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Abstract

Face recognition, which is security-critical, has been

widely deployed in our daily life. However, traditional face

recognition technologies in practice can be spoofed easily,

for example, by using a simple printed photo. In this pa-

per, we propose a novel face liveness detection approach

to counter spoofing attacks by recovering sparse 3D facial

structure. Given a face video or several images captured

from more than two viewpoints, we detect facial landmarks

and select key frames. Then, the sparse 3D facial struc-

ture can be recovered from the selected key frames. Finally,

an Support Vector Machine (SVM) classifier is trained to

distinguish the genuine and fake faces. Compared with the

previous works, the proposed method has the following ad-

vantages. First, it gives perfect liveness detection results,

which meets the security requirement of face biometric sys-

tems. Second, it is independent on cameras or systems,

which works well on different devices. Experiments with

genuine faces versus planar photo faces and warped photo

faces demonstrate the superiority of the proposed method

over the state-of-the-art liveness detection methods.

1. Introduction

Face recognition system, due to its fast development dur-

ing last decades, has been widely used in our daily life, such

as access control, visual surveillance and compute applica-

tion security. However, most traditional face recognition

systems are vulnerable to direct sensory attacks. That is, a

simple printed photo or a photo demonstrated on a screen

can easily fool the system and an invalid user may gain the

access control which may result in severe security problem.

Face liveness detection, which aims to judge the face bio-

metric captured from a genuine person or a fake replica, is

becoming a critical technique for traditional face recogni-

tion system.
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Figure 1. A comparison of recovered sparse 3D facial structures

between genuine and photo face. There are significant differences

between structures recovered from genuine and photo face.

According to the information (features) used, the exist-

ing face liveness detection methods can be roughly divided

into three main categories: challenge-response based meth-

ods [12, 2, 8, 16], skin property based methods [15, 10, 13,

18] and 3D structure based methods [3].

The challenge-response is a human-computer interaction

(HCI) method. The users are asked to response to the spe-

cific facial actions given by computer so that the genuine

and fake faces can be classified. Eye blinking [12, 16], head

rotation [2, 8], and mouth movement [8] are the most com-

monly used facial actions. The challenge-response methods

achieve good results for face liveness detection. However,

the users are asked to be highly cooperative with the system,

which limits its application in practice.

The skin property based methods classify the genuine

and fake face images by analyzing their textures or re-

flectance properties. Tan et al. [15] extracted the latent

reflectance information from a captured image, and used

a sparse low rank bilinear discriminative model to classify

the genuine and fake faces. Maata et al. [10] analyzed fa-

cial image textures using multi-scale local binary patterns

(LBP) to classify the genuine and fake faces. These meth-

ods assume the quality of face images is different with that

of real ones and more noise and artifacts are included in

fake images. However, with the development of printing

technology, it is increasingly difficult for these methods to

work reliably.



Recently, the multi-spectral methods have been proposed

to analyze the reflectance properties of human skin so that

the genuine and fake faces can be classified. In [13],

Pavlidis and Symosek illustrated how to capture face im-

ages at two wavelengths in Near Infrared (NIR), and used a

thresholding method to classify the genuine and fake faces.

Zhang et al. [18] proposed a method for face liveness de-

tection by analyzing the energy under multi-spectral. The

shortcoming of multi-spectral method is that it needs addi-

tional devices to capture multi-spectral images which is not

always applicable in practice.

3D structure based methods make use of 3D structure in-

formation to classify the genuine and fake faces. Obviously,

a planar photo gives a flat structure whereas a genuine face

yields a quite different structure (e.g., nose is convex com-

pared to cheek). To the best of our knowledge, few studies

have been devoted to this kind of method, among which the

work of Choudhury et al. [3] is the most representative one.

They mentioned that the depth information can be used for

differentiating planar faces and real ones, but no further ex-

periments were conducted in their work.

In this paper, we propose a novel face liveness detection

method by analyzing the sparse structure information in 3D

space. As shown in Fig. 1, structures recovered from gen-

uine faces usually contain sufficient 3D structure informa-

tion, while structures recovered from photos are usually pla-

nar in depth. We firstly recover the sparse 3D facial struc-

ture with the input images and then an SVM classifier is

trained based on the 3D structures from the genuine and

fake faces. Different from the reflectance based methods,

the proposed method is device independent and can work

well with various inputs as long as two images from differ-

ent viewpoints are provided.

The rest of the paper is organized as follows: Section

2 and 3 details our sparse structure recovery method and

the classification method, respectively. Experiments com-

pared with recently proposed LBP method are demonstrated

in Section 4 and in Section 5, we conclude the paper.

2. Sparse 3D Facial Structure Recovery

The face images with different viewpoints can be cap-

tured from a fixed camera with face moving or reversed.

But the recovery is conducted under the assumption that the

images are derived from a static face and a dynamic camera.

In this work, we firstly use CLM algorithm [14] to locate

the sparse facial landmarks. Considering that neighboring

frames almost have the same viewpoint, which is useless for

structure recovery, we select proper frames using a graph

similarity metric in the next step. We call such frames as key

frames, which have much diversities in terms of viewpoint.

Once we have obtained two key frames, the camera pa-

rameters and initial facial structure are recovered. Notably,

general geometry reconstruction algorithm is not applicable

to deformable object, such as face. However, face deforma-

tions are often caused by local expressions, which occurs

most likely in the regions of mouth. Among all the land-

marks, only a bit of them locate near mouth. Therefore,

we recover facial structures regardless of the deformation,

which is proved to be feasible to face liveness problem in

our experiments.

Finally, facial structure refinement is taken to refine the

initial recovered results and new key frames are added into

the bundle adjustment because that the structure recovered

from merely two face images may be affected by imprecise

detection of landmarks and inaccurate estimation of camera

parameters.

2.1. Key Frame Selection

In our work, key frames are defined as those frames

which are propitious to recover facial structure. We rely on

graph similarity to incrementally extract key frames from an

input sequence which are more likely to be those captured

in various viewpoints in practice. In the case that a certain

relative motion between the face and the camera happens,

it is obvious that locations of facial landmarks in the im-

age will be various along with the motion. That is, differ-

ent viewpoints will lead to different distributions of facial

landmarks. Based on this relation, we compute the distri-

bution distance of landmarks to evaluate the difference of

viewpoints between current frame and existing key frames

in pool. Specifically, we represent the landmarks in a face

by an undirected graph G =< V,E >, where V repre-

sents landmarks and E connects all the nodes. To measure

the similarity between two graphs, we build an affinity ma-

trix W68×68 for each graph, whose entries are the spatial

Euclidean distance between two nodes. Assume we have

obtained M key frames F = {f1, f2, ..., fM}, and their

corresponding affinity matrixes {W1,W2, ...,WM} as well.

Then, the maximum similarity (minimum distance) of cur-

rent frame fc to previous M key frames is obtained by:

S = max
i

exp
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∥

∥
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)
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where ‖ · ‖∗ represents the Frobenius norm. If S is smaller

than a pre-determined threshold (in this paper, we set it 0.1),

we regard current frame fc as a key frame, and add it to F ;

otherwise, we turn to the next frame.

2.2. Initial Recovery from Two Images

In this subsection, we describe our algorithm for ini-

tial facial structure recovery based on facial landmarks

from two face images with different viewpoints. Let q =
{q1, q2, ..., qN} be the facial landmarks in one image and

q′ = {q′1, q
′

2, ..., q
′

N} in another image, where qi denotes

a 2D point in the image, N is the number of facial land-

marks for a face (N=68 in our experiment). In our work,



we adopt the perspective camera model [6], in which a 2D

point qi projected from a 3D structure point Qi can be rep-

resented as: qi = PQi, where P is a 3 × 4 perspective

projection matrix. Both qi and Qi are in homogeneous co-

ordinates. Camera projection matrix P can be decomposed

as: P = K(R, t). Before initial structure recovery by trian-

gulation [7], we have to estimate camera intrinsic matrix K
and the relative pose (R, t) between the two given images.

In order to make our approach work well on different

cameras, we propose an auto-calibration method for our

face application. In this work, we make the common as-

sumption that the intrinsic matrix K is constant over the

whole video sequence. Generally, the intrinsic matrix is for-

mulated as a 3× 3 upper triangular matrix [6]:

K =





fx s ux

0 fy uy

0 0 1



 (2)

where fx and fy are the focal length in terms of pixel di-

mensions in the direction of x-axis and y-axis, respectively.

ux and uy are the projection of optical center. s is referred

to as the skew parameter. Suppose that the camera sensor

pixels are in the shape of square, and the projection center

is coincide with the image center, we have fx = fy = f ,

and ux = uy = 0 if the origin of the image coordinate

is set at the center of image. The skew parameter s is

equal to zero for most normal cameras. As a result, the

intrinsic matrix can be simplified with only one parameter

f , that is, K = diag(f, f, 1). To derive K, we utilize a

predefined normal (upright and frontal) 3D facial structure

Qmodel = {Qmodel
1 , Qmodel

2 , ..., Qmodel
N } recovered from

a calibrated camera. Qmodel is scaled to the physical size

of a face in our work (i.e., 10 cm between the center of two

eyes). Thus, given Qmodel and facial landmarks q , we can

roughly estimate K by optimizing the following equation:

K∗ = argmin
K

N
∑

i=1

d
(

qi,K(Rm, tm)3×4Q
model
i

)

(3)

where (Rm, tm)3×4 represents the rigid transformation (ro-

tation matrix R3×3 and translation t3×1) on Qmodel, d(·)
computes the Euclidean distance between two given points

represented in homogeneous coordinates. In Eq. (3), es-

timating {K,Rm, tm} simultaneously is intractable. Alter-

natively, we traversing all possible (Rm, tm) to find the best

matching. Let ωx, ωy , ωz be the rotation angles of Qmodel

whose 2D projection is similar to q, in three axes, respec-

tively. First, we rotate the landmarks around z-axis (per-

pendicular to image plane) to make the pair of eyes hori-

zontal. This rotation can only get an upright face projec-

tion (ωz = 0), whereas ωx and ωy may be non-zero for

deflecting viewpoint. Therefore, we uniformly discretize

the rotations around x-axis and y-axis to nx and ny states,

respectively. Then, based on Least Square Error (LSE) al-

gorithm, we find the optimal K with minimum residual er-

ror by traversing all the nx × ny possible ωx and ωy (in

this paper, nx = ny = 20). There is one point need to

be known that the above procedure only gives a rough K,

which will be further refined in the following step. Clearly,

if the camera has been calibrated accurately, we can skip

above procedure. However, knowing exact intrinsic matrix

is not feasible in many circumstances practically.

Then, we extract the relative pose (R, t) based on land-

mark correspondences {(q1, q
′

1), (q2, q
′

2), ...(qN , q′N )}. Ac-

cording to [6], essential matrix ε has the form of ε = [t×]R,

where [t×] is the skew-symmetric cross-product matrix of

t = (tx, ty, tz)
T :

[t×] =





0 −tz ty
tz 0 −tx
−ty tx 0



 (4)

Once the essential matrix is estimated, camera relative pose

can be extracted straightforwardly. So, the question is how

to compute the essential matrix ε. It can be estimated us-

ing the epipolar constraint qTi εq
′

i = 0. The general linear

algorithm [6] needs eight or more point correspondences

and minimize epipolar distance over all points. In our case,

however, the facial landmarks may be detected with noises.

We adopt a random sample consensus scheme (RANSAC)

[4] to robustly estimate the essential matrix ε. For each

RANSAC loop, a candidate essential matrix is obtained us-

ing an efficient non-linear minimal algorithm [11] which

needs at least five correspondences. Upon the completion

of RANSAC, we choose optimal ε with minimum average

residual error.

After getting camera intrinsic matrix K and relative pose

(R, t), the projection matrixes of two images is obtained by

the following equation:

P = K(I,0)
P ′ = K(R, t)

(5)

where I is a 3 × 3 identity matrix. Given P and P ′, we

implement a triangulation algorithm [7]:

min

N
∑

i=1

[d(qi, q̂i) + d(q′i, q̂
′

i)] (6)

where q̂i and q̂′i are the reprojections of the recovered struc-

ture Q̂ = {Q̂1, Q̂2, ..., Q̂N} on two given images. Though

key frame selection is conducted, a special situation that

viewpoints of two images are too similar is considered in

our paper. In other words, the rotation angle θ, which can be

obtained from R directly, between the two images is small.

In this case, the triangulated 3D points will be far from the

real structure, especially in the depth (z-axis). To address



such problem, we add an extra soft constraint on the trian-

gulation, which is defined as:

C = ω (θ)

N
∑

i=1

d
(

Q̂i, Q
model
i

)

(7)

where, ω is the weight function to the soft constraint, which

is defined as ω(θ) = exp(−15θ/π) in our experiment. This

constraint can be regarded as a prior on the facial structure.

The recovered structure which is different from a natural

face much is less likely to be a correct estimation.

2.3. Facial Structure Refinement

As illustrated above, the facial structure can be recovered

based on two images from different viewpoints. However,

such recovered results may not be accurate due to inaccu-

rate detection of landmarks or rough estimation of K. In

this subsection, we describe the facial structure refinement

step to obtain a more accurate facial structure, where new

key frame is added into the refinement one by one. Given

the projection matrixes P = {P1, P2, ..., PM , Pnew} of re-

fined M key frames and a new key frame, our goal of re-

finement is to minimize the reprojection error between pre-

dicted points and detected landmarks over all key frames:

min

M+1
∑

j=1

N
∑

i=1

d2 (q̂i,j , qi,j) (8)

where q̂i,j = PjQ̂i is the ith predicted point on image j,

qi,j is the ith landmark on image j.

First, the pose (external parameters) (Rnew, tnew) of

the new key frame is estimated using Grunert’s algorithm

[5], rather than the method described in above subsection.

According to the estimated (R, t), the distance error be-

tween predicted points q̂ and landmarks q can be com-

puted. For those frames which have large error, we re-

gard them as useless key frames and skip to refine the

next key frame. Next, we group the parameters which

will be refined together: Θ = {K,T , Q̂} where T =
{(R1, t1), (R2, t2), ..., (RM , tM ), (Rnew, tnew)} is the ex-

ternal parameters for every frame. Subsequently, we use a

sparse bundle adjustment algorithm [9] to optimize Eq. 8

with the input of Θ, which solves by a fast Levenberg-

Marquardt (LM) optimization algorithm.

With the increasing number of key frames, we can re-

cover a more and more accurate facial structure. This pro-

cess will stop when the 3D structure difference between cur-

rent recovered result and the last one is less than a threshold.

The metric formula is similar to Eq.(7).

3. Liveness Detection

3.1. Structure Alignment

After we recover the sparse 3D structure, we first align

these structures and then structure features are extracted for

classification. In this work, we use a predefined 3D facial

structure as a reference to align a recovered structure using a

coarse-to-fine way. Intuitively, given two sets of 3D points,

the reference Qmodel = {Qmodel
i } described in subsection

2.2, and a sample Q = {Qi} need to be aligned, our goal

is to estimate the rigid transformation (scale s, rotation R
and translation t) which minimizes the sum of distances be-

tween these two sets of 3D points.
At first, we take an initial (coarse) alignment on Q to fit

Qmodel. The rigid transformation {s0, R0, t0} is obtained
by minimizing the following equation using Least Square
Error algorithm.

{s0, R0, t0} = arg min
{s,R,t}

N
∑

i=1

d(s(R, t)Qi, Q
model
i ) (9)

The above coarse alignment assigns each 3D point an

equal weight in the minimization procedure. So, the solu-

tion {s0, R0, t0} will be affected by some outliers which

are recovered inaccurately. This case will happen when

facial landmarks are detected inaccurately or the number

of key frames used for recovery is small. Consequently,

we use an iterative algorithm to refine {s,R, t} step by

step. In each iteration, we compute the distances for every

point pair (s(R, t)Qi, Q
model
i ) given current estimation of

{s,R, t}. Afterward, we choose five point pairs with least

distances, which we regard as the most reliable correspon-

dences among all the pairs. These five pairs are utilized for

estimating new {s,R, t}. The iterative process proceeds un-

til the five point pairs with least distances do not change or

the overall iteration times exceed a predetermined threshold

(T = 10).

3.2. SVM Classifier

After alignment, the 3D coordinates of sparse structure

are concatenated to form a feature vector. The SVM clas-

sifier is then trained based on the features to classify the

genuine and fake face samples.

4. Experiments

We evaluate the proposed 3D structure based liveness de-

tection method on three databases, which is compared with

state-of-the-art LBP based anti-spoofing method [10]. The

recovered sparse 3D facial structures for genuine and fake

faces are also presented.

4.1. Database Description

Recently, diverse face databases designed for face live-

ness detection have been proposed, such as CASIA database
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Figure 2. (a) sample frames of a subject from database A, B and C respectively. In each database, we warp the photos horizontally and

vertically. These two kind of warping approximate the real face structure much. (b) recovered structures from genuine face, planar photo,

photo warped horizontally and photo warped vertically, respectively.

[17], NUAA database [15] and Idiap database [1]. However,

these databases do not contain faces with different view-

points so that they are not proper to evaluate our proposed

method.

In this part, we collect three databases using different

quality cameras to examine the anti-spoofing performance

across different devices. In our experiment, we collect 50

subjects, and both genuine and fake faces are collected 5

times with different motion style. The first one (Database

A), second one (Database B) and the third one (Database

C) are collected using a high quality camera (Canon

IXUS115 HS) with resolution of 1920 × 1080, a Logitech

webcam with resolution of 800× 600 and a camera built in

NOKIA C6 mobile phone whose resolution is 640 × 480,

respectively. All these three databases records 250 genuine

faces and 750 fake photos which include 250 planar photos,

250 photos warped horizontally (warped 1) and 250 photos

warped vertically (warped 2). Table. 1 presents the number

of video clips in database A, B, C, respectively. Some

examples of images sampled from videos for these three

databases are shown in Fig. 2 (a).

Table 1. The number of videos in database A, B, C, respectively.

Database Genuine
Fake photos

planar warped 1 warped 2

Database A 250 250 250 250

Database B 250 250 250 250

Database C 250 250 250 250

4.2. Results and Discussions

Fig. 2 (b) shows the recovered results from genuine

faces, planar photo and warped photos. It is easy to see that

there are significant differences of 3D structure between the

Figure 3. The relation between liveness detection accuracy and the

number of 3D points in a structure.

genuine faces and the fake ones, so that they are expected to

be well classified based on their 3D structure information.

The number of facial landmarks N is a parameter that

affects the performance of the proposed method. We ex-

amine the affect of N on the anti-spoofing performance on

Database A. In this experiment, we select landmarks ran-

domly. For a certain number of landmarks, we conduct 50

trials, and obtain the average accuracy.

Fig. 3 depicts the relation between the number of points

N and anti-spoofing accuracy. It is obviously shown that

the more facial landmarks, the higher liveness detection ac-

curacy. On the other hand, the more facial landmarks, the

more complex of reconstruction with heavier computation

cost. Therefore, we set N = 48 with the highest detection

accuracy (100%) but the least number of landmarks in our

experiment.

In this part, we show the face liveness detection perfor-

mance within and cross devices. In the first experiment, the

samples in the training set and testing set are all collected

using the same device. For Database A, B and C, 125 sub-

jects are randomly selected to form the training set and the

left subjects form the testing set. There is no intersection



Figure 4. Performance on database A, B, C respectively (a) and on

cross database (b).

between the training and the testing sets. Fig. 4 (a) shows

face liveness detection results of the proposed method and

texture based one (i.e., LBP), whose score is the average

value of the face frames of the video. It shows that both the

texture and proposed 3D structure based method perform

well in this case. The proposed 3D sparse structure method

achieves perfect (100%) classification results.

We further test the anti-spoofing performance of differ-

ent methods in the case of cross devices, which is more

common and important in real application. In this part,

one of the three databases is selected as the training set and

the face liveness detection performance is examined on the

other two databases. Fig. 4 (b) shows ROC curves of dif-

ferent methods. The performance of texture based method

degraded dramatically in this case. This is because the qual-

ity of images captured from different devices varies so much

that the model learned from images captured from one cam-

era is not proper any more to other cameras. This is a

great problem in real application. In contrast, the proposed

method, which takes into account the 3D structure infor-

mation, is device independent and hence is robust to this

variation. As expected, the proposed method also achieves

perfect (100%) face liveness detection accuracy, validating

its effectiveness in face liveness detection problem.

5. Conclusion

In this paper, a sparse 3D structure based face liveness

detection method is proposed. Given at least two face im-

ages captured from different viewpoints, the 3D sparse fa-

cial structure can be recovered. Based on this, the genuine

and fake faces like printed photos can be classified. Dif-

ferent from the popular texture based method, the proposed

method is device independent and thus more applicable in

practice. Moreover, the requirements of two images from

different viewpoints is easy to be met in real application

and the proposed method has great potential to be deployed

with the existing face recognition system.
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