechanisms during embryogenesis (Harris and Holt,
1990). Such processes as the generation of the appropriate numbers of target
neurons, migration to the appropriate position, the outgrowth of axons, their
navigation along appropriate pathways, recognition of the target structure, and
the formation of at least coarsely defined topographic maps õ may be mediated
by molecular specificity. During postnatal development, the architecture of the
visual system continues to become defined, organizing into ocular dominance
and orientation columns.

� � The statistical properties of early visual experience
and endogenous activity appear to be responsible for shaping this architecture.
See (Stryker, 1991a) for a review.

Learning mechanisms that are sensitive to dependencies in the visual input
transform these statistical properties into cortical receptive field architecture.
The NMDA receptor could be the “correlation detector” for Hebbian learning
between neurons. It opens calcium channels in the post synaptic cell in a
manner that depends on activity in both the pre- and the post-synaptic cell.
Specifically, it depends on glutamate from the presynaptic cell and the voltage
of the post synaptic cell. Although it is not known exactly how activation
of the NMDA receptor would lead to alterations in synaptic strength, several
theories have been put forward involving the release of trophic substances,
retrograde messenger systems leading back to the presynaptic neuron, and
synaptic morphology changes (Rison and Stanton, 1995).

Visual development appears to be closely associated with NMDA gating
(Constantine-Paton et al., 1990). There is longer NMDA gating during visual
development, which provides a longer temporal window for associations. Lev-
els of NMDA are high early in development, and then drop (Carmignoto and

ö
Neighboring neurons tend to respond to neighboring regions of the visual field.�¥÷
Adjacent neurons in the primary visual cortex prefer gradually varying orientations. Perpendicular to this

are iso-orientation stripes. Eye preference is also organized into stripes.
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Vicini, 1992). These changes in NMDA activity appear to be dependent on
experience rather than age. Dark rearing will delay the drop in NMDA levels,
and the decrease in length of NMDA gating is also dependent on activity (Fox
et al., 1992).

The organization of ocular dominance and orientation preference can be
altered by manipulating visual experience. Monocular deprivation causes a
greater proportion of neurons to prefer the active eye at the expense of the
deprived eye (Hubel et al., 1977). Colin Blakemore (Blakemore, 1991) found
that in kittens reared in an environment consisting entirely of vertical stripes,
orientation preference in V1 was predominantly vertical. The segregation
of ocular dominance columns is dependent on both pre- and post-synaptic
activity. Ocular dominance columns do not form when all impulse activity
in the optic nerve is blocked by injecting tetrodotoxin (Stryker and Harris,
1986). Blocking post-synaptic activity during monocular deprivation nulls the
usual shift in ocular dominance (Singer, 1990; Gu and Singer, 1993). Stryker
demonstrated that ocular dominance segregation depends on asynchronous ac-
tivity in the two eyes (Stryker, 1991a). With normal activity blocked, Stryker
stimulated both optic nerves with electrodes. When the two nerve were stim-
ulated synchronously, ocular dominance columns did not form, but when they
were stimulated asynchronously, columns did form. Consistent with the role
of NMDA in the formation of ocular dominance columns, NMDA receptor
antagonists prevented the formation of ocular dominance columns, whereas in-
creased levels of NMDA sharpened ocular dominance columns (Debinski et al.,
1990). Some of organization of ocular dominance and orientation preference
does occur prenatally. Endogenous activity can account for the segregation
of ocular dominance in the lateral geniculate nucleus (Antonini and Stryker,
1993), and endogenous activity tends to be correlated in neighboring retinal
ganglion cells (Mastronarde, 1989).

Intrinsic horizontal axon collaterals in the striate cortex of adult cats specif-
ically link columns having the same preferred orientation. Calloway and Katz
(Callaway and Katz, 1991) demonstrated that the orientation specificity of
these horizontal connections was dependent on correlated activity from view-
ing sharply oriented visual stimuli. Crude clustering of horizontal axon collat-
erals is normally observed in the striate cortex of kittens prior to eye opening.
Binocular deprivation beyond this stage dramatically affected the refinement
of these clusters. Visual experience appears to have been necessary for adding
and eliminating collaterals in order to produce the sharply tuned specificity
normally observed in the adult.
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3.2. Models of receptive field development based on
correlation sensitive learning mechanisms

Orientation columns are developed prenatally in macaque. Therefore any
account of their development must not depend on visual experience. Linsker
(Linsker, 1986) demonstrated that orientation columns can arise from ran-
dom input activity in a layered system using Hebbian learning. The only
requirements for this system were arborization functions that were more dense
centrally, specification of initial ratios of excitatory and inhibitory connections,
and adjustment of parameters controlling the total synaptic strength to a unit.
Because of the dense central connections, the random activity in the first layer
became locally correlated in the second layer. Manipulation of the parameter
for total synaptic strength in the third layer brought on center-surround receptive
fields. This occurred because of the competitive advantage of the dense cen-
tral connections over the sparse peripheral connections. Activity in the central
region became saturated first, and because of the bounds on activity, the periph-
eral region became inhibitory. The autocorrelation function for activity in layer
3 was Mexican hat shaped. Linsker added four more layers to the network. The
first three of these layers also developed center-surround receptive fields. The
effect of adding these layers was to sharpen the Mexican hat autocorrelation
function with each layer. Linsker associated the four center-surround layers of
his model to the bipolar, retinal ganglion, LGN, and layer 4c cells in the visual
system. A criticism of this section of Linsker’s model is that it predicts that
the autocorrelation function in these layers should become progressively more
sharply Mexican hat shaped, which does not appear to occur in the primate
visual system.

In the next layers of the model, Linsker demonstrated the development of
orientation selective cells and their organization into orientation columns. Cells
receiving inputs with a Mexican hat shaped autocorrelation function attempted
to organize their receptive fields into banded excitatory and inhibitory regions.
By adjusting the parameter for total synaptic strength in layer seven, Linsker
was able to generate oriented receptive fields. Linsker subsequently gener-
ated iso-orientation bands by adding lateral connections in the top layer. The
lateral connections were also updated by a Hebbian learning rule. Activity
in like-oriented cells is correlated when the cells are aligned along the axis
of orientation preference, but are anticorrelated on an axis perpendicular to
the preferred orientation. The lateral connections thus encourage the same
orientation along the axis of preferred orientation, and an orthogonal orienta-
tion preferences along the axis orthogonal to the preferred orientation. This
organization resembles the singularities in orientation preference reported by
Obermayer and Blasdel (Obermayer and Blasdel, 1993). In Linsker’s model,
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a linear progression of orientation preference would require an isotropic auto-
correlation function.

Miller, Keller, and Stryker (Miller et al., 1989) demonstrated that Hebbian
learning mechanisms can account for the development of ocular dominance
slabs and for experience-related alterations of this organization. In their model,
synaptic strength was altered as a function of pre and post synaptic activity,
where synaptic strength depended on within-eye and between-eye correla-
tion functions. The model also contained constraints on the overall synaptic
strength, an arborization function indicating the initial patterns of connectivity,
and lateral connections between the cortical cells. All input connections were
excitatory.

Miller et al. found that there were three conditions necessary for the de-
velopment of ocular dominance columns. 1. The input activity must favor
monocularity by having larger within-eye correlations than between-eye cor-
relations. 2. There must be locally excitatory cortical connections. 3. If the
intracortical connections are not Mexican hat shaped, in other words if they
do not have an inhibitory zone, then there must be a constraint on the total
synaptic strength of the afferent axons. The ocular dominance stripes arose
because of the intracortical activation function. If this function is Mexican hat
shaped, then each cell will want to be in an island of like ocularity surrounded
by opposite ocularity. Optimizing this force along a surface of cells results
in a banded pattern of ocular dominance. The intracortical activation function
controls the periodicity of the stripes. The ocular dominance stripes will have
a periodicity equal to the fundamental frequency of the intracortical activation
function. This will be the case up to the limit of the arborization function. If
the excitatory region of the intracortical activation function is larger than the
arborization function, then the periodicity of the stripes will be imposed by the
arborization function.

Miller et al. found that a very small within-eye correlation function was
sufficient to create ocular dominance stripes, so long as it was larger than the
between eye correlation. Anticorrelation within an eye decreases monocularity,
whereas anticorrelation between eyes, such as occurs in conditions of strabis-
mus and monocular deprivation, increases monocularity. They also observed
an effect related to critical periods. Monocular cells would remain stabilized
once formed, and binocular cells would also stabilize if the synapses were
at saturating strength. Therefore, alterations could only be made while there
were still binocular cells with unsaturated connections. Due to the dependence
of ocular dominance on excitatory intracortical connections, their simulation
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predicted that ocular dominance organization in the developing brain would be
eliminated by increasing inhibition

�E�
.

Berns, Dayan, and Sejnowski (Berns et al., 1993) presented a Hebbian learn-
ing model for the development of both monocular and binocular populations of
cells. The model is driven by correlated activity in retinal ganglion cells within
each eye before birth, and between eyes after birth. An initial phase of same-
eye correlations, followed by a second phase that included correlations between
the eyes produced a relationship between ocular dominance and disparity that
has been observed in the visual cortex of the cat. The binocular cells tended
to be selective for zero disparity, whereas the more monocular cells tended to
have nonzero disparity.

Obermayer, Blasdel, and Schulten (Obermayer et al., 1992) modeled the
simultaneous development of ocular dominance and orientation columns with
a Kohonen self-organizing topographic map. This algorithm predicts the ob-
served geometrical relations between ocular dominance and orientation pref-
erence on the surface of the primary visual cortex. These include the per-
pendicular iso-orientation slabs in the binocular regions, and singularities in
orientation preference at the centers of highly monocular zones. According to
their model, cortical geometry is a result of projecting five features onto a two
dimensional surface. The five features are spatial position along the horizon-
taland vertical axes, orientation preference, orientation specificity, and ocular
dominance. The Kohonen self organizing map operates in the following way.
The weights of the network attempt to learn a mapping from a five dimensional
input vector onto a 2-D grid. The weight associated with each point on the
grid is the combination of the five features preferred by that unit. The unit
with the most similar weight vector to a given input vector, as measured by
the dot product, adjusts its weight vector toward the input vector. Neighboring
units on the grid also learn by a smaller amount according to a neighborhood
function. At the beginning of training, the "temperature" is set to a high level,
meaning that the neighborhood function is broad and the learning rate is high.
The temperature is gradually reduced during training. The overall effect of this
procedure is to force units on the grid to vary their preferences smoothly and
continuously, subject to the input probabilities. Like Hebbian learning, the self
organizing map creates structure from the correlations in input patterns, but
the self organizing map has the added feature that the weights are forced to be
smooth and continuous over space.

Obermayer, Blasdel, and Schulten likened the development of cortical geom-
etry to a Markov random process. There are several possible states of cortical
geometry, and the statistical structure of the input vectors trigger the transitions
between states. They showed that a columnar system will not develop if the�2�

e.g. through application of muscimol, A GABA agonist, where GABA is an inhibitory neurotransmitter
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input patterns are highly similar with respect to orientation preference, speci-
ficity, and ocular dominance. Nor will it segregate into columns if the inputs are
entirely uncorrelated. There is a range of input correlations for which colum-
nar organization will appear. Their model predicts that ocular dominance and
orientation columns will be geometrically unrelated in animals that are reared
with an orientation bias in one eye.

4. LEARNING INVARIANCES FROM TEMPORAL
DEPENDENCIES IN THE INPUT

The input to the visual system contains not only spatial redundancies, but
temporal redundancies as well. There are several synaptic mechanisms that
might depend on the correlation between synaptic input at one moment, and
post-synaptic depolarization at a later moment. Coding principles that are
sensitive to temporal as well as spatial redundancies in the input may play a
role in learning constancies of the environment such as viewpoint invariances.

Internally driven teaching signals can be derived not only from the assump-
tion that spatially distinct parts of the perceptual input have common causes in
the external world, but also from the assumption that temporally distinct inputs
can have common causes. Objects have temporal persistence. They do not sim-
ply appear and disappear. Different views of an object or face tend to appear
in close temporal proximity as an animal manipulates the object or navigates
around it, or as a face changes expression or pose. Capturing the temporal
relationships in the input is a way to associate different views of an object, and
thereby learn representations that are invariant to changes in viewpoint.

4.1. Computational models
Földíak (Földiák, 1991) demonstrated that Hebbian learning can capture

temporal relationships in a feedforward system when the output unit activities
undergo temporal smoothing. Hebbian learning strengthens the connections
between simultaneously active units. With the lowpass temporal filter on the
output unit activities, Hebbian learning strengthens the connections between
active inputs and recently active outputs. As discussed in Section 1.5, com-
petitive Hebbian learning can find the principal components of the input data.
Incorporating a hysteresis in the activation function allows competitive Hebbian
mechanisms to find the spatio-temporal principal components of the input.

Peter Földíak (Földiák, 1991) used temporal association to model the devel-
opment of translation independent orientation detectors such as the complex
cells

� � of V1. His model was a two-layer network in which the input layer con-

�ø�
Unlike “simple cells”, a “complex cell” in primary visual cortex is excited by a bar of a particular

orientation at any location within its receptive field.
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sisted of sets of local position dependent orientation detectors. This layer was
fully connected to four output units. Földíak modified the traditional Hebbian
learning rule such that weight changes would be proportional to presynaptic
activity and a trace (running average) of postsynaptic activity. The network was
trained by sweeping one orientation at a time across the entire input field such
as may occur during prenatal development (Mastronarde, 1989; Meister et al.,
1991). One representation unit would become active due to the competition
in that layer, and it would stay active as the input moved to a new location.
Thus units signaling “horizontal” at multiple locations would strengthen their
connections to the same output unit that would come to represent “horizontal”
at any location.

This mechanism can learn viewpoint-tolerant representations when different
views of an object are presented in temporal continuity (Földiák, 1991; Wein-
shall and Edelman, 1991; Rhodes, 1992; O’Reilly and Johnson, 1994; Wallis
and Rolls, 1997). Földíak achieved translation invariance in a single layer by
having orientation-tuned filters in the first layer that provided linearly separable
patterns to the next layer. More generally, approximate viewpoint invariance
may be achieved by the superposition of several Földíak-like networks (Rolls,
1995).

O’Reilly and Johnson (O’Reilly and Johnson, 1994) modeled translation
invariant object recognition based on reciprocal connections between layers and
lateral inhibition within layers. Their architecture was based on the anatomy of
the chick IMHV, a region thought to be involved in imprinting. In their model,
the reciprocal connections caused a hysteresis in the activity of all of the units,
which allowed Hebbian learning to associate temporally contiguous inputs.
The model demonstrated that a possible function of reciprocal connections in
visual processing areas is to learn translation invariant object recognition. The
model also suggested an interpretation of critical periods. Chicks are only able
to imprint new objects early in development. As an object was continuously
presented to the network, more and more units were recruited to represent that
object. Only unrecruited units and units without saturated connections could
respond to the new objects.

Becker (Becker, 1993) showed that the IMAX learning procedure (Becker
and Hinton, 1992), was also able to learn depth from random dot stereograms
by applying a temporal coherence assumption instead of the spatial coherence
model described earlier in this chapter. Instead of maximizing mutual informa-
tion between spatially adjacent outputs, the algorithm maximized the mutual
information in a neuron’s output at nearby points in time. In a related model,
Stone (Stone, 1996) demonstrated that an algorithm that minimized the short
term variance of a neuron’s output while maximizing its variance over longer
time scales also learned to estimate depth in moving random dot stereograms.
This algorithm can be shown to be equivalent to IMAX, with more straightfor-
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ward implementation (Stone, personal communication). The two algorithms
make the assumption that properties of the visual world such as depth vary
slowly in time. Stone (Stone, 1996) tested this hypothesis with natural images,
and found that although natural images contain sharp depth boundaries at ob-
ject edges, depth varies slowly the vast majority of the time, and his learning
algorithm was able to learn depth estimation from natural graylevel images.

Weinshall and Edelman (Weinshall and Edelman, 1991) applied the assump-
tion of temporal persistence of objects to learn object representations that were
invariant to rotations in depth. They first trained a 2 layer network to store in-
dividual views of wire-framed objects. Then they updated lateral connections
in the output layer with Hebbian learning as the input object rotated through
different views. The strength of the association in the lateral connections was
proportional to the estimated strength of the perceived apparent motion if the 2
views were presented in succession to a human subject. After training the lat-
eral connections, when one view of an object was presented, the output activity
could be iterated until all of the units for that object were active. This formed
an attractor network in which each object was associated with a distinct fixed
point.

� � When views were presented that differed from the training views,
correlation in output ensemble activity decreased linearly as a function of rota-
tion angle from the trained view. This mimicked the linear increase in human
response times with rotation away from the memorized view which has been
taken has evidence for mental rotation of an internal 3-D object model (Shepard
and Cooper, 1982). This provided an existence proof that such responses can
be obtained in a system that stores multiple 2-D views. The human data does
not prove the existence of internal 3-D object models.

Weinshall and Edelman modeled the development of viewpoint invariance
using idealized objects consisting of paper-clip style figures with labeled vertex
locations. The temporal coherence assumption has more recently been applied
to learning viewpoint invariant representations of objects in graylevel images
(Bartlett and Sejnowski, 1996b; Bartlett and Sejnowski, 1997; Wallis and Rolls,
1997; Becker, 1999). Földíak’s learning scheme can be applied in a multi-layer
multi-resolution network to learn transformation invariant letter recognition
(Wallis and Baddeley, 1997), and face recognition that is invariant to rota-
tions in the plane (Wallis and Rolls, 1997). Becker (Becker, 1999) extended
a competitive mixture-of-Gaussians learning model (Nowlan, 1990) to include
modulation by temporal context. In one simulation, the algorithm learned
responses to facial identity independent of viewpoint, and by altering the ar-
chitecture, a second simulation learned responses to viewpoint independent of

�¥f
An attractor network is set of interconnected units which exhibits sustained patterns of activity. The

simplest form of attractor network contains “fixed points”, which are stable activity rates for all units. The
range of input patterns that can settle into a given fixed point is its “basin of attraction.”
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identity. Chapter 7 of this book (Bartlett and Sejnowski, 1997) examines the
development of representations of faces that are tolerant to rotations in depth
in both a feedforward system based on Földák’s learning mechanism, and in
a recurrent system related to Weinshall and Edelman’s work, in which lateral
interconnections formed an attractor network.

4.2. Temporal association in psychophysics and biology
Such models challenge theories that 3-dimensional object recognition re-

quires the construction of explicit internal 3-dimensional models of the object.
The models presented by Földíak, Weinshall, O’Reilly & Johnson, and Becker,
in which individual output units acquire transformation tolerant representations,
suggest another possibility. Representations may consist of several views that
contain a high degree of rotation tolerance about a preferred view. It has
been proposed that recognition of novel views may instead be accomplished
by linear (Ullman and Basri, 1991) or nonlinear combinations of stored 2-D
views (Poggio and Edelman, 1990; Bulthoff et al., 1995). Such view-based
representations may be particularly relevant for face processing, given the re-
cent psychophysical evidence for face representations based on low-level filter
outputs (Biederman, 1998; Bruce, 1998). Face cells in the primate inferior
temporal lobe have been reported with broad pose tuning on the order of ùñú���û
(Perrett et al., 1989; Hasselmo et al., 1989). Perrett and colleagues (Perrett
et al., 1989), for example, reported broad coding for five principal views of the
head: Frontal, left profile, right profile, looking up, and looking down.

There are several biological mechanisms by which receptive fields could
be modified to perform temporal associations. A temporal window for Heb-
bian learning could be provided by the 0.5 second open-time of the NMDA
channel (Rhodes, 1992; Rolls, 1992). A spatio-temporal window for Hebbian
learning could also be produced by the release of a chemical signal following
activity such as nitric oxide (Montague et al., 1991). Reciprocal connections
between cortical regions (O’Reilly and Johnson, 1994) or lateral interconnec-
tions within cortical regions could sustain activity over longer time periods and
allow temporal associations across larger time scales.

Temporal association may be an important factor in the development of
viewpoint invariant responses in the inferior temporal lobe

� � of primates (Rolls,
1995). Neurons in the anterior inferior temporal lobe are capable of forming
temporal associations in their sustained activity patterns. After prolonged
exposure to a sequence of randomly generated fractal patterns, correlations
emerged in the sustained responses to neighboring patterns in the sequence
(Miyashita, 1988). These data suggest that cells in the temporal lobe modify� �

The inferior temporal lobe of primates has been associated with visual object processing and pattern
recognition.
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their receptive fields to associate patterns that occurred close together in time.
This is a mechanism by which cortical neurons could associate different views
of an object without requiring explicit three-dimensional representations or
complex geometrical transformations (Stryker, 1991b).

Dynamic information appears to play a role in representation and recognition
of faces and objects by humans. Human subjects were better able to recognize
famous faces when the faces were presented in video sequences, as compared
to an array of static views (Lander and Bruce, 1997). Recognition of novel
views of unfamiliar faces was superior when the faces were presented in contin-
uous motion during learning (Pike et al., 1997). Stone (Stone, 1998) obtained
evidence that dynamic signals contribute to object representations beyond pro-
viding structure-from-motion. Recognition rates for rotating amoeboid objects
decreased, and reaction times increased when the temporal order of the image
sequence was reversed in testing relative to the order during learning.

5. COMPUTATIONAL ALGORITHMS FOR
RECOGNIZING FACES IN IMAGES

One of the earliest approaches to recognizing facial identity in images was
based on a set of feature measurements such as nose length, chin shape, and dis-
tance between the eyes (Kanade, 1977; Brunelli and Poggio, 1993). An advan-
tage of a feature-based approach to image analysis is that it drastically reduces
the number of input dimensions, and human intervention can be employed to
decide what information in the image is relevant to the task. A disadvantage is
that the specific image features relevant to the classification may not be known
in advance, and vital information may be lost when compressing the image
into a limited set of features. Moreover, holistic graylevel information appears
to play an important role on human face processing (Bruce, 1988), and may
contain useful information for computer face processing as well. An alternative
to feature-based image analysis emphasizes preserving the original images as
much as possible and allowing the classifier to discover the relevant features in
the images. Such approaches include template matching. Templates capture in-
formation about configuration and shape that can be difficult to parameterize. In
some direct comparisons of face recognition using feature-based and template-
based representations, the template approaches outperformed the feature-based
systems (Brunelli and Poggio, 1993; Lanitis et al., 1997). Accurate alignment
of the faces is critical to the success of template-based approaches. Aligning
the face, however, can be more straightforward than precise localization of
individual facial landmarks for feature-based representations.

A variant of the template matching approach is an adaptive approach to
image analysis in which image features relevant to facial actions are learned
directly from example image sequences. In such approaches to image analysis,
the physical properties relevant to the classification need not be specified in
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advance, and are learned from the statistics of the image set. This is particularly
useful when the specific features relevant to the classification are unknown
(Valentin et al., 1994).

An adaptive approach to face image analysis that has achieved success for
face recognition is based on principal component analysis of the image pixels
(Millward and O’Toole, 1986; Cottrell and Fleming, 1990; Turk and Pentland,
1991). As discussed in Section 1.5, PCA is a form of unsupervised learning
related to Hebbian learning that extracts image features from the second order
dependencies among the image pixels. PCA is performed on the images by
considering each image as a high dimensional observation vector, with the
graylevel of each pixel as the measure. The principal component axes are
the eigenvectors of the pixelwise covariance matrix of the dataset. These
component axes are template images that can resemble ghost-like faces which
have been labeled “holons” (Cottrell and Fleming, 1990) and “eigenfaces”
(Turk and Pentland, 1991). A low-dimensional representation of the face
images with minimum reconstruction error is obtained by projecting the images
onto the first few principal component axes, corresponding to the axes with the
highest eigenvalues. The projection coefficients constitute a feature vector for
classification. Representations based on principal component analysis have
been applied successfully to recognizing facial identity (Cottrell and Fleming,
1990; Turk and Pentland, 1991), facial expressions (Cottrell and Metcalfe,
1991; Bartlett et al., 1996; Padgett and Cottrell, 1997), and to classifying the
gender of the face (Golomb et al., 1991).

Compression networks, consisting of a three layer network trained to recon-
struct the input in the output after forcing the data through a low dimensional
“bottleneck” in the hidden layer, perform principal component analysis of the
data (Cottrell and Fleming, 1990). The networks are trained by backpropaga-
tion to reconstruct the input in the output with minimum squared error. When
the transfer function is linear, the p hidden unit activations span the space
of the first p principal components of the data. New views of a face can be
synthesized from a sample view using principal component representations of
face shape and texture. Vetter and Poggio (Vetter and Poggio, 1997) performed
PCA separately on the frontal and profile views of a set of face images. Assum-
ing rigid rotation and orthographic projection, they showed that the coefficients
for the component axes of the frontal view could be linearly predicted from the
coefficients of the profile view axes.

The principal component axes that account for the most reconstruction error,
however, are not necessarily the ones that provide the most information for
recognizing facial identity. O’Toole and colleagues (O‘Toole et al., 1993)
demonstrated that the first few principal component axes, which contained low
spatial frequency information, were most discriminative for classifying gender,
whereas a middle range of components, containing a middle range of spatial
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frequencies, were the most discriminative for classifying facial identity. This
result is consistent with recordings of the responses of face cells to band-pass
filtered face images (Rolls et al., 1987). The face cells in the superior temporal
sulcus responded most strongly to face images containing energy in a middle
range of spatial frequencies, between 4 and 32 cycles per image.

Principal component analysis is a form of autoassociative memory (Valentin
et al., 1994). The PCA network reproduces the input in the output with
minimum squared error. Kohonen (Kohonen et al., 1981) was the first to use an
autoassociative memory to store and recall face images. Kohonen generated an
autoassociative memory for 100 face images by employing a simple Hebbian
learning rule. Noisy or incomplete images were then presented to the network,
and the images reconstructed by the network were similar in appearance to the
original, noiseless images. The reconstruction accuracy of the network can
be explicitly measured by the cosine of the angle between the network output
and the original face image (Millward and O’Toole, 1986). Reconstructing the
faces from an autoassociative memory is akin to applying a Wiener filter to
the face images, where the properties of the filter are determined by the “face
history” of the weight matrix (Valentin et al., 1994).

In such autoassociative networks, a whole face can be recovered from a
partial input, thereby acting as content-addressable memory. Cottrell (Cottrell,
1990) removed a strip of a face image, consisting of about 20% of the total
pixels. The principal component-based network reconstructed the face image,
and filled in the missing pixels to create a recognizable face. Autoassociative
networks also provide a means of handling occlusions. If a PCA network is
trained only on face images, and then the presented with a face image that
contains an occluding object, such as a hand in front of the face, the network
will reconstruct the face image without the occluding object (Cottrell, personal
communication). This occurs because the network reconstruction is essentially
a linear combination of the images on which the network was trained – the PCA
eigenvectors are linear combinations of the original data. Since the occluding
object is distant from the portion of image space spanned by the principal
component axes, the projection of the face image onto the component axes will
be dominated by the face portions of the image, and will reconstruct an image
that is similar to the original face. Because the network had no experience with
hands, it would be unable to reproduce anything about the hand.

Autoassociative memory in principal component-based networks provides
an account for some aspects of human face perception. Principal component
representations of face images have been shown to account well for human per-
ception of distinctiveness and recognizability (O‘Toole et al., 1994) (Hancock
et al., 1996). Such representations have also demonstrated phenomena such
as the “other race effect” (O‘Toole et al., 1994). Principal component axes
trained on a set of faces from one race are less able to capture the directions
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of variability necessary to discriminate faces from another race. Eric Cooper
has shown that alteration of the aspect ratio of a face interferes strongly with
recognition, although the image still looks like a face, whereas displacement
of one eye appears significantly distorted, yet interferes only slightly with
recognition of the face (Cooper, 1998). A similar effect would be observed in
principal component-based representations (Gary Cottrell, personal communi-
cation). The elongated face image would still lie within face space; Its distance
to the PCA axes would be short, and therefore would be classed as a face.
The aspect ratio manipulation, however, would alter the projection coefficients,
which would therefore interfere with recognition. Displacement of one eye
would cause the image to lie farther from face space, but would have a much
smaller effect on the projection coefficients of the face image.

Another holistic spatial representation is obtained by a class-specific linear
projection of the image pixels (Belhumeur et al., 1997). This approach is based
on Fisher’s linear discriminants, which is a supervised learning procedure that
projects the images into a subspace in which the classes are maximally sepa-
rated. A class may be constituted, for example, of multiple images of a given
individual under different lighting conditions. Fisher’s Linear Discriminant is
a projection into a subspace that maximizes the between–class scatter while
minimizing the within–class scatter of the projected data. This approach as-
sumes linear separability of the classes. It can be shown that face images
under changes in lighting lie in an approximately linear subspace of the image
space if we assume the face is modeled by a Lambertian surface (Shashua,
1992; Hallinan, 1995). Fisher’s linear discriminant analysis performed well
for recognizing faces under changes in lighting. The linear assumption breaks
down for dramatic changes in lighting that strongly violate the Lambertian
assumption by, for example, producing shadows on the face from the nose.
Another limitation of this approach is that projection of the data onto a very
few dimensions can make linear separability of test data difficult.

Penev and Atick (Penev and Atick, 1996) developed a topographic represen-
tation based on principal component analysis, which they termed “local feature
analysis.” The representation is based on a set of kernels that are matched to
the second-order statistics of the input ensemble. The kernels were obtained
by performing a decorrelating “retinal” transfer function on the principal com-
ponents. This transfer function whitened the principal components, meaning
that it equalized the power over all frequencies. The whitening process was
followed by a rotation to topographic correspondence with pixel location. An
alternative description of the LFA representation is that it is the principal com-
ponent reconstruction of the image using whitened PCA coefficients. Both the
eigenface approach and LFA separate only the second order moments of the
images, but do not address the high-order statistics. These image statistics in-
clude relationships between three or more pixels, such as edges, curvature, and
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shape. In a task such as face recognition, much of the important information
may be contained in such high-order image properties.

Classification of local feature measurements is heavily dependent on exactly
which features were measured. Padgett & Cottrell (Padgett and Cottrell, 1997)
found that an “eigenfeature” representation of face images, based in the princi-
pal components of image regions containing individual facial features such as
an eye or a mouth, outperformed the full eigenface representation for classify-
ing facial expressions. Best performance was obtained using a representation
based on image analysis over even smaller regions. The representation was
derived from a set of local basis functions obtained from principal component
analysis of subimage patches selected from random image locations. This
finding is supported by Gray, Movellan & Sejnowski (Gray et al., 1997) who
also obtained better performance for visual speechreading using representations
derived from local basis functions.

Another local representation that has achieved success for face recognition
is based on the outputs of a banks of Gabor filters. Gabor filters, obtained
by convolving a 2-D sine wave with a Gaussian envelope, are local filters that
resemble the responses of visual cortical cells (Daugman, 1988). Representa-
tions based on the outputs of these filters at multiple spatial scales, orientations,
and spatial locations, have been shown to be effective for recognizing facial
identity (Lades et al., 1993). Relationships have been demonstrated between
Gabor filters and statistical independence. Bell & Sejnowski (Bell and Se-
jnowski, 1997) found that the filters that produced independent outputs from
natural scenes were spatially local, oriented edge filters, similar to a bank of
Gabor filters. It has also been shown that Gabor filter outputs of natural images
are independent under certain conditions(Simoncelli, 1997).

The elastic matching algorithm (Lades et al., 1993) represents faces usong
banks of Gabor filters. It includes a dynamic recognition process that provides
tolerance to small shifts in spatial position of the image features due to small
changes in pose or facial expression. In a direct comparison of face recognition
algorithms, the elastic matching algorithm based on the outputs of Gabor filters
gave better face recognition performance than the eigenface algorithm based
on principal component analysis (Zhang et al., 1997; Phillips et al., 1998).

The elastic matching paradigm represents faces as a labeled graph, in which
each vertex of a 5 x 7 graph stores a feature vector derived from a set of local
spatial filters. The filter bank consists of wavelets based on Gabor functions,
and covers five spatial frequencies and eight orientations. These feature vectors
represent the local power spectrum in the image. The edges of the graph are
labeled with the distance vectors between the vertices.

During the dynamic recognition process, all face models in the database are
distorted to fit the new input as closely as possible. The vertices of each graph
model are positioned at coordinates which maximize the correlation between
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the model and the input image, while minimizing the deviation from the original
shape of the graph. This elastic match is carried out by optimizing the following
cost function, Z , for each model k , over positions � in the input image

T
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h �
measures the similarity between the feature vector

of the model and that of the input image at vertex location i, and
���

is distortion
expressed as the squared length of the difference vector between the expected
edge vector in the model and the corresponding edge label in the distorted
graph. The face model with the best fit is accepted as a match.

The elastic matching paradigm addresses the problem of face alignment
and feature detection in two ways. The amplitude of the Gabor filter outputs
changes smoothly with shifts in spatial position, so that alignment offsets do
not have a catastrophic effect on recognition. Secondly, the elastic matching
phase of the algorithm explicitly minimizes the effect of small changes in
spatial position of the facial features between the model and the input image
by allowing distortions in the node positions.

Chapter 3 introduces face representations based on independent component
analysis. Whereas the eigenface and LFA representations learn the second-
order dependencies in the image ensemble, the ICA represenation learns the
high-order dependencies as well. Gabor wavelets, PCA, and ICA each provide
a way to represent face images as a linear superposition of basis functions. PCA
models the data as a multivariate Gaussian, and the basis functions are restricted
to be orthogonal (Lewicki and Olshausen, 1998). ICA allows the learning of
non-orthogonal bases and allows the data to be modeled with non-Gaussian
distributions (Comon, 1994). As noted in Section 2.3, there are relationships
between Gabor wavelets and the basis functions obtained with ICA (Bell and
Sejnowski, 1997). The Gabor wavelets are not specialized to the particular
data ensemble, but would be advantageous when the number of data samples
is small. The following chapters compare these face analysis algorithms, and
addresses issues of hand engineered features versus adaptive features, local vs
global spatial analysis, and learningsecond-order versus all-order dependencies
in face images.


