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Abstract: The human ventral visual stream contains regions that respond selectively to faces over objects.
However, it is unknown whether responses in these regions correlate with how face-like stimuli appear.
Here, we use parameterized face silhouettes to manipulate the perceived face-likeness of stimuli and mea-
sure responses in face- and object-selective ventral regions with high-resolution fMRI. We first use ‘‘con-
centric hyper-sphere’’ (CH) sampling to define face silhouettes at different distances from the prototype
face. Observers rate the stimuli as progressively more face-like the closer they are to the prototype face.
Paradoxically, responses in both face- and object-selective regions decrease as face-likeness ratings
increase. Because CH sampling produces blocks of stimuli whose variability is negatively correlated with
face-likeness, this effect may be driven by more adaptation during high face-likeness (low-variability)
blocks than during low face-likeness (high-variability) blocks. We tested this hypothesis by measuring
responses to matched-variability (MV) blocks of stimuli with similar face-likeness ratings as with CH
sampling. Critically, under MV sampling, we find a face-specific effect: responses in face-selective regions
gradually increase with perceived face-likeness, but responses in object-selective regions are unchanged.
Our studies provide novel evidence that face-selective responses correlate with the perceived face-like-
ness of stimuli, but this effect is revealed only when image variability is controlled across conditions.
Finally, our data show that variability is a powerful factor that drives responses across the ventral stream.
This indicates that controlling variability across conditions should be a critical tool in future neuroimag-
ing studies of face and object representation. Hum Brain Mapp 00:000–000, 2011. VC 2011Wiley-Liss, Inc.
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INTRODUCTION

Functional magnetic resonance imaging (fMRI) studies
reliably identify regions in the human ventral stream that
respond selectively to faces [Kanwisher et al., 1997; Puce
et al., 1995; Tong et al., 2000; Yovel and Kanwisher, 2004],
including regions in the middle (mFus-faces) and posterior
[pFus-faces (Weiner and Grill-Spector, 2010)] fusiform gyrus
(often referred to collectively as FFA), and a region in lat-
eral occipital cortex, overlapping the inferior occipital
gyrus, referred to as OFA [Gauthier et al., 2000], or IOG-
faces [Weiner and Grill-Spector, 2010]. These face-selective
regions are thought to be critically involved in face percep-
tion [Andrews et al., 2002; Hasson et al., 2001; Moutoussis
and Zeki, 2002; Rotshtein et al., 2005; Tong et al., 1998]
and recognition [Barton, 2002; Golarai et al., 2007; Grill-
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Spector et al., 2004], and much work in the past decade
has focused on understanding their response properties.

To date it has not been established how face-selective
regions respond to stimuli that vary in their degree of
face-likeness. On the one hand, responses in face-selective
regions are higher when stimuli are perceived as faces vs.
when they are not. For example, when presented with am-
biguous stimuli (e.g., the Rubin face-vase illusion)
responses in fusiform face-selective regions are higher
when subjects report seeing two faces rather than a vase
[Andrews et al., 2002; Hasson et al., 2001]. Further, several
studies report that face-selective regions respond similarly
to different kinds of faces, such as familiar vs. unfamiliar
faces [Ewbank and Andrews, 2008; Kanwisher et al., 1997],
adult vs. child faces [Golarai et al., 2010], male vs. female
faces [Kranz and Ishai, 2006], and front- vs. profile-view
faces [Kanwisher et al., 1997] (though there is evidence for
some modulation of response by race [Golby et al., 2001]
and distinctiveness [Loffler et al., 2005]). On the other
hand, although face-selective regions respond more to
faces than non-faces, their responses are not uniformly
low across non-face stimuli. For example, face-selective
regions respond more strongly to images of animals and
body parts than to inanimate objects, and more strongly to
objects than to houses and scenes [Downing et al., 2006;
Grill-Spector, 2003; Grill-Spector et al., 2004; Weiner and
Grill-Spector, 2010]. Because these visual categories differ
on many dimensions, it is unclear what aspects of images
modulate the level of response of face-selective regions. A
recent study reported that FFA responses to images at var-
ious morph levels between a face and a house decreased

monotonically as the morph level had a lower contribution
of the face image, suggesting that responses may be
modulated by stimulus shape [Tootell, 2008]. However,
several intermediate morphs between the face and the
house resembled neither a face nor a house, and there
were no behavioral measurements of how face-like the
stimuli appeared to subjects. Thus, it remains unknown
what kinds of stimulus transformations modulate response
levels in face-selective regions, and how they might relate
to perceived face-likeness.

To address these questions we used a novel method of
parameterized face silhouettes [Davidenko, 2007]. This
face space is built from a database of 480 profile-view,
gray-scale faces which are parameterized into silhouettes
using 18 keypoints (see Fig. 1 and Materials and Methods).
The resulting face stimuli are defined entirely by their
shape. Using principal component analysis (PCA), we cap-
ture the shape dimensions, or principal components (PCs),
along which human face profiles vary relative to a proto-
type face (the average of these 480 silhouettes, which sub-
jects perceive as typical [Davidenko, 2007; Davidenko and
Ramscar, 2006; Davidenko et al., 2007]). Importantly, the
face silhouette methodology provides a method for manip-
ulating the perceived face-likeness of stimuli simply by
transforming the shape of silhouettes along the PCs that
faces typically vary along, while controlling low-level
properties of the stimuli, such as size, contrast, and spatial
frequency.

Here, we generated silhouettes at various distances from
the prototype face. We first measured the perceived face-
likeness of these stimuli and show that faces further away

Figure 1.

Steps in parameterizing a face silhouette [adapted from Davidenko, 2007]. (a) A profile face

image from the FERET database; (b) 18 keypoints are identified along the profile contour; (c)

keypoints are normalized into a common x–y plane across all face images; (d) bi-cubic splines

smoothly interpolate between keypoints to create the parameterized face silhouette.
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from the prototype are perceived as less face-like, in a
monotonically decreasing way. We then measured
responses in face- and object-selective ventral regions with
high-resolution fMRI. We reasoned that responses in face-
selective, but not object-selective, regions would be modu-
lated by the degree of face-likeness of the silhouettes. We
predicted that responses in fusiform face-selective regions
should decrease as face-like ratings decrease, since
responses in these regions are known to be correlated with
subjects’ face perception.

MATERIALS AND METHODS

Subjects

Thirteen right-handed subjects (seven female) partici-
pated in one or more of four fMRI experiments. In Experi-
ments 1 and 2 (Face silhouette study), we verified that face
silhouettes elicit a face-selective response profile in human
ventral visual cortex. Eight subjects (six female, ages 23–
39) participated in Experiment 1 and 9 subjects partici-
pated in Experiment 2. In Experiments 3 and 4, we manip-
ulated face-likeness and measured responses in face- and
object-selective regions. Ten right-handed subjects (five
female, ages 21–39 years) participated in Experiment 3
(CH sampling) and nine right-handed subjects (four
female, ages 21–39) participated in Experiment 4 (MV sam-
pling); seven subjects participated in both of these. Stan-
ford University’s Human Subjects IRB approved the
experimental protocol and subjects gave written informed
consent to participate.

fMRI Scans

Scans were conducted at the Richard M. Lucas Center
for Imaging at Stanford University using an eight-channel
surface coil in a 3-Tesla GE magnet. Experiments 1–4 were
conducted on separate days between 3 and 11 months
apart for different subjects (mean: 6 months). Each scan
lasted !90 min and included an anatomical run, two func-
tional localizer runs to identify face- and object-selective
regions, and eight experimental runs. Functional scans
were conducted at high-resolution (HR-fMRI, 1.5 mm iso-
tropic voxels) and covered a field of view of 19.2 cm "

19.2 cm " 3.9 cm that included occipital and temporal
regions. HR-fMRI allows for better segregation between
object- and face-selective activations and more accurate
ROI definitions. We acquired 26 1.5 mm-thick oblique sli-
ces using a two-shot T2*-sensitive spiral acquisition
sequence [Glover, 1999] (TE ¼ 30 ms, TR ¼ 2,000 ms, flip
angle ¼ 77$, and bandwidth ¼ 125 kHz). In-plane T1-
weighted anatomical images were acquired in the same
session as the functional scans using the same prescription
as the functional scans and a standard two-dimensional
RF-spoiled GRASS (SPGR) pulse sequence (TE ¼ 1.9 ms,
flip angle ¼ 15$, bandwidth ¼ 15.63 kHz). The anatomical

in-planes were used to co-register each subject’s functional
and anatomical data to aid with ROI visualization and def-
inition. A high-resolution anatomical volume of the whole
brain was acquired for 11 subjects with a head-coil using a
T1-weighted SPGR pulse sequence (TR ¼ 1,000 ms, FA ¼

45$, 2 NEX, FOV ¼ 200 mm, resolution of 0.78 " 0.78 "

1.2 mm3). For the remaining two subjects, ROI definitions
were conducted based on the inplane images acquired in
each session.

fMRI Data Analysis

Imaging data was analyzed using MATLAB and our in-
house software, mrVista (white.stanford.edu/software).
The analysis included alignment of functional data to
whole-brain anatomies, motion correction of the functional
data, transformation of each voxel’s time course to percent
signal change, and application of a general linear model
(GLM [Worsley et al., 1996] using the hemodynamic
response function as implemented in SPM2 and SPM5,
www.fil.ion.ucl.ac.uk/spm] to estimate b-weights for each
voxel in each experimental condition. There was no spatial
smoothing. For ROI-based analyses, we measured the av-
erage in each subject’s individually defined ROIs from the
localizer scan from each condition of Experiments 1–4. We
then averaged data across subjects. Data were analyzed
separately for each hemisphere.

Localizer Runs

Two 5-min localizer scans were conducted at the begin-
ning of each scanning session. Subjects observed 12-s
blocks of grayscale front-view faces, grayscale common
objects (cars, instruments, and plants), gray-scale
scrambled versions of these images, and fixation blocks,
with 12 instances of each type of block using different
stimuli. These localizer runs were analyzed to define face-
and object-selective ROIs separately in each subject.

Face-selective ROIs were defined in each subject as vox-
els in the fusiform gyrus (Fus) and lateral occipital cortex
overlapping the inferior occipital gyrus (IOG) that
responded significantly more strongly to faces than to
objects (P < 0.001, voxel level, uncorrected; see Fig. 2–red).
In most subjects, right hemisphere Fus-faces consisted of a
posterior (pFus-faces) and anterior (mFus-faces) region
that we analyzed separately. The mFus-faces ROI is more
medial and tends to overlap the mid-fusiform sulcus,
whereas the pFus-ROI is about 1–2 cm more posterior and
sometimes overlaps the occipito-temporal sulculs (OTS),
see [Weiner and Grill-Spector, 2010]. We focus our analy-
ses on right- and left-hemisphere ROIs that were present
in at least five subjects in each of the experiments. These
include right-hemisphere mFus-faces (minimum n ¼ 9),
pFus-faces (9), and IOG-faces (6) and left-hemisphere
pFus-faces (9). Left mFus-faces (minimum n ¼ 3) and IOG
faces (4) were found less consistently in our studies.
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Object-selective regions were defined as voxels in poste-
rior fusiform gyrus overlapping with the OTS (pFus/OTS)
and in the lateral aspect of the occipital lobe posterior and
ventral to MT (LO) that responded significantly more
strongly to objects than scrambled images (P < 0.001,
voxel level, uncorrected; Fig. 2–blue). We identified object-
selective regions in the right hemisphere pFus/OTS (mini-
mum n ¼ 6) and LO (9) and left hemisphere pFus/OTS (6)
and LO (7).

Results of Experiments 1–4 are shown as the average
percentage signal for each condition across participants,
shown separately in each face- and object-selective ROI.
For robustness and to complement our ROI analyses, we
measured the extent of activation within each region to
the different experimental conditions. We defined a voxel
count measure in Experiments 3 and 4 as the number of
voxels within each functional ROI responding significantly
(P < 0.01) more strongly to each active condition of
Experiments 3 and 4 versus fixation. This analysis was
done separately for each subject and ROI. Average voxel
counts across subjects are shown in Supporting Informa-
tion Figures 5 and 6.

Stimuli

Our stimuli were constructed using the parameterized
face silhouettes methodology [Davidenko, 2007]. Silhouette
face space is generated by placing 18 keypoints along the
contour of 480 left-facing profile photographs of male and

female faces from the FERET face database [Phillips, 1998,
2000] (Fig. 1a). We fixed the top and bottom points to con-
trol for stimulus size and orientation. The XY coordinates
of the remaining 16 keypoints form the basis of a principal
components analysis (PCA) that produces 32 orthogonal
dimensions, or principal components (PCs) that fully
describe the space of face silhouettes [Davidenko, 2007].
The prototype face silhouette—the average of all 480 face
profiles—is obtained by setting 0-coefficients along all PCs
and novel face silhouettes can be generated by sampling
the PC coefficients from a multi-normal distribution [see
Davidenko, 2007].

In previous work [Davidenko, 2007], we have shown
face silhouettes are perceived much like regular face stim-
uli, eliciting accurate judgments of gender and age, reliable
ratings of attractiveness and distinctiveness, successful
identification with their front-view, gray-scale counter-
parts, and better recognition when upright than upside-
down. In Experiments 1 and 2, we further show that para-
meterized face silhouettes elicit a face-selective response
profile in the ventral stream.

Face Silhouette Study (Experiments 1 and 2)

To determine whether face silhouettes elicit a face-selec-
tive response profile, we measured responses with high-re-
solution fMRI as subjects observed blocks of face
silhouettes, two-tone shapes, and scrambled two-tone
images (Experiment 1), and blocks of upright and upside-

Figure 2.

Face- and object-selective activations on a ventral surface of a

representative subject’s inflated cortical surface. Face-selective

regions (responding more to front-view faces than objects) are

shown in red and object-selective regions (responding more to

objects than scrambled images) are shown in blue. Color bar

indicates the statistical significance (P-value) of the contrast of

interest. Abbreviations: mFus: mid-fusiform; pFus: posterior fusi-

form: OTS: occipito-temporal sulcus; IOG: inferior occipital

gyrus. LO: lateral occipital object-selective region.
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down face silhouettes (Experiment 2). In Experiment 1, we
generated multiple face silhouettes by sampling the coeffi-
cients of the first 6 PCs from a multi-normal distribution
around the prototype face. Each PC coefficient was
weighted by its z-score, thus producing normally distrib-
uted values along each dimension, resulting in realistic
looking face silhouettes. We used six dimensions in order
to generate a wide variety of silhouette stimuli that would
not repeat across blocks and runs. Using a similar key-
point construction method, we generated two-tone shapes
that did not resemble faces but were matched with face
silhouettes in their size, contrast, and number of key-
points. We generated scrambled two-tone images by split-
ting the face and shape silhouette images into 8 by 8 sub-
images and randomizing the positions of the sub-images.
In Experiment 2, we generated upright face silhouettes by
varying the coefficients of PCs 2 and 6 by up to %1.5 and
%2 standard deviations (PC units), respectively, away
from the prototype face silhouette and upside-down sil-
houettes by vertically inverting the upright silhouettes.

For each subject in Experiments 1 and 2, we acquired 8
runs where subjects observed six 12-s image blocks alter-
nating with 12-s fixation blocks. Each run included one
instance of each type of image block. Stimuli were dis-
played in MATLAB (Mathworks.com) using Psychtoolbox2
[Brainard, 1997] and projected onto a screen inside the
scanner. Images subtended !5.7$ of subjects’ visual field
and were presented at 1 Hz, for 750 ms with 250 ms fixa-
tion interstimulus intervals. During all image blocks, sub-
jects fixated on a central cross and performed a one-back

task, pressing a button whenever two consecutive images
repeated (!8% of trials). Subjects’ performance was moni-
tored to ensure they were paying attention to the stimuli.

Measuring Responses in the Ventral Stream as a

Function of Face-Likeness

Critically, we contrast two methods of defining blocks of
silhouettes at different levels of face-likeness. Concentric
hyper-sphere (CH) sampling (Fig. 3a and Supporting In-
formation Fig. 1) is a method that has been used previ-
ously to manipulate face distinctiveness [Loffler et al.,
2005; Valentine, 1991]. CH sampling captures a wide range
of face stimuli but results in a correlation between distan-
ces from the prototype face and image variability, whereby
blocks of stimuli far from the prototype are more variable
than blocks of stimuli near the prototype. To account for
this potential confound, we introduce a novel method of
‘‘matched variability’’ (MV) sampling, where silhouettes
are defined primarily along one PC of face space at the
same distances from the prototype, but with each block of
silhouettes spanning an equal-size region of face space
and thus matching variability across blocks (Fig. 3b).

Measures of Variability

We defined a metric of image variability to describe the
heterogeneity of images in each block. Image variability
was defined as the mean distance in face space between

Figure 3.

(a) Schematics of CH and MV sampling. Each line represents a different PC and each shaded disk

represents a block of stimuli at a given distance from the prototype to be shown in the fMRI

experiment. (b) Schematic diagram of MV sampling for Experiment 4. Silhouettes are defined

along PC3 and each equal-size shaded disk represents a block of matched-variability stimuli at a

given distance from the prototype to be shown in the fMRI experiment.
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pairs of 32-dimensional vectors corresponding to pairs of
face silhouettes within each block. The units of image vari-
ability are in standard deviations of the PC coefficients (or
PC units). This measure was nearly identical to a measure
based on the sum of XY distances between pairs of corre-
sponding keypoints that define each silhouette stimulus (r
¼ 0.9993, P < 10&10). We considered two additional met-
rics of variability in our analyses: pixel-based variability
and perceptual variability. Pixel-based variability was
defined as the pixel-by-pixel difference between the two-
tone images in each block, expressed as a proportion of
different pixels in the image area. Perceptual variability
was measured in a post-scan study outside the scanner.
Nine of our subjects provided ratings of dissimilarity
among pairs of silhouettes sampled from each of the
blocks, on a seven-point scale, with ‘‘1’’ representing
‘‘identical’’ and ‘‘7’’ representing ‘‘maximally dissimilar.’’

Concentric Hyper-Sphere (CH) Sampling

(Experiment 3)

We generated silhouettes by sampling from 12 orthogo-
nal face space dimensions (PCs 1, 3–5, and 7–14) at 9 dif-
ferent distances (0, 1.5, 3, 4.5, 6, 7.5, 9, 10.5, and 12 PC
units) from the prototype (see Fig. 3a), and blocking the
silhouettes by their distance from the prototype. As with
image variability, distances from the prototype are meas-
ured along each PC as a z-score (number of standard devi-
ations) of that PCs coefficients in the silhouette face space
parameterization [Davidenko, 2007] and we refer to these
as PC units. The coefficients of PCs 2 and 6 also varied by
up to %1.5 PC and %2 PC units, respectively, to generate
different exemplar silhouettes across blocks and runs. We
selected PCs 2 and 6 for this because they were found to
be least correlated with social attributes of faces such as
gender and race [Davidenko and Ramscar, 2006]. Each
block thus contained stimuli sampled from 12 different
dimensions of face space, covering a broad range of face
silhouettes. Importantly, image variability was not
matched across CH blocks. Instead, mean image variability
had values of 3.2, 4.0, 5.5, 7.3, 9.2, 11.2, 13.2, 15.3, and 17.3
PC units: as blocks of stimuli deviated more from the pro-
totype face silhouette, within-block image variability
increased (see Fig. 3a and Supporting Information Fig. 2).

Matched Variability (MV) Sampling

(Experiment 4)

Here, we defined nine different blocks of face silhouettes
by sampling along both directions of PC 3, a dimension
associated with face gender [Davidenko, 2007], at 0, %3,
%6, %9, and %12 PC units from the prototype (see Fig. 3b).
We selected PC 3 because it produced a representative
range of face-likeness ratings in a pilot study (see Support-
ing Information Fig. 3), but we would predict similar
results if other dimensions were used. Different exemplars

in each block were generated by varying the coefficient of
PCs 2 and 6 by up to %1.5 and %2 PC units, respectively,
as with CH sampling. Because the size of each sampling
region was kept constant, image variability was matched
at 3.2 PC units across all blocks, equivalent to the lowest
variability blocks in CH sampling (Experiment 3).

For each subject in Experiments 3 and 4, we acquired
eight runs where subjects observed 9 12-s image blocks
alternating with 12-s fixation blocks. Each run included
one block at each distance from the prototype face. In each
run, the blocks were presented in an order that minimized
any cross-block adaptation. Specifically, in Experiment 3
(CH sampling), the general order of blocks (labeled by dis-
tance from the prototype face, in PC units) was 0, 7.5, 1.5,
9, 3, 10.5, 4.5, 12, and 6. Across runs, this order was alter-
nately reversed, and the starting block was randomized.
Similarly, in Experiment 4 (MV sampling), the general
order of blocks was &12, 3, &9, 6, &6, 9, &3, 12, 0, keeping
the distance in face-space between consecutive blocks
nearly constant to avoid any systematic biases in block-to-
block similarity that might differentially affect adaptation
in some blocks. The stimulus display method, timing, and
one-back task were identical to those in Experiments 1 and
2.

Perceived Face-Likeness

Following the fMRI scans, nine of the subjects were
given a questionnaire that included 54 face silhouettes
(three from each of the MV and CH blocks) as well as
three additional two-tone shape stimuli that matched the
face silhouettes in size, contrast, and number of keypoints
but did not resemble faces (Fig. 4c). Subjects provided a 1–
5 face-likeness rating, where 1 indicated ‘‘Not at all face-
like’’ and 5 indicated ‘‘Completely face-like.’’ As shown in
Figure 4a,b, stimuli near the prototype were rated as
highly face-like, and ratings decreased gradually with dis-
tance from the prototype. Although this was true for all
PCs, equal distances along different PCs (or along differ-
ent directions of the same PC) can yield slightly different
subjective ratings of face-likeness. For example, face-like-
ness ratings decrease faster along the positive direction of
PC3 than along the negative direction (Fig. 4b). This sug-
gests that face-likeness ratings may be better than distance
from the prototype in characterizing brain responses in
relation to face perception. Thus, in subsequent fMRI anal-
yses, responses are plotted as a function of the mean face-
likeness rating associated with each silhouette block.
Importantly, even though face silhouettes in CH and MV
sampling were defined along different PCs, face-like rat-
ings covered a similar range across studies (Fig. 4a,b),
from a mean % SEM rating of 4.9 % 0.1 for stimuli closest
to the prototype to 2.5 % 0.2 for stimuli farthest from the
prototype. We note that the lowest ratings on face silhou-
ettes did not reach the floor of the scale. Only the nonface
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shapes received a rating of 1 (‘‘not at all face-like’’), and
this was observed for every subject (Fig. 4c).

RESULTS

Face Silhouettes Elicit a Face-Selective Response

Profile in Face-Selective Regions

To test the utility of face silhouettes as a tool for fMRI
investigations of face perception, we first examined
whether face silhouettes elicit a face-selective response
profile. In Experiment 1 (8 subjects), we compared
responses in face- and object-selective regions to face sil-
houettes, two-tone shapes that were controlled for low-
level properties, and scrambled two-tone images (see
Materials and Methods). In Experiment 2 (9 subjects), we
compared responses to blocks of upright face silhouettes
to the same silhouettes presented upside-down.

We extracted the mean response in each image condi-
tion from each subject’s ROIs defined from the independ-
ent localizer (see Materials and Methods) and averaged
these responses across subjects. In Experiment 1, all face-
selective ROIs responded significantly more strongly dur-
ing blocks of face silhouettes than during blocks of two-
tone shapes (ts > 2.7, Ps < 0.03; paired t-test, two-tailed)
and scrambled two-tone images (ts > 4.3, P < 0.02, Fig.
5a). The voxels responding significantly more to face ver-
sus shape silhouettes (P < 0.01) overlapped with the inde-
pendently localized face-selective ROIs (see Supporting
Information Fig. 4).

In Experiment 2, all face-selective ROIs responded sig-
nificantly more strongly to upright than to upside-down
face silhouettes (ts > 3.3, Ps < 0.01, Fig. 5a), demonstrating
an fMRI face-inversion effect with face silhouettes. In con-
trast, responses in object-selective regions (pFus/OTS and
LO) were higher for intact vs. scrambled two-tone images
(ts > 2.1, Ps < 0.05) but similar across face silhouettes and
two-tone shapes in Experiment 1 (|ts| < 1.1, Ps > 0.3)
and between upright and upside-down face silhouettes in
Experiment 2 (|ts| < 0.6, Ps > 0.5; Fig. 5b). These data
complement our work showing face silhouettes’ effective-
ness as stimuli for behavioral tasks [Davidenko, 2007] and
previous fMRI studies that have shown higher responses
in face-selective regions when subjects report a face per-
cept in Rubin’s face/vase stimuli [Andrews et al., 2002;
Hasson et al., 2001]. Taken together, these results indicate
that face silhouettes elicit a face-selective response profile
and are therefore useful stimuli for fMRI studies of face
representation.

Concentric Hypersphere Sampling: Responses in

Both Face- and Object-Selective are Negatively

Correlated With Face-Likeness

We measured responses in face-selective regions,
defined from the independent localizer, as subjects
observed silhouettes at nine different levels of face-likeness
within a five-point scale, ranging from 2.5 (low face-like-
ness) to 4.9 (high face-likeness; see Fig. 4a and Materials
and Methods). To our surprise, we found that average

Figure 4.

Face-like ratings decrease as stimuli deviate from the prototype

face for both CH and MV sampling. (a) Face-like ratings on stim-

uli from the CH blocks (Experiment 3) provided outside the

scanner by nine subjects who participated in the fMRI experi-

ments, plotted as a function of distance from the prototype

face, measured in PC units; (b) Face-like ratings on stimuli from

the MV blocks (in Experiment 4) provided by the same nine sub-

jects. X-axis indicates distance from the prototype face along

PC3 in the negative (gray) and positive (black) directions. (c)

Ratings on similarly constructed nonface shapes were uniformly

1 across subjects. Face-likeness scale: 1 ¼ Not at all face-like to

5 ¼ Completely face-like. Error bars denote between-subjects

SEM.
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responses across subjects in fusiform and IOG face-selec-
tive ROIs were significantly negatively correlated with per-
ceived face-likeness (rRight mFus-faces ¼ &0.91, P < 0.001;
rRight pFus-faces ¼ &0.88, P < 0.01; rRight IOG-faces ¼ &0.9, P <
0.001; rLeft pFus-faces ¼ &0.85, P < 0.01; see Fig. 6a). That is,
responses in face-selective regions decreased as face-like-
ness increased. In fact, the strongest responses in right
mFus-faces and right pFus-faces were observed during
blocks of stimuli rated by the same observers as being the
least face-like. Moreover, this puzzling pattern of
responses was also present in object-selective regions. Av-
erage responses in object-selective regions were also nega-
tively correlated with perceived face-likeness (rRight pFus/

OTS ¼ &0.94, P < 10&4; rRight LO ¼ &0.97, P < 10&4; rLeft
pFus/OTS ¼ &0.85, P < 0.01; rLeft LO ¼ &0.91, P < 0.001; see
Fig. 6b) even though these regions did not show face-selec-
tive responses in Experiments 1 and 2. When we calcu-
lated the number of voxels within these ROIs activated by
each stimulus condition versus fixation (P < 0.01), we
found similar results: the number of active voxels
decreased as perceived face-likeness increased (Ps < 0.01
in every ROI; see Materials and Methods and Supporting
Information Fig. 5).

Why are responses in these ventral regions negatively
correlated with perceived face-likeness?

We suggest that these counterintuitive results are not
driven by the perceived face-likeness of stimuli itself, but
by the image variability that differs across stimulus
blocks. Research on fMRI-adaptation [Andrews and
Ewbank, 2004; Avidan et al., 2002; Grill-Spector and Mal-
ach, 2001; Grill-Spector et al., 1999, 2006; Li et al., 1993;
Yovel and Kanwisher, 2004] has shown that responses in
high-level visual areas, including these face- and object-
selective regions, are reduced (adapted) when presented
repeatedly with identical stimuli. Further, fMRI-A effects
generalize across similar stimuli. In other words,
researchers report more fMRI-A to similar stimuli than to
dissimilar stimuli, although precisely how the degree of
stimulus similarity determines the level of fMRI-A is
debated and differs across brain regions [Gilaie-Dotan
and Malach, 2007; Gilaie-Dotan et al., 2010; Weiner et al.,
2010]. In CH sampling, highly face-like silhouettes are
sampled from relatively small regions of face space near
the prototype (Fig. 3a), resulting in low variability blocks
that may generate considerable fMRI-A. In contrast, low
face-likeness blocks further from the prototype are
defined in large regions of face space and are more vari-
able, which may lead to less fMRI-A and consequently a
stronger signal. Indeed, there is a high negative correla-
tion between mean image variability and mean rated

Figure 5.

Responses in face-selective (but not object-selective) regions are

higher for face silhouettes than both shape silhouettes and

upside-down face silhouettes. Responses in face-selective (a)

and object-selective ROIs (b) to upright face silhouettes (black),

two-tone shapes (white), scrambled two-tones (striped), and

upside-down silhouettes (gray) in the face silhouette study

(Experiments 1 and 2). Ns indicate number of subjects in which

each ROI was localized in the independent localizer scan. Aster-

isks indicate responses significantly different than upright silhou-

ettes (*P < 0.05; **P < 0.001; paired t-test, two-tailed).
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face-likeness ratings (r ¼ &0.99, P < 10&6). Therefore, it
is possible that image variability contributed to the differ-
ential signal amplitudes across blocks. To test this hy-
pothesis and isolate the effect of face-likeness from
effects of variability on responses, we conducted another
experiment where we manipulated face-likeness as in CH
sampling but kept image variability constant across
blocks.

Matched Variability Sampling: Responses in

Face- (But Not Object-) Selective Regions

are Positively Correlated With Face-Likeness

We measured activity in the same face- and object-selec-
tive ROIs in nine subjects (seven overlapping with Experi-
ment 3) while they observed blocks of face silhouettes
defined at the same distances from the prototype and with

Figure 6.

CH sampling; responses in both face- and object-selective ROIs

decrease as stimuli become more face-like. Each point reflects

the average response across subjects to a block of stimuli. r- and

P-values denote correlations and their significance, respectively,

between average face-likeness ratings and average percentage

signal across subjects; error bars denote between-subjects SEM.

R2 indicates proportion variance explained. (a) Average percent-

age signal change across subjects in face-selective ROIs in CH

sampling across subjects as a function of perceived face-likeness

of stimuli; Number of subjects in which each ROI was localized:

Right mFus-faces (n ¼ 9), Right pFus-faces (n ¼ 10), Right IOG-

faces (n ¼ 8); Left pFus-faces (n ¼ 10); (b) Average percentage

signal change across subjects in object-selective ROIs in CH

sampling. Right pFus/OTS (n ¼ 8), Right LO (n ¼ 10), Left pFus/

OTS (n ¼ 6), Left LO (n ¼ 8).
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comparable ratings of face-likeness as during CH sam-
pling. The key difference here was that silhouettes in each
block were defined in equal-size regions in face space
such that image variability was matched across face-like-
ness levels (MV sampling, see Fig. 3b and Materials and
Methods). As anticipated, and in stark contrast to the CH
sampling results, responses in face-selective ROIs
increased with the perceived face-likeness of the stimuli
(Fig. 7a). That is, blocks with higher face-like ratings of sil-

houettes produced higher responses in face-selective
regions. Average responses across nine subjects were sig-
nificantly positively correlated with the average perceived
face-likeness of stimuli in each of these face-selective ROIs
(rRight mFus-faces ¼ 0.83, P < 0.01; rRight pFus-faces ¼ 0.97, P <
10&5; rRight IOG-faces ¼ 0.87, P < 0.01; rLeft pFus-faces ¼ 0.91, P
< 0.001). In contrast, mean responses in object-selective
ROIs were not significantly modulated by perceived face-
likeness of silhouettes (all Ps > 0.1; Fig. 7b) and were

Figure 7.

MV sampling; responses in face-selective (but not object-selec-

tive) ROIs increase as stimuli become more face-like. Each point

reflects the average response across subjects to a block of stim-

uli. r- and P-values denote correlations and their significance,

respectively, between face-likeness and average percentage signal

across subjects; error bars denote between-subjects SEM. (a)

Average percentage signal change in face-selective ROIs in MV

sampling across subjects as a function of rated face-likeness of

stimuli; Number of subjects in which each ROI was localized:

Right mFus-faces (n ¼ 9), Right pFus-faces (n ¼ 9), Right IOG-

faces (n ¼ 6); Left pFus-faces (n ¼ 9); (b) Average percentage

signal change in object-selective ROIs; Right pFus/OTS (n ¼ 6),

Right LO (n ¼ 9), Left pFus/OTS (n ¼ 7), Left LO (n ¼ 7).
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consistently high for all blocks. Thus, in MV-sampling we
find a correlation between average face-likeness ratings
and average responses of face-selective regions specifically.
Our voxel-count measure within each ROI produced simi-
lar results: more face-selective voxels were active during
high face-likeness blocks than during low face-likeness
blocks, but the number of active voxels in object-selective
ROIs was unaffected by perceived face-likeness (see Sup-
porting Information Fig. 6).

A Powerful Effect of Image Variability on Face-

and Object-Selective Responses

At first glance, the response patterns of face-selective
ROIs during CH vs. MV sampling of face-space appear con-
tradictory: with CH sampling, average responses across
subjects in face-selective regions were negatively correlated
with perceived face-likeness, whereas with MV sampling,
the correlation was highly positive. We suggest that the
apparent contradictory responses are due to the differences
in image variability across experiments. To test this possibil-
ity and quantify the role of image variability, we examined
responses across the seven subjects who participated in both
studies as a function of image variability. We found that
blocks with more variable silhouettes images elicited higher
responses than blocks with less variable (more similar) sil-
houettes, across most face- and object-selective ROIs (see
Fig. 8). In right-hemisphere object-selective ROIs, average
responses across subjects were significantly correlated with
average image variability of stimuli in a block across the 18
conditions in the CH and MV sampling experiments (rRight
pFus/OTS ¼ 0.82, P < 10&7; rRight LO ¼ 0.93, P < P < 10&8),
whereas these correlations in left-hemisphere object-selec-
tive ROIs were smaller (rLeft pFus/OTS ¼ 0.33, P ¼ 0.2; rLO ¼

0.54, P ¼ 0.02; see Fig. 8b). Average responses in right-hemi-
sphere face-selective regions were also positively correlated
with image variability, but to a lesser degree than in right
object-selective ROIs (rRight mFus-faces ¼ 0.76, P < 0.001; rRight
pFus-faces ¼ 0.52, P < 0.01; rRight IOG-faces ¼ 0.66, P < 10&4; rLeft
pFus-faces ¼ 0.29, P ¼ 0.3; see Fig. 8a). These data suggest that
image variability accounts for some of the response modula-
tions across the CH and MV experiments.

ATwo Factor Model Explains Responses

in Face-Selective Regions

We note that image variability alone cannot account for
response modulations in face-selective regions, since image
variability was constant across the nine MV sampling
blocks and yet responses in face-selective regions were
modulated. We therefore asked whether responses in face-
selective ROIs across the two studies could be explained
as a linear combination of two factors: (1) the mean per-
ceived face-likeness (FL) of the stimuli and (2) the image
variability (IV) in each block. We coded each of the 18
blocks across the CH and MV sampling conditions accord-

ing to their average face-likeness rating and their image
variability and analyzed brain responses from the 7 partic-
ipants who completed both studies. In face-selective ROIs,
we found that both factors contribute a significant positive
weight on responses. Furthermore, image variability con-
tributed a numerically larger weight than face-likeness
(right mFus-faces: WIV ¼ 0.24, WFL ¼ 0.12; right pFus-
faces: WIV ¼ 0.20, WFL ¼ 0.18; right LO-faces: WIV ¼ 0.40,
WFL ¼ 0.28; left pFus-faces: WIV ¼ 0.25, WFL ¼ 0.24). To-
gether, face-likeness and image variability explained 78%
of the variance of the responses across the 18 blocks in
right mFus-faces, 87% in right pFus-faces, 79% in right
IOG-faces, and 51% in left pFus-faces (Fig. 9). In contrast,
responses in object-selective ROIs were accounted for by
the single factor of image variability, as face-likeness did
not contribute additional explanation of the variance of
object-selective responses (Ps > 0.1). Image variability pro-
vided a better account of responses in right than left
object-selective regions. It accounted for 68 and 87% of the
variance in responses in right pFus/OTS and LO, respec-
tively and 11 and 29% for the left pFus/OTS and LO.

These analyses illustrate (1) a positive effect of face-like-
ness on responses of face-selective regions only and (2) a
positive effect of image variability on responses of both
face- and object-selective ROIs. With CH sampling, these
two factors were negatively correlated and produced com-
peting effects on the responses of face-selective regions,
with the effect of image variability overriding that of face-
likeness. Thus, during CH sampling responses ultimately
increased with image variability despite decreasing face-
likeness because the weight of image variability was
numerically larger. This analysis also explains the unex-
pected negative relationship between face-likeness and av-
erage responses in object-selective cortex during CH
sampling, suggesting that this correlation was in fact
driven by differences in image variability across blocks
(which were lowest for the most face-like blocks).

DISCUSSION

By manipulating stimuli in a parameterized silhouette
face space, we showed that two independent factors—
face-likeness and image variability—drive up responses in
face-selective ventral regions. Four face-selective regions
(right mFus-faces, pFus-faces, IOG-faces, and left pFus-
faces) showed a monotonically graded response to the per-
ceived face-likeness of stimuli, responding more strongly
to stimuli that were more face-like. However, this response
profile was only evident when image variability was kept
constant across blocks via MV sampling. When blocks
were defined with CH sampling, and variability was nega-
tively correlated with face-likeness, the effect of image var-
iability dominated and responses were highest during the
high-variability blocks despite their low face-likeness.
Notably, this driving effect of image variability was pres-
ent across multiple face- and object-selective ventral
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regions, whereas the effect of face-likeness was only
observed in face-selective ROIs.

Responses in Face-Selective Regions Track

Perceived Face-Likeness

When image variability was matched across blocks, we
found a striking correlation between face-likeness and av-

erage responses in face-selective regions. Moreover, these
regions tracked the face-likeness of stimuli monotonically.
These results have important implications for the neural
mechanisms underlying face representation in the ventral
stream. One possibility is that face-selective neurons in
these regions show graded responses, responding more
strongly to stimuli that more closely resemble a prototypi-
cal face. A second possibility is that this graded response

Figure 8.

Responses in face- and object-selective regions across subjects

who participated in both the CH sampling (open circles) and

MV sampling (black dots) experiments, plotted as a function of

image variability. Each point reflects the average response across

subjects to a block of stimuli. r- and P-values denote correlations

and their significance, respectively, between image variability and

average percentage signal across subjects; error bars denote

between-subjects SEM. (a) Average percentage signal change

across subjects in four face-selective ROIs; Number of subjects

in which each ROI was localized across both studies: Right

mFus-faces (n ¼ 6), Right pFus-faces (n ¼ 7), Right IOG-faces (n

¼ 4); Left pFus-faces (n ¼ 7); (b) Average percentage signal in

object-selective ROIs; Right pFus/OTS (n ¼ 4), Right LO (n ¼

7), Left pFus/OTS (n ¼ 3), Left LO (n ¼ 5).
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profile is the product of different neural populations tuned
to different types of stimuli [Jiang et al., 2006], with more
neurons tuned to highly face-like stimuli and fewer neu-
rons tuned to stimuli that are less face-like. These possibil-
ities are not mutually exclusive: it may be that more
neurons are tuned close to the prototypical face, and all
neurons show a preference for face-like stimuli. Although
our studies cannot distinguish between these possibilities,
any viable neural model of face representation must
account for a BOLD response that correlates with per-
ceived face-likeness of stimuli.

Face-Specific and General Factors

Examining responses across multiple brain regions
allowed us to determine which manipulations of our stimuli
have face-specific consequences and which manipulations
affect responses more generally across ventral occipito-tem-
poral regions. We show that face likeness is a face-specific
factor: When variability was controlled (MV sampling) face-
selective responses increased with face-likeness, but object-
selective responses were not modulated by face-likeness. By
equating image variability across different conditions, we
were able to study the effect of face-likeness in isolation and
show a modulation in face-selective responses only.

In contrast, image variability is a general factor affecting
responses in object- as well as face-selective regions.
Responses in LO and pFus/OTS, which show no selectivity
to faces, increased as a function of image variability (Fig. 8).
This effect of variability was large and prevalent across ven-
tral occipito-temporal regions. For example, in mFus-faces
and pFus-faces, stimuli that were rated as least face-like eli-
cited twice as large of a response in CH sampling than in
MV sampling, because the low face-like stimuli in CH sam-

pling were much more variable (Figs. 6 and 7, lowest face-
likeness point). In fact, image variability had such a large
effect on responses of face-selective regions that it reversed
their preference for face-like stimuli in CH sampling, where
variability was anti-correlated with face-likeness (Fig. 6).

Our data indicate that responses in face-selective regions
are driven by at least two factors: face-likeness and image
variability, and studying their effects requires dissociating
the two factors experimentally. The face silhouette method-
ology is well suited for this purpose because the same
shape-based parameterization can be used to manipulate a
face-specific factor (in this case, face-likeness), while control-
ling the general factor of image variability. Face silhouettes
capture a subset of the face dimensions that are relevant for
face perception tasks; specifically, dimensions related to
face profile shape [Davidenko, 2007]. Nevertheless, the face
silhouette methodology cannot address every aspect of face
representation. Previous research indicates that facial char-
acteristics other than shape, including local features, tex-
tures, and surface reflectance information [O’Toole et al.,
1999; Russell and Sinha, 2007; Schyns et al., 2002] also influ-
ence face perception. Thus, future work is needed to under-
stand the effects of other face characteristics on face-
selective responses. Critically, however, our data indicate
that future examinations of the functional characteristics of
face-selective regions, as well as ventral stream regions
more generally, must include a method of measuring and
controlling the variability of stimuli across conditions.

Effects of Different Measures of Variability in

Face Silhouettes

In our stimulus space, image variability was defined as
the average distance in face-space between stimuli in each

Figure 9.

Correlation between predicted responses based on the two-fac-

tor model and observed percentage signal change in face-selec-

tive ROIs across subjects who participated in both the CH

sampling (open circles) and MV sampling (black dots) experi-

ments. Each point reflects the average response across subjects

to a block of stimuli. X-axis: predicted % signal based on two

factors (face-likeness and image variability); Y-axis: observed aver-

age % signal across subjects; R2 indicates proportion of variance

explained across the 18 blocks from the two studies, and p-val-

ues indicate significance of the linear fit; error bars indicate

between-subjects SEM; Number of subjects in which each ROI

was localized across both studies: Right mFus-faces (n ¼ 6),

Right pFus-faces (n ¼ 7), Right IOG-faces (n ¼ 4); Left pFus-

faces (n ¼ 7).
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block, but other physical and perceptual measures of vari-
ability can be defined. For example, a ‘‘pixel-based’’ metric
(see Materials and Methods) is generalizable to other stim-
ulus spaces, as it can be defined on gray-scale or color
images. For our stimuli, pixel-based variability was highly
correlated with the face-space measure of image variability
(r ¼ 0.96, P < 10&9 across the 18 stimulus blocks; see Sup-
porting Information Fig. 7a) and consequently similarly
explained our fMRI data. Since recent studies suggest that
responses in some high-level visual regions are coupled
with perceptual rather than physical variability among
stimuli [Gilaie-Dotan et al., 2010; Jiang et al., 2006; Rotsh-
tein et al., 2005], we also examined whether perceptual
metrics of variability better explain our data. We consid-
ered a perceptual metric of variability by behaviorally
measuring dissimilarity ratings among stimuli in each
block (see Materials and Methods). We found that mean
dissimilarity ratings were highly correlated with image
variability (r ¼ 0.97, P < 10&10; Supporting Information
Fig. 7b) as well as with pixel-based variability (r ¼ 0.88, P
< 10&5; Supporting Information Fig. 7c). Thus, in our stim-
ulus space, these three metrics of variability are tightly
coupled. However, this coupling may not generalize to
other stimuli. For instance, manipulating image size within
a block of stimuli will result in a large pixel-based vari-
ability but relatively small perceptual variability. Further,
different metrics of variability may affect various high-
level visual areas differentially. Thus, in future studies,
characterizing which metric of variability is relevant to
control will depend on both the stimulus domain and the
brain regions being investigated.

Implications of Our Data on Understanding

Functional Properties of High Level Visual

Cortex

Our results show that stimulus variability, whether
measured in physical or perceptual units, is a critical fac-
tor to consider in fMRI investigations of high-level visual
regions. Because high-level visual areas adapt to similar
stimuli, responses will generally be stronger to blocks of
highly variable images compared to blocks of similar
images. Despite its prevalent effect in the ventral stream,
many studies of face and object representation fail to con-
sider the role of variability. When researchers examine the
response properties of face-selective regions, they often
focus on one factor: e.g., gender or distinctiveness. Our
results indicate that focusing on one factor is insufficient
unless stimuli are matched for variability. When variability
is not controlled, results attributed to the manipulated fac-
tor may be misinterpreted if the factor is confounded with
stimulus variability. For example, a recent study [Freeman
et al., 2010] reported that FFA responds more strongly to
gendered (as opposed to androgynous) blocks of faces.
However, since blocks of gendered faces included both
male and female faces, they were likely more variable than

the blocks of androgynous faces. This raises the possibility
that the apparent stronger FFA responses to gendered
faces were in fact driven by image variability. Another im-
portant example is a study by Loffler et al. [2005] that
used synthetic faces [Wilson et al., 2002] to manipulate
face distinctiveness and found that FFA responses were
stronger to blocks of distinctive faces (far from the proto-
type) as compared to blocks of typical faces (close to the
prototype). This stronger FFA response to distinctive faces
has been interpreted as evidence for a norm-based neural
coding of faces in which individual neurons respond more
strongly as faces deviate more from the prototype, or
norm face [Panis et al., 2011; Rhodes, 2006]. However, the
blocks in Loffler et al.’s study were generated using the
same CH sampling method we employed in Experiment 3,
rendering distinctiveness highly correlated with variability.
In other words, blocks of distinctive faces were more vari-
able than blocks of typical faces. As our data suggest, Lof-
fler et al.’s results may have been driven by differences in
variability across blocks rather than differences in face dis-
tinctiveness itself. Further, because they did not report
responses in other ventral regions such as LO and pFus/
OTS, it is unknown whether their effects reflect a face-spe-
cific mechanism or instead reflect a more general adapta-
tion effect across the ventral stream. In an effort to rule
out an adaptation-based explanation, Loffler and col-
leagues showed V1 responses were not modulated by their
manipulation of distinctiveness. However, we note that
early visual areas, including hV4, are not effective control
regions because they do not show fMRI-A to shapes or
faces [Sayres and Grill-Spector, 2006; Weiner et al., 2010].
Indeed, in the present experiment, we identified hV4
based on visual field mapping [Sayres and Grill-Spector,
2008] in five subjects in CH sampling and six subjects in
MV sampling and extracted responses in each stimulus
condition. First, we found no significant modulation of
hV4 responses in either of the CH or MV experiments (see
Supporting Information Fig. 8a,b). Second, in contrast to
LO and pFus responses which show fMRI-A that
depended on image variability, hV4 responses were not
modulated by image variability (Supporting Information
Fig. 8c). This is because image variability modulates
responses only if there is fMRI-A across similar stimuli.

As researchers continue to debate the mechanisms
underlying the neural coding of faces and compare the ef-
ficacy of norm-based [Leopold et al., 2006; Loffler et al.,
2005; Rhodes, 2006] versus exemplar-based [Gilaie-Dotan
and Malach, 2007; Gilaie-Dotan et al., 2010; Jiang et al.,
2006] accounts, it is critical to decouple distinctiveness
from image variability when examining its effect on face-
selective responses. As our studies show, one way this
may be accomplished is by generating matched-variability
blocks of stimuli.

Our experiments show that stimulus variability affects
responses across many ventral regions, not just face-selec-
tive ROIs. This suggests that measuring and controlling
variability should become a critical tool in studies of face
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perception as well as object representation more generally.
Future studies may ask whether an object-selective region
such as LO responds more strongly to animate versus in-
animate objects, or whether face-selective regions respond
preferentially to familiar versus unfamiliar faces. These
questions cannot be well addressed without properly
accounting for different degrees of variability across stimu-
lus conditions. This challenge pertains not only to block-
design experiments. While adaptation effects are smaller
across events separated temporally relative to blocks, they
are nevertheless present and persist across many interven-
ing stimuli [Andresen et al., 2009; Sayres and Grill-Spector,
2006; Weiner et al., 2010]. Although a recent method of
carry-over design [Aguirre, 2007] partially ameliorates im-
mediate adaptation effects across stimuli, it does not con-
trol for adaptation effects across many intervening stimuli.
Therefore, the effect of image variability is important to
consider in any experiment in which responses are meas-
ured across a group of stimuli, including event-related
experiments and multi-voxel pattern analyses. Determin-
ing appropriate measures of image variability and describ-
ing their effects on the responses of different brain regions
will remain a key research goal for future neuroimaging
studies of high-level visual regions.
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