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Abstract: Human face image analysis using machine learning is an important element in computer
vision. The human face image conveys information such as age, gender, identity, emotion, race, and
attractiveness to both human and computer systems. Over the last ten years, face analysis methods
using machine learning have received immense attention due to their diverse applications in various
tasks. Although several methods have been reported in the last ten years, face image analysis still
represents a complicated challenge, particularly for images obtained from ’in the wild’ conditions.
This survey paper presents a comprehensive review focusing on methods in both controlled and
uncontrolled conditions. Our work illustrates both merits and demerits of each method previously
proposed, starting from seminal works on face image analysis and ending with the latest ideas
exploiting deep learning frameworks. We show a comparison of the performance of the previous
methods on standard datasets and also present some promising future directions on the topic.

Keywords: face analysis; computer vision; deep learning

1. Introduction

Human face image analysis is a fundamental and challenging problem in computer
vision (CV). Face analysis plays a main role in different real-world applications, such as
animation, surveillance, identity verification, forensic, medical diagnosis, human–computer
interaction, and so on [1–3]. Some research work addresses various face analysis tasks (face,
age, gender, race, head pose, etc.) as individual research problems [4–11]. CV researchers
also report that all face analysis problems have a relationship with each other and can
assist each other if addressed as individual tasks. Despite tremendous research work on
the topic, face analysis is still an arduous task due to various factors such as changes in
visual angle, facial appearance, facial expressions, background, and so on. In particular,
it has more complications when tackled in uncontrolled and wild conditions. (Note that
we are not considering facial recognition in our current study, since it is a much-explored
area, and many good research and survey papers have already been reported [12–19]). Face
image analysis has several applications; some of these applications are listed below.

• Surveillance: Face analysis and tracking is widely used for surveillance purposes by
CV researchers. A surveillance system presented in [20] uses the attention of peo-
ple in a particular scene as an indication of exciting events. Similarly, the work
proposed in [21] captures the visual attention of people by using various fixed
surveillance cameras.

• Targeted advertisement: One very interesting application of face analysis is targeted
advertisement. Several interesting works are proposed by CV researchers regarding
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targeted advertisement using face analysis. For instance, Smith et al. [22] present a
work that tracks the focus of attention of people. The proposed system also counts
the number of subjects looking at outdoor advertisements. This work also has some
implications in human behavior analysis and cognitive science. Some recent work on
targeted advertisment using CV and machine learning (ML) can be explored in [23–25].

• Social Behaviour Analysis: The human face is tracked and used in intelligent rooms
to monitor and observe the participants’ activities. The visual focus of participants’
attention is particularly judged through head tracking [26–30]. This system follows the
direction of speaking of individuals and also provides information about the gestures
in a meeting. The semantic cues obtained are later transcribed with conversations
and intentions of all participants, which further provides some searchable indexes
to be used in the future. Some excellent works which use human face tracking in
workplaces and other meetings can be explored in the references [31–35].

• Driving Safety: Face analysis also plays a key role in ensuring driver safety while
driving. Some researchers designed a driver-monitoring system by installing a camera
within the car and then tracking eyebrow and eyelid movements from fatigue [36–38].
It can also provide alert signals to drivers, for instance, if there is some danger of
accident due to pedestrians [39]. Blind spots are detected in the method proposed
in [40] while driving. This helps the driver to change their vehicle direction. An-
other method proposed in [41] combines head localization and head pose estimation
(HPE) information to estimate pedestrian path. This helps drivers to make some vital
decisions while driving.

• Estimation of face, expression, gender, age, and race: In the context of CV, human
face analysis acquires high-level knowledge about a facial image. Face images convey
several pieces of information, such as who the subject is, the gender and race of the
person in the photograph, whether he/she is sad or happy, and what angle they are
looking at. In all these tasks, a facial analysis infers knowledge from a face image.
Some human face analysis problems are multidisciplinary, as well as intrinsically
related to human science. However, very few research works combine various face
image analysis tasks in a single unified framework. Our current research paper
reports papers that combine at least two face image analysis tasks in one model.
Estimating age, race, gender, expression, and head pose are the most important
problems in face analysis, with further applications in forensics, the entertainment
industry, cosmetology, security controls, and so on [42–45].

Despite immense research efforts, face analysis is still facing challenges due to several
factors such as complex and changing facial expressions, occlusions, noise, illumination
changes, and so on. To improve the recognition accuracy of a face analysis system, it is
necessary to correlate some face analysis tasks with each other. For instance, it is most
likely that males can have beards or mustaches, but females or children certainly cannot.
Previous research work also reveals that most face analysis tasks are linked with each
other; for example, research reported in the 19th century by Wollaston [46] suggests that
face tracking is strongly and intrinsically linked with gaze estimation. The effect is also
demonstrated by the authors with a picture, as can be seen in Figure 1. In Figure 1, two
views of one person are taken at two angles. Although both the eyes and the head are the
same, the gaze direction perceived by the human brain is dictated by two totally different
head directions. The intrinsic relationship between various face image analysis tasks is
later confirmed in [47]. The work in [47] claims that gaze estimation is a combination of
HPE and eyes location estimation. The later research claims that head position provides
a very strong indication of the eyes’ gaze orientation, particularly when the eyes are not
visible, for instance, in case of occlusion or when the resolution of the image is poor.
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Figure 1. FIA and intrinsic relationship of face analysis tasks [46].

The intrinsic relation between various face parts is also confirmed in the latest research
work reported in [48–52]. Research reported in [49–52] suggests that a mutual relationship
between different face parts can be exploited to address several tasks in a single framework.
The research work proposed in [53] segments a face image into six different face parts,
which are later used for HPE in [49,50]. Similarly, gender recognition is combined with other
tasks using the same strategy in [52]. A single framework is proposed in later research [51],
combining gender recognition, race classification, HPE, and facial expression recognition.
In short, CV researchers and psychology literature strongly suggest that face analysis tasks
can be addressed in a better way if combined in a single unified framework. This paper
aims to present the reader with a single review article where different methods are reported
combining several face analysis tasks into one model.

2. Contributions and Paper Organization

To the best of our knowledge, the proposed paper is the first attempt that combines various
face analysis tasks in a single comprehensive review article. Survey papers for each of these
tasks (race, age, gender, expression, and HPE) are individually available [54–56]; however,
there is an intense need for a single paper combining these demographic components. We
specifically focus on the works that have been published in the last 10 years. Moreover,
recently, a shift has been noticed in the state of the art (SOA) from conventional ML to
deep learning (DL)-based methods, which justifies the need for an up-to-date review article.
The main contributions of the proposed paper are summarized as follows:

• We present a detailed survey on different human face image analysis tasks. This
provides researchers with a new and recent up-to-date overview of the SOA technology.
We also introduce a taxonomy of all the existing methods for these tasks. We added a
detailed discussion on the used technology’s characteristics. Additionally, we explicitly
elaborate on the open problems faced by the existing face analysis technology.

• We provide a list of all the publicly available datasets for each of the five face analysis
tasks. We also describe the way these datasets are collected and their characteristics.
We provide information such as the number of images contained, subjects involved,
sex information, environmental diversity, and other details.

• We conducted a detailed study of all the methods for each of the five tasks, both
in indoor and outdoor conditions. We summarize the results obtained using each
method and present a detailed discussion. We present a concrete summary of the
results for each task, provide a critical review, and point to some future directions. We
also dedicate attention to various sensors used for data collection and discuss how
ground truth data is collected and labeled.

The rest of this work is arranged as follows: in Section 3, we discuss already existing
datasets (DBs) used to evaluate face analysis. Recent algorithms within face analysis are
reviewed in detail in Section 4. How ground truth data is created for these face analysis
tasks is discussed in Section 5. We present a comparison of various methods with their
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reported results in Section 6. We also discuss the open challenges in face analysis with some
recommendations in Section 6. Finally, we present the conclusion of the paper in Section 7.

3. Datasets

The performance of a face analysis system is measured with a DB available for ex-
periments. A detailed list of the available DBs for all the tasks is presented in this section.
A comprehensive list of the DBs is presented in Table 1. We include only those DBs that
address at least two face analysis tasks. Following the progress of each face analysis task,
the number of DBs has evolved in the last couple of years. Specifically, complexity in
images and background are now considered.

Table 1. Publicly available DBs for gender, age, head pose, expression, and race classification.

DB No. of Subjects No. of Images Gender Age Head Pose Expressions Race

UNISA-Public [57] 58 406 X X X

Adience [58] 2284 25,580 X X

IDMB [59] 558 500 K X X

VGGFACE [60] – 6000 X X

VGGFace2 [61] 9131 3.31 M X X X X

SASE [62] 50 30,000 X X X

CCNU [63] 58 4350 X X

Dali3DHP [64] 33 60,000 X X

McGill [65] 60 60 X X

AFLW [66] 21,997 25,993 X X

Multi-Pie [67] 337 75,000 X X X X

FacePix [61] 30 5430 X X

FEI [68] 200 – X X X

FERET [69] 1199 14,126 X X

CAS-PEAL [70] 1040 100 K X X X

LFW [71] 5749 13,233 X X

CelebA [72] 10,000 200,000 X X

BJUT-3D [73] 500 – X X

• UNISA-Public [57]: The UNISA-Public is collected in real-time and unconstrained
conditions. The DB consists of 406 face images taken from 58 individuals. The available
DB does not provide cropped faces, but a face localization algorithm is needed for
the images to be used for gender classification. The data is collected in a building
with a camera fixed at the entrance point; therefore, lighting conditions do not change
significantly. Different poses and facial expressions are taken, as the participants were
not told about the data collection process beforehand. Some motion blur conditions
can be seen due to the sudden movement of the individuals.

• Adience [58]: This is the latest DB released for face analysis tasks, including age
and gender classification tasks. It is also a challenging DB collected in an outdoor
environment. All the images are collected through a smartphone device. The data
set is much more challenging, as different pose variations are included along with
changing lighting conditions. The DB is large, as the number of face images is around
25,580. The total number of candidates who participated in data collection is 2284.
The exact age of each participant is not given, but instead, each subject is assigned to a
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specific group. This clearly shows that the DB can be used for age classification but
not estimation. The DB can be freely downloaded from the Open University of Israel.

• IMDB [59]: The IMDB contains images of celebrities collected from a website named
IMDB. The DB is partitioned into two parts, namely IMDB and WIKI. The first part
consists of 523, whereas WIKI consists of 51 face images. These images are manually
labeled with both gender and age. There are some errors in the annotation of ground
truth data. In fact, the authors assume that each face image belongs to the listed
celebrity and then automatically annotate it with the gender declared in the profile.
This automatic assumption results in errors in ground truth data annotation.

• VGGFace [60]: This DB was explicitly built for face recognition but was later used for
additional face analysis tasks. It is a large enough DB to train a DL framework. This
DB was gathered in a very inexpensive way through google search. A huge quantity of
weakly annotated face images are obtained in this way. These face images are filtered
and annotated manually through a fast and inexact process. VGGFace2 is an extension
of the VGGFACE DB.

• VGGFace2 [61]: This DB was released in 2018, and it contains more than 3.31 million
images. All the images are downloaded from the internet. Images in VGGFace2 have
significant variations in illumination conditions, race, profession, and age. The DB is
gender-balanced, as an almost equal number of male and female subjects are consid-
ered in the images collection. All rotation angles have been considered while collecting
the DB.

• SASE [62]: The SASE DB images are collected using a Kinect camera. They consist of
RGB and depth images, taken from 32 males and 18 females. There are variations in
subjects’ hairstyle, race, and age. Three rotation angles are considered in the SASE DB.
Unlike VGGFace2, facial expressions in the SASE are complex and variable. This DB
is used both for HPE and expression recognition.

• AFLW [66]: All images in AFLW are from a collection downloaded from the internet,
with a very unconstrained background. Both profile and frontal images are considered
in nine lighting conditions. All images have variations in face appearance, expression,
and some other environmental factors. The total number of images is 13,000, with 5749
subjects. The DB can be used for face detection, landmarks localization, gender
recognition, and HPE.

• Multi-Pie [67]: The illumination conditions and facial expressions in Multi-Pie are
variable. All data is collected in different sessions with 15 high-resolution cameras.
The DB is large, as more than 75,000 images are collected. It is not a balanced DB, as
69% of the total participants are males and the rest are females. People of different
races are considered, including European, Asian, and African communities.

• The FacePix [61]: This is an imbalanced DB with 25 male and 5 female subjects.
The total number of images in the DB is 5430. The yaw rotation is covered between
±90◦ with a step size of only 2◦. Only one rotation angle yaw is considered in the
FacePix DB. FacePix has been used for gender recognition and HPE.

• CelebA [72]: This is a large DB with around 200,000 images. The total number of
identities is 10,000. Each image in CelebA is labeled with 40 unique binary attributes.
It is a very diverse DB, including entire body and cropped face images. Due to the
large number of images, CelebA is adopted by many researchers for DL-based face
image analysis tasks.

• FEI [68]: This is also a multi-purpose DB that has been used for gender classification,
expression recognition, and HPE. The DB is comparatively simple, as all images
are collected in constrained conditions with a uniform and one-color background.
The total number of participants is 200, half male and half female. The DB was collected
over two sessions, called FEI A and B. Only two facial expressions are considered in
FEI. Session A images are of a neutral facial expression, whereas session B images
are smiling.
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• FERET [69]: This is a DB that was introduced earlier for a number of face analysis tasks.
The tasks include face recognition, gender classification, and HPE. It is also a simple
DB that is collected in constrained laboratory conditions. It is a medium-sized DB,
having 14,126 images. The number of subjects involved is 1199. The DB is somewhat
challenging, as variations in facial expressions are present in images. The lighting
conditions of the images are also not uniform.

• CAS-PEAL [70]: CAS-PEAL has more than 100,000 images. The number of participants
is also sufficiently large (more than 1000). The DB is not balanced, having 595 male
and 445 female candidates. The authors considered yaw and pitch angles in the range
±45◦ and ±30◦. The DB is simple to use in experiments, as less complexity is included
in the data collection, and the number of poses is also less.

• LFW [71]: This is a comparatively challenging DB, as most of the images are collected
from very unconstrained environmental conditions. The total number of participants
in the DB is 5479, whereas the total number of images is 1323. All images are down-
loaded from the internet with very poor resolution. It is a highly imbalanced DB,
having 2977 female and 102,566 male participants.

• BJUT-3D [73]: A total of 500 subjects participated in data collection, half male and half
female. There are 93 poses in the DB. The pitch and yaw rotations have ranges of ±40◦

and ±60◦, respectively. The DB can be used for gender recognition and HPE.
• FairFace [74]: This is a large DB with more than 108,500 images. The DB is collected

considering three tasks: age, race, and gender classification. It is a DB with seven
race groups, which is the largest number of groups reported in the CV research
community. The DB is balanced as far as the ethnicity of various races is concerned.
Some images are very small; the minimum size of a face fixed is 50× 50. The DB is
publically available for research purposes and downloading. It is challenging DB since
the images are collected in real-time conditions with various difficulty levels due to
occlusion, lighting variations, and so on.

• UTKFace [75]: This is a large DB with significant variations in the age range. The age
range is from 0 to 116 years. Variations in the pose, illumination, occlusion, and so on
are included in data collection, making the DB more challenging. The total number of
images used for experiments is 23,688. The number of subjects is about 500+.

4. Methods

It is not easy to organize all research work on the topic into a single taxonomy. In the
proposed work, we do not follow or claim a specific taxonomy, but we will try to label
each system by the fundamental method that underlines its specific implementations. We
discuss various types of methods and also present references where these approaches have
been applied to a specific task. We will discuss both advantages and disadvantages of each
method. A summary of all these methods is presented in Figure 2.
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Figure 2. FIA methods and taxonomy.

4.1. Appearance Methods

These methods always assume that a specific correlation exists between a face analysis
task and its 3D image properties. To know about this relationship, experiments are per-
formed by training some classifiers. Each face image is treated as a one-dimensional vector,
and certain visual features are extracted. This statistical information is used for human face
analysis. Some methods that use appearance-based approaches are explored in [76–79].

Appearance-based methods are straightforward approaches suitable for both bad-
and good-quality images. Along with positive data, negative training data is not needed.
Expanding these methods is also very easy, allowing the framework to adapt to any changes
when required.

Along with the above merits, these models also have some serious weaknesses. For
these methods, the face part must already be detected by the system. If face localization
is not correct, some drastically poor results are obtained. The amount of training data
needed is large. When variations in local face appearance occur, no solution exists to tackle
the algorithm (for example, problems of occlusion, subjects with facial hair, glasses, etc.).
Lastly, pair-wise similarity is another significant issue faced by these methods. Although re-
searchers have developed some algorithms to handle this problem, reported results are still
not convincing.

4.2. Geometric Methods

These are also known as model-based approaches. These techniques need certain key
points such as eyebrows, eyes, lips, nose, and so on. A single vector with local key points
is extracted from these specific points. An algorithm is developed based on the relative
position and mutual relationship between key points. This method is very similar to the
appearance methods, as a human specifies the particular face task.
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The literature reports the exploitation of different facial key points for human face
analysis. Most of the methods use different key points in the eyes [1,77]. Other methods
use the intra-ocular distance between more than one face part for face analysis. The tip of
the nose is used as a discriminative cue for HPE in [80]. Due to the complex geometry of
hair and its difficult extraction, hair was not previously used for face analysis. However,
some recent methods report good results in HPE [81,82]. The processing time of the
geometric methods is much less [83] since very few facial features are extracted, and the
size of the feature vector is also small. The work reported in [84] uses nostril, eyes, cheek,
and chin information. Another method proposed in [85] is used as a front-end face analysis
framework. The last proposed method is used for face recognition and head pose prediction.
The method proposed in [86] uses a combination of different features, which increases the
processing time of the framework. In the last proposed method, the computational cost is
increased as a result of improvement in the overall precision of the system.

The main advantage of these methods is that the key points extracted are very robust
to certain changes such as translation and rotation. However, extraction and detection
of these key points is itself a big challenge in CV. In previous literature, active shape
modeling (ASM) [87] was adapted for key points localization. However, ASM fails to
locate these key points in some cases (for example, when variation in lighting condition is
greater, the facial expression is complex, or if there is an occlusion problem). If the images’
resolution is poor or there is a far-field imagery condition, then extraction of these key
points is almost impossible.

4.3. Regression Methods

In non-linear methods, a face analysis task is estimated by learning a mapping from
the face image space to a specific task. These methods have drawbacks (e.g., it cannot be
assured that a regression tool will efficiently learn proper mapping). The high dimensional-
ity in some cases also creates a challenge for which some dimensionality reduction tools
can be used; for instance, support vector regressors (SVRs) [88] and localized gradient his-
tograms [39]. Moreover, regression methods can be easily utilized on these low-dimensional
features (e.g., [79]).

One of the main non-linear regression tools used is the neural network. Non-linear
regression methods consist of multilayer perceptrons of many feed-forward cells. These
feed-forward cells are defined in different layers [89,90]. In these methods, backpropagation
is used for training perception. Such algorithms inversely propagate the classification error
in the reverse direction. Such a strategy updates both weights and biases of the network.
Some regression-based methods for head pose prediction are explored in [91,92].

Local linear mapping is another type of regression-based neural network method.
These methods consist of multiple linear maps, such as [93]. In these methods, a weight
matrix is learned by first giving the input training data and then comparing it to a centroid
sample test for each map. The nearest neighbor search is performed in the last stage,
followed by a regression process. For more details, see the work reported in [94].

One main advantage of these methods is their processing speed, which is less. These
methods are straightforward to implement. Similarly, these methods can be regularized
quickly, avoiding over-fitting problems. Stochastic gradient descent (SGD) is used to update
regression methods by adding more data. The regression-based method’s performance
drops significantly if labeled images are not appropriately annotated. To improve the
ground truth data , errors in classification can be used through distortion and applying
invariance approaches, as in [95].

4.4. Influence Modeling

For the basic concept of influence-based modeling, see [96,97]. This model presents the
idea that individuals influence each other in a system and predicts how an actor affects a
partner. When the first state of one actor is already known relative to a location, the outcome
is estimated more accurately. Since a single task may provide useful information for
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different face tasks, all these tasks influence each other; therefore, several tasks can be
handled in one framework.

Inspired by the influence-based modeling idea, some works are presented in [51,52].
These works address several face analysis tasks, including HPE, race, gender, and age
estimation in a single model. The methods proposed in [51,52] use face segmentation
information provided by a prior model developed in [53]. These methods do not extract
landmarks information or high-dimensionality data, but instead perform face segmentation
as a prior step.

Some excellent results are claimed by the authors through these methods, particu-
larly for face analysis. However, one main drawback of these methods is the need for
a manually labeled face DB. The creation of such a DB is a time-consuming and labori-
ous task. Moreover, the cost of computation of these models is also more than that of
competitive algorithms.

4.5. Model-Based 3D Registration

Measured data is registered with some specific reference models in these methods.
Meyer et al. [98] proposed a method that predicts a head pose through registration of a
morphable model with depth data. Similarly, 3D reconstruction and morphable model
are used by Yu et al. [99]. Another work in [100] presents a model with a fitting process.
A subject’s face is modeled in 3D with depth data. Papazov et al. [101] propose a system for
HPE, landmarks localization, and gender classification. The authors collected data using a
depth sensor and triangular patch, which encodes the shape of the 3D surface. Similarly,
Jeni et al. [102] perform registration by training a cascade regression framework with face
scan images. Baltrusaitis et al. [103] combined depth and RGB data to regress an HPE
framework using a random forest classifier. Compared to other methods, model-based face
regression methods are less explored by computer vision researchers. Some recent methods
for face image analysis using 3D registration methods can be seen in [104–106].

4.6. Hybrid Methods

Hybrid methods were introduced in [107] for the first time. The central idea is to
combine several of the aforementioned methods into a single framework and perform
some face analysis tasks. Appearance- and geometric-based methods are combined in [108].
Global and local features are exploited in the aforementioned method, and supplement
each other in face analysis.

A method known as HyperFace [109] extracts features through CNNs and then per-
forms face detection, gender recognition, landmarks localization, and head pose tracking
and estimation. KEPLER [110] is another well-known hybrid method to address face anal-
ysis tasks. KEPLER learns both global and local features to explore some structural face
dependencies. Some other recent hybrid methods can be seen in [97,109,111,112].

Since hybrid approaches obtain information from different cues through different
methods and later fuse the estimates from different systems independently, we notice that
this increases the prediction accuracy. Moreover, these architectures are modeled without
initialization as some drift limitations. This helps overcome the limitation of one specific
method with another one. To address face analysis tasks, data-mining methods are used
in [113]. Similarly, gender recognition is explored in [114] through face segmentation.
Extreme learning machine and CNNs are explored by Mingxing et al. [115] to address
face analysis. The authors of the paper explored age and gender classification in their
proposed work.

4.7. Deep Learning Methods

With the transition of ML from conventional ML to the recent DL, several limitations
and drawbacks of conventional ML are now mitigated. Significantly improved results
are reported with the introduction of DL methods in various visual recognition tasks.
DL approaches, specifically convolutional neural networks (CNNs), outperform those
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methods based on conventional features. The method proposed in [116] does not use
landmarks information but extracts features through CNNs and then trains a classification
tool. Similarly, CNNs are combined with a regression loss function in the method proposed
in QuatNet [117].

The performance of conventional ML methods on face analysis tasks was satisfactory
to some extent on images obtained in controlled lab conditions. However, when traditional
ML models are exposed to images collected in wild conditions, a significant drop in
performance is noticed. On the other hand, DL-based methods perform very well on these
DBs that are collected in unconstrained conditions [118].

Gozde et al. [119] introduced a system based on deep learning for face analysis using
customer interest. According to the authors, it is one of most exciting and innovative trends
in customer interest. The system developed measures customer interest attention. In the
proposed system, in the initial stage, customers whose heads and face are oriented towards
the advertisement are detected by the system. Then, facial components are extracted for
various tasks such as head pose estimation, expression recognition, and age estimation.
Other papers on face analysis using deep learning include [120–123].

Although many improvements have been noticed in the performance of face analysis
tasks with these DL-based methods, their use is still sporadic. Since these approaches are
recent, there is still a need to establish their specific and complete potential in this domain.

5. Annotation Type and Processes

In the CV context, ground truth data consist of a set of images with labels on these
images. The ground truth labels can be added by a human or in some automatic way, which
totally depends on the complexity of the specific problem. These labels usually include
interest points, histograms, corners, shapes, and feature descriptors from a model. For the
training phase, ground truth data may be positive or negative. Negative images in training
data are used to generate false matches, which helps the model building.

We argue that creating ground truth data may not be a cutting-edge research area;
however, it is still as important as any proposed algorithm for CV tasks. No algorithm
can be verified and assessed accurately unless the ground truth data has been prepared
such that image contents and region of interest are selected and prepared effectively.
Better analysis is only possible when ground truth data is better. Ground truth data
and its preparation depend upon the task to be addressed. For instance, in 3D image
reconstruction, attributes of ground truth data must be recognized accurately for each
task. Creating ground truth data for some tasks is easy, for instance in gender, race,
and expression classification. The labeling method can be either human-annotated or
machine-automated annotation. Ground truth data is created using human annotation for
the race, age, gender, and expression recognition. However, creating ground truth data for
HPE is tricky; therefore, we present some details in the following paragraphs.

As compared to the above-mentioned face analysis tasks, creating ground truth data
for HPE is not easy. The earlier method to create ground truth is through manual annotation
by a human. A human assigns a specific label in this method. Creation of ground truth
data through this method is easy for smaller DBs; however, when the size of the DBs
increases, it is a time-consuming task. Moreover, a higher probability of human error exists
in these methods. For example, Pointing’04 is collected by asking each participant to look
at the points marked on a wall in the measurement room. Such methods assume that each
participant accurately points their head to the point. Practically, such implementation is
infeasible. Moreover, it is also assumed that each subject’s head is always in an accurate
physical position, which is, again, practically impossible.

Along with the above manual annotation, HPE DBs are also established through
synthetic data, as in [70,124]. Typically, one model is placed on another model called
the virtual ground, and then the camera is moved on a sphere’s surface. The center of
the sphere is the same as the head model’s center. Creating ground truth data through
this synthetic method also has drawbacks, for example, if a model represents a neutral
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expression, or if the background and parts of the head are missing. Both of these drawbacks
make the assessment of algorithms working in real-world conditions difficult. An image
showing the creation of ground truth data for HPE is shown in Figure 3.

Figure 3. Ground truth data creation for HPE task using synthetic method.

In some other methods, such as [125], a laser pointer is attached to each subject’s
head, which helps to pinpoint every discrete physical location. A laser pointer is attached
to participants’ heads to annotate and produce ground truth data. For example, the
BU [126,127] DB is created through this method. The magnetic sensor method produces
nearly accurate ground truth data; however, the sensors used are very susceptible to small
metals if present in the nearby environment.

6. Discussion: Open Areas of Research and Methods Comparison

This section includes a discussion on the results obtained using SOA DBs and some
promising future directions for research on the topic.

6.1. Comparative Assessment of Reported Results

Research papers and methods reported in this paper are selected from the last 10 years’
(2012–2022) work. Table 2 summarizes results of all five face analysis tasks on SOA DBs.
Similarly, Table 3 presents a summary of the latest research work on the topic and its
yearly development. From both Tables and the reported methods, we summarize some
conclusions, which are as follows:

• Previous methods reported their results using classification rate (CR) (age, gender,
expression, and race classification). We also compared and present results for these
four tasks with CR. CR is a single metric that is the ratio of correctly identified images
to the total number of images. Mathematically, this can be written as follows:

CR =
correctly classi f ied images

total number o f images
(1)

Along with CR, two other informative metrics are used for evaluating an HPE frame-
work, that is, pose estimation accuracy (Pea) and mean absolute error (Mae). Mae is
comparatively more common than Pea, as this metric provides a single value which
provides an easy insight about the overall performance of an HPE system. On the
other hand, Pea purely depends on the poses used, and hence provides comparatively
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less information regarding evaluation of the performance of a system. Sometimes, con-
fusion matrices (Cmat) are also provided with results. Cmat are in a tabular form, where
rows are indexed with original and column entries with estimated class. Cmat gives a
deep visual insight into the classification errors of multiple classes. However, in this
paper, we are not considering Cmat and Pea, as very few papers reported these metrics,
and a proper comparison cannot be made. Mathematically, Mae can be represented
as follows:

Mae =
1
N

N

∑
i=1
|Yi −Y′i | (2)

In Equation (2), N represents the test samples, Yi the ground truth count, and Y′i the
count estimated for the ith sample.

• Face image analysis is a hot topic in CV. Table 2 shows more details on the performance
reported for each method. Table 3 shows a summary of the face analysis work done
from 2012 to 2022. It is clear from Table 2 that improvements are brought gradually
in CR and Mae values. A quick look at the results in Table 2 reveals that the perfor-
mance for HPE, gender recogntion, and age classification tasks on both traditional
ML and newly introduced DL methods is not same. From [50–52], it is clear that
influence-based modeling methods perform better than conventional ML-based meth-
ods. Morever, in some cases, influence-based methods perform better than DL-based
methods. Therefore, we believe that a much better understanding of the DL algorithm
methods and their implementation on face analysis tasks is needed. The performance
of influence-based modeling on simple DBs acquired in indoor conditions is better.
However, when influence-based methods are applied to DBs acquired in open, un-
controlled conditions, a significant drop in performance can be seen. DL methods
show much improved results for challenging DBs (for instance, ALFW [66]). Results of
traditional ML methods on AFLW are very poor. However, DL has shown much better
performance on the same set of images and the same DBs. As far as the performance of
traditional ML algorithms is concerned, a mixed response with regard to face analysis
tasks can be seen in Table 2. Much better results are shown by hybrid models, as is
clear from Table 2.

• Existing methods for face analysis do not define any specific experimental protocol
that can be used as a standard for experimental validation. Consequently, different
authors use their own experimental setup for validation of their methods. Most of
the researchers use 10-fold or 5-fold cross-validation experiments. The results and
summary presented in Table 2 are with different experimental setups and validation
methods. Therefore, results reported in Table 2 with the same DB may use different
validation protocols and setups. For example, Geng et al. [128] use 5-fold cross-
validation for Pointing’04, whereas Khan et al. [52] use a subset of the same DB.
Therefore, the results presented in Table 2 can be used as a summary, but with a
warning to avoid to draw concrete conclusions.

• From the results in Table 2, it can be seen that the performance of most of the methods
on Adience DB is significantly lower than the other DBs. Adience is a large DB that
is collected in unconstrained conditions. The results in Table 2 highlight the fact
that the difficulty level in Adience DB is still high, and more research is needed to
make the face analysis technology applicable to images collected in uncontrolled
conditions. Moreover, the quality and type of available ground truth data are diverse.
Gradual development in the methods of ground truth data can be seen from Section 5.
The widely employed manual labeling methods introduce labeling errors, which
are reduced with new methods. Synthetic DBs and the creation of manual data are
comparatively simple. There is a lower chance of error creation with this method.
Most of the images in the DBs mentioned in Table 1 are either centered or cropped
faces. Very few methods are fully automated face analysis techniques. An automated
face analysis method will detect a face in the initial step and then move to other
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secondary face analysis applications or tasks. This could be an interesting area to be
explored in the future.

Table 2. Performance comparison of various algorithms for age estimation (AE), gender recognition
(GR), race classification (RC), facial expression recognition (FER), and head pose estimation (HPE).

Paper DB Task CR% Mae
◦

Xing et al. [129] GR 98.7 –
RC 99.2 –
AE – 2.96

Yoo et al. [130] AE – 2.89
Wan et al. [131] GR 98.4 –

Morph-II AE – 2.93
GR 99.1 –

Xie et al. [132] RC 94.9 –
AE – 2.81

Sun et al. [133] GR 99.5 –
RC 99.6 –

Zhou et al. [134] AE 98.05 –
GR 93.22 –

Duan et al. [115] AE 52.3 –

Paper DB Task Acc Mae

GR 88.2 –
Rodriguez et al. [135] Adience AE 61.8 2.68

GR 93.0 –
Lapuschkin et al. [136] AE 63.8 –

GR 94.0 –
Tizita et al. [137] GR 96 –

AE 65 –
Levi et al. [138] GR 86.8 –

AE 55 –
Savchenko et al. [139] AE 91.95 5.96

GR 99.86 94.01
Eidinger et al. [58] GR 77.8 –

Liao et al. [140] GR 78.63 –
Hassner et al. [141] GR 79.3 –

Levi et al. [138] GR 86.8 –
Dehghan et al. [142] GR 91.0 –
Gurnani et al. [143] GR 91.8 –

Zhou et al. [134] AE 97.8 –
GR 98.3

Smith et al. [22] VGGFace GR 98.2 –
AE – 4.1

Acien et al. [144] GR 94.8 –
RC 90.1

Sharma et al. [75] AE 94.01 0.77
GR 99.86 2.9

Das et al. [145] UTKFace RC 90.1 –
AE 70.1 –
GR 98.23 –

Mane et al. [146] FER 88.18 –
GR 96.0 –

Mane et al. [146] IMDB FER 88.18 –
GR 96.0 –
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Table 2. Cont.

Paper DB Task Acc Mae

Thomaz et al. [147] GR 99.0 –
FER 95.0

Sergio et al. [50] FEI GR 98.5 –
FER 96.25
HPE 81.0 2.79

Khan et al. [52] GR 97.3 –
FER 98.85
HPE 91.35 2.32

Thomaz et al. [147] FERET GR 84.0 –
FER 74.0

Sergio et al. [50] GR 96.5 –
FER 93.25

Baltrusaitis et al. [103] ICT-3DHP HPE 3.2
FER 59.4 –

Ranjan et al. [109] AFLW HPE 2.71 –
GR 94 –

CelebA HPE 52.3 –

Ranjan et al. [109] Dali3DHP HPE – 6.07
FER 65 –

Ranjan et al. [148] AFW HPE 99.1 0.293
GR 99 –
FER 93 –
AE – 0.20

Shin et al. [149] LFW AE 62.73 –
GR 92.2 –

Karkkainenet et al. [74] FairFace AE 59.7 –
GR 94.2
RC 93.7

Table 3. Face image analysis yearly progress (2012–2022).

Paper Method Face Task DB

2022
Sharma et al. [75] DL age and gender IDMB and UTKFace

Bhushan et al. [150] DL age and expression YALE
Chethana et al. [151] DL age, gender, and expression

Pandi et al. [152] DL gender and expression IMDB

2021
Karkkainen et al. [153] DL race, age, and gender FairFace

Lahariya et al. [154] DL gender and expression IMDB
Park et al. [155] DL age and gender Mega Asian

Benkaddour et al. [156] DL age and gender Adience
Micheala et al. [157] DL age and gender FERET

Kale et al. [158] DL race, age, and gender Face

2020
Li et al. [159] DL age and gender AFLW

Barra et al. [160] geometric age and gender AFLW
Lim et al. [161] DL age and gender IMDB
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Table 3. Cont.

Paper Method Face Task DB

2019
Yang et al. [162] regression age and expression AFLW
HyperFace [109] DL appearance and DL AFLW
Sergio et al. [50] IBM gender, age, and expression FEI, FERET
Hsu et al. [117] regression HPE and expression AFLW
Khan et al. [52] IBM HPE, age, and gender FEI, FERET

Thomaz et al. [147] IBM gender and expression FEI, FERET
Zhou et al. [134] DL gender and age Adience, VGGFace2

2018
Gupta et al. [163] regression expressions and gender AFLW
Ruiz et al. [116] DL age and gender AFLW
Smith et al. [22] DL gender and age VGGFace
Acien et al. [144] DL gender and race VGGFace

Baltrusaitis et al. [103] DL HPE and expression ICT-3DHP
Das et al. [145] DL gender, age, race UTKFace

Mane et al. [146] appearance gender and expression IMDB

2017
Derkach et al. [164] regression appearance SASE

Duan et al. [115] hybrid gender and age Aidence
Dehghan et al. [142] DL age, gender, expression Face+
Ranjan et al. [109] DL age, race, gender, expression AFW

Shin et al. [149] DL age and gender AFW

2016
Baltrusaitis et al. [109] 3D morphable HPE and gender Multi-Pie+BU

Ranjan et al. [109] DL head pose and gender AFLW and CelebA
Xia et al. [165] geometric race, gender, and age FRGCv2

Lapuschkin et al. [136] appearance age and gender Adience

2015
Afifa et al. [166] appearance age and gender FacePix, CMU PIE, BU

Tulyakov et al. [64] tracking HPE and expr. Dali3DHP
Peng et al. [167] mainfold embedded gender and expr. CMU-Multipie+BU+AFW

Sang-Heon et al. [168] geometric age and gender FERET
Levi et al. [138] DL age and gender Adience
liu et al. [169] DL race, age, gender FERET

Chaudhari et al. [170] DL age and gender FERET
Mery et al. [171] hybrid race, age, and gender FERET and JAFFE

2017
Tulyakov et al. [64] tracking HPE and expression Dali3DHP

Laurentini et al. [172] appearance age, race, and gender
Zhaoo et al. [173] geometric HPE and expression LFW

Fazl-Ersi et al. [174] appearance age and gender FERET
Eidinger et al. [58] appearance race, age, and gender FERET

2013
Jain et al. [78] appearance expression and gender CMU-Pie

Zhu et al. [111] 3D registration age, gender, and expression CUM-MultiPie+AFW
Tizita et al. [137] appearance age and gender FERET
Guo et al. [175] geometric age, expression, and gender FERET

Boloorizadeh et al. [176] hybrid age and gender FERET
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Table 3. Cont.

Paper Method Face Task DB

2012
zhu et al. [111] appearance gender and HPE FERET
Hao et al. [177] regression HPE and gender FacePix, Pointing’04
Jang et al. [102] appearance age and gender BU+CMU-MultiPie

Xiangyang et al. [178] registration expression and gender FacePix
Huang et al. [48] appearance age and gender CAS-PEAL

6.2. Benchmark DB Devolopment

The development and evaluation of an efficient face analysis framework require a
sophisticated DB for experiments. CV researchers report various DBs for all face analysis
tasks. The DBs range from a very simple one-color flat background (Pointing’04) to complex
scenarios (LFW). Although the number of DBs is increasing gradually, as can be seen from
Table 1 and Table 3, none of these address all face analysis tasks in a single DB. It is also
clear from the discussion of the reported DBs that none can be used on its own for all face
analysis tasks, as no DB covers all the modalities of a human face image. Secondly, it is also
clear from Table 1 that the number of DBs addressing facial expressions is comparatively
less. Very few DBs provide data about facial expression and race classification. Compared
to these two, the remaining three areas (i.e., HPE, gender, and age classification) are
more explored.

The number of images or videos is comparatively lower for DL-based experiments
(except for a few, e.g., Adience). Another challenge these DBs face is not having multiple ses-
sions per participant or information about specific time lapses between sessions. Diversity
in lighting conditions, terms of the recording environment, ethnicity, gender, and viewing
angle information are other aspects not addressed by researchers. Another challenge is not
having multiple sessions per subject. Therefore, a preliminary step should be to contribute
a DB that caters to all the modalities, including session-spanning information, ethnicity,
age, gender, and facial expression.

6.3. Research on 3D Face is Required

As can be observed, most of the research conducted on all face analysis tasks is on 2D
images. Few papers are reported using 3D face images. We believe exploring face analysis
through 3D images will be an exciting topic. In most of the 3D face images, synthetic
faces are used. In the case of 2D images, most of the time, valuable information is lost; for
example, the exact position of the nose and chin in 3D images can provide more valuable
information. The identity of a person is recognized using face image analysis methods
in [179]. A pose-invariant learnt multiview 3D recognition approach is used to address
the problem. Authors of the paper used four different datasets to address the task. These
datasets include UMB-DB, GavabDB, Bosphorus, and FRGC database. Generative 3D face
models are applied for the pose-invariant illumination method in [179]. According to the
authors, the proposed 3D face model also fit the 2D along with 3D images under various
conditions and sensors. Three-dimensional face analysis could be used in more research
and application domains, such as face beautification, plastic surgery, and so on.

6.4. Knowledge Transfer and Data Augmentation: Possible Areas of Exploration

Looking for the new trends for other tasks in CV, we expect that face analysis will
move more and more towards new DL methods. Since DL methods are facing some
training problems due to less ground truth data, accurate knowledge transfer (KT) [180]
and supervision learning [181] are possible options to be researched. Another possible area
to be improved is data augmentation [182] and foveated architecture methods [183]. Data
augmentation can overcome the limited data scenario of DL architectures. We also add that
a comparatively less researched domain for KT in DL is heterogeneous domain adoption.
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KT is extremely helpful in transferring knowledge from the training to testing phase when
attributes are somehow different. All of this minimizes the labeling efforts for training data.
As data from some other domain is utilized, the labeling task is reduced. Considering new
developments in DL methods, the next probable keywords are temporal pooling, LSTMs,
optical flow frames, and 3D convolution for human face image analysis. Even if some of
the aforementioned methods are already being explored by researchers, more research is
needed to improve the performance of these tasks.

7. Summary and Concluding Remarks

Human face image analysis is an essential step in various face-related applications
since rich information is provided about intent, motivation, subjects’ attention, and so on.
Despite the extensive research on the topic, particularly in the last 10 years, face image
analysis is still very challenging, particularly for data collected in unconstrained conditions.
We also investigate aspects of some existing solutions: first, we review SOA methods
based on hand-crafted representation, and then we move to the recently introduced DL
architectures. We present an analysis of the SOA results obtained so far on the topic.
Finally, we identify several promising open problems and present possible future work
directions; for example, we expect to see more evaluations of the DL techniques on the most
challenging DBs (i.e., those collected in uncontrolled environmental conditions). Another
more interesting direction is a combination of DL and influence modeling. One additional
possibility is the extension of influence modeling with geometric modeling. Classification
and feature extraction can be exploited with DL architectures. We believe that the survey
paper, DBs, and all the methods and algorithms mentioned here could help the research
community working on the topic to improve current SOA performance and inspire some
new research directions.
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