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Abstract One of the major tasks in some human-computer  Many existing localization techniques rely on image mo-
interface applications, such as face recognitionand vielee  tion or skin color — features that are not always available.
phony, is to localize a human face in an image. Here, we focus on still gray-scale images.

In this paper, we propose to use hierarchical neural net- One of the most popular neural approaches for face detec-
works with local recurrent connectivity to solve this tagk n tion in still gray-scale images has been proposed by Rowley,
only in unambiguous situations, but also in the presence oBaluja, and Kanade [13]. It uses a window that scans across
complex backgrounds, difficult lighting, and noise. image positions and scales as input to a neural classifieh Su

The networks are trained using a database of gray-scalgéequential search techniques are computationally expensi
still images and manually determined eye coordinates. They/iola and Jones [15] recently introduced an intermedigte re
are able to produce reliable and accurate eye coordinates féesentation, called integral image, to speed-up the camput
unknown images by iteratively refining initial solutionse8  tion of overcomplete rectangular features. Using a cascade
cause the networks process entire images, there is no need fef classifiers trained by boosting, they cut-down draméyica
any time-consuming scanning across positions and scales. the computation time needed for the scanning process. Other

Furthermore, the fast network updates allow for real-timeface localization methods preprocess the data intensteely
face tracking. In this case, the networks are trained ugilig s €xtract facial features and match them with predefined mod-
images that move in random directions. The trained network#!s [8,10].

are able to accurately track the eye positions in test image In this paper, we propose a method that uses a hierarchi-
sequences. cal neural network with local recurrent connectivity todbc

ize a face in gray-scale stillimages. The network operages b

Key words Face localization and tracking — Hierarchical itfar_atively refining an initial solution. It is trgingd wituper-
network — Local connectivity — Recurrence — Iterative refine Vision to perform the task. The face localization also works
ment — Continuous attractors well if the static images are moved in a random direction. In
this case, the network is trained to track the eye positions.

The paper is organized as follows. The next section de-
scribes the database used for the experiments and the prepro
cessing procedure. Section 3 introduces the network azhit
ture and details its training. We present experimentalltgsu
1 Introduction with still images in Section 4.1 and with moving images in

Section 4.2. The paper concludes with a discussion.

Computers must adapt to the user’s needs to make human-
computer interactio_n more pleasant, _and for adaptatias it i2 Face Database and Preprocessing
necessary to perceive the user. One important step for many
adaptive human-computer interface applications, suchas f  In order to validate the proposed approach to face locatizat
recognition, lip reading, and video telephony is the lali  and tracking, we used the BiolD database [8]. It consists of
tion of the user’s face in a captured image or an image se1.521 gray-scale images showing 23 individuals in complex
quence. office environments (see Fig. 1). The people differ in gender

A large body of literature exists on the topic of face de- age, and skin color. Some of them wear glasses or have a
tection and localization. Recent surveys have been cothpile beard. The BiolD data set is challenging because face size,
e.g., by Hjelmas and Kee Low [7] and by Yang, Kriegman, position and view, as well as the facial expression andilght
and Ahuja [17]. vary considerably.
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Such real-world conditions are the ones that reveal th
limits of current localization techniques. While the hybri
system proposed by Jesorsky, Kirchberg, and Frischholz |
correctly localized 98.4% of the XM2VTS database [11] (pro
duced under controlled conditions), the same system locai-
ized only 91.8% of the BiolD faces. Fig. 3 Moving input created by translating a still image in a random

The BiolD images have a size of 38288 pixels. Fig. 2  direction with constant speed.
illustrates the preprocessing we applied to the images®efo

presenting them to the face localization network. We detide tivated by the struct fthe h isual svst
to lower the contrast towards the edges of the image to reducl%een motivated Dy the structure ot the human visual system.

border effects. Furthermore, we subsampled the images tl represents images at different levels of abstractiongi8D
48x 36, 24x 18, and 19 pixels in order to limit the amount eature arrays. . . . .
of data the face localization network has to process. High-resolution signal-like representations are present
In addition to the images, the BiolD data set also con-t_he bottom of the pyramld. The char_acter o_f the represen_ta—
tains manually labeled eye positions, indicated in the &gur tiONS changes continuously when going up in the abstraction

by crosses. We produced a multiresolutional Gaussian blofierarchy. The resolution of the feature maps decreasds whi

for each eye that serves as a target output for training tree fa the€ number and the diversity of the represented features in-
localization network, as shown in the right part of the figure ¢'®aSe€. T_h|s yields symbol-like h|gh—levgl featgres repre-
ing large image areas that are less variant to image transfor

mations than the lower-level features.

All these representations are produced by simple process-
ing elements, called feature cells, that interact locdly-
cause the connections between the feature cells form hori-
zontal and vertical feedback loops, the network consstate
dynamical system whose activity develops over time. The it-

Subsampled erative computation of the network allows for a refinement of
Image C . . . . .
an initial solution by incorporating contextual informaii
Fig. 2 Preprocessing: Framing and subsampling. Blobs indicate ey While unambiguous stimuli are interpreted quickly, the in-
positions. terpretation of local ambiguities is deferred until funttes-
idence arrives from already interpreted neighboring siiimu
) _ ~ This is an efficient way to resolve ambiguities.

Because the BiolD data set does not specify which im- Aq o he seen in Figure 4, the network variant used here
ages shogld be used f_or tra.mmg and testing, we divided 'Consists of four layers. Each layer contains excitatoryiand
randomly into 1000 training images and 521 test _exampleshibitory feature arrays. Each feature is computed at a 28-gr
In order to facilitate the learning of translation invage@nwe ¢ |J.ations by>"-units that share a common weight tem-
also generated eight image variants for each training el@amp plate.
by translating it by-+3 pixels in different directions before The resolution of the feature arrays decreases from layer

subsampling. L (48x36)to L, (12x9) by a factor of 2 in both dimensions.

For experiments with moving images, we created anOthef_ayerL3 has only one cell per feature array. In contrast, the

version of the BiolD data set by ge_nere_umg three image S€humber of feature arrays per layer increases when going from
quences of length 21 for each original image. To do so, w

+ +8). i i
randomly selected a direction of motion fraf—1,0, +1}, flayer Lo (4+2) to L, (16+8). Layer; contains 10 excitatory

S . inhibi f Ils.
{-1,0,+1}) and moved the static images in this direction andTShln |b:toryk’eature cet_s_t . t and local. Th
with constant speed such that in the middle of a sequence . € networks connectivity 1S recurrént and focal. The
the original position was obtained. As illustrated in Figa weights of all cells of a feature array are described by a com-

this approximates the output of a moving camera capturing anon '_[emplate. Suph weight s.harmg has been used in the Neo-
static scene. cognitron [6] and in convolutional neural networks [9] te re

For the training of face tracking networks, it is necessaryduce the number of free parameters in situations where-trans

to move the blobs indicating the target eye positions ac—cordIatlonal invariance 1S des',rablg' )
Each feature cell receives input from only a small window

/ /!

ingly. of cells that correspond to similar locations in the layer be
low (forward weights), the same layer (lateral weightsy an
3 Network Architectureand Training the layer above (backward weights). Weights from excitator
cells are non-negative, weights from inhibitory cells anan
3.1 Neural Abstraction Pyramid Architecture positive, and input weights can have any sign.

The excitatory feature cells di,-L- receive input from
The preprocessed images are presented to a Neural Abstragx4 windows of the feature arrays one layer below them.
tion Pyramid [4, 3]. This hierarchical neural architecthess ~ They look at 55 input cells and at a:33 neighborhood at
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Output Right eye ;

Input

Layer 0 (48x36) Layer 1 (24x18) Layer 2 (12x9) Layer 3 (1x1)
Fig. 4 Sketch of the Neural Abstraction Pyramid network used foe flacalization.

the same layer. Their backward weights have a window size  For the uniform initialization at = 0, the activity of all

of 2x2. feature cells associated with templatis set to a start value
Connections betweeh, and the topmost layeEs; are  V°(i).

different, because the resolution drops fromx82to 1x 1. During all time steps, the value of an input node at posi-

Both, forward- and backward weights have a<®window  tion (z,y, z, q) is set to a copy of the corresponding compo-

size. nentZ(z,y, z, q) of the input vectoi,, of the current exam-

The input to the inhibitory feature cells is less complex. ple k:
They look only at 55 windows of all excitatory feature ar- ¢
rays at the same layer. Of course, in laygrthe size of this ™7
input window reduces tox1.

The activities of the feature cells are updated for each iter3.2 Supervised Training

ation of the network. The update stgpt 1) of valuev,, , - 4 . ) ) ) .
at position(z, y) in layer L. for feature array; is done as  1h€ network described above is trained in a supervised man-

follows: ner to solve the face localization and tracking tasks. Due to
the non-linear dynamics of such recurrent neural netwdtks,
is difficult to train them. One possible training method, lbac
1 N ) propagation through time (BPTT) [16], unfolds the recutren
Phyzg =0 Z W) Vx ). 960,262,006 T BE)| - network in time and applies backpropagation to compute the
jeLt) gradient of an error function. This can be done efficiently if
the number of time steps is limited.
The templaté = 7 (2, ¢) is associated with feature arrayt For face localization, we present a static ingytto the
layer z. Its set of input links is represented 8Y:), andB(i) ~ network and train it to quickly produce the desired outpput
denotes the template bias. The indé(j, z), Y(j,v), Z(j, 2), wherek = 1... K is the example index. The network is up-
Q(j)) describes location and feature array of the input fordated for a fixed numbéF = 10 of iterations. The output er-
link j. The link weight is denoted by (j). rort =y, —v? attimet is defined as the difference between
The output functiowr (x) = In(1 + €%%) /3 used hereis a the activity of the output cells? and the desired outpyt.
smooth approximation to the rectifying functierax(0, ). It It is not only computed at the end of the sequence, but after
limits the activity of a feature cell to be positive and pde$  every update step. The squared differences are weighted pro
a nonlinearity which is essential to network stability. gressively in the error functiof, as the number of iterations

=} (o) F 1= 7T (z,q) is an input template.

v
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t increases: of the cells segmented as belonging to the blob is used as an
K T . estimate for the eye position.
E= ZZ ¢ 110kl After transforming the estimated eye positions into the
k=1t=1

original coordinate system, a scale-independent distaieee

For the experiments with moving inputs, the network wassured... is computed as suggested by the creators of the data
updated forI" = 21 steps. The increasing error weight was set [8]:
saturated at the level reached after 10 iterations to gige th
following time steps equal importance.

Minimizing the error function with gradient descentfaces The gistances of the estimated eye positions to the target co
the problem that the gradientin recurrent networks eitherv o rginates”; andC,, are denoted by, andd,., respectively. A
ishes or grows exponentially in time, depending on the Malgistanced.,. < 0.25 is considered to be a successful local-

nitude of gains in loops [5]. Hence, it is very difficult to de- ization, sinced,,. = 0.25 corresponds approximately to the
termine a learning constant that allows for both stabilitda  p51r.width of an eye.

fast convergence.
For that reason, we decided to employ the resilient back-

deye = max(ds, dr)/]|Cr — Cr|.

propagation (RPROP) algorithm [12] which maintains a sep- 100
arate learning rate for each weight and thatuses only tme sig | 7 ey
of the gradient to determine the weight change. The combi- 80 |- .

nation of BPTT and RPROP proved to be stable. Not only the
template weight¥V are modified in this way, but their biases
B and start value¥® are adapted as well.

60

xin %

ye <=

To accelerate the training, we initially trained with small g0 1

randomly chosen subsets of the training set that increased i TST translated training

. . 20 TST original training ------- B
size over time [2]. Hausdorfi+MLP --------

O & Il Il Il Il Il Il Il
0 005 01 015 02 025 03 035 04
4 Experimental Results @ X
1.6

4.1 Still Input 14 B TST translated training g

TST original training -------

After the training, the network is able to localize the BiolD
faces. Figure 5 shows the development of the trained net-
work’s output when the testimage from Fig. 2 is presented as
input. One can see that the blobs indicating the eye position
develop in a top-down fashion. After the first iteration they
appear only in the lowest resolution. This coarse locabnat

is used to bias the development of blobs in lower layers. Af-
ter five iterations, the network’s output is close to the dbebi (b) reject in %
blob pattern. The output does not change significantly dur-

. . . . . Fig. 6 Localization performance: (a) test examples with srda)L
ing the next iterations. Each iteration takes only 16ms on Aoy pyramid trained with thg original| translated} images and for

AMD Athlon XP 2.08GHz PC. . _ ~ ahybrid system (Hausdorff+MLP) [8]; (b) rejecting the leesnfi-
The generation of stable blobs is the typical behavior ofgent examples lowers the number of mislocalizations.

the network. This behavior is similar to the emergence of sta
ble activity blobs in neural fields, investigated by Amar.[1
Usually, exactly one blob per eye rises. In a few cases, blobs Not surprisingly, all training examples have been local-
are unstable, no blobs are produced, or multiple blobs repreized successfully by the trained network. The localization
sent multiple localization hypothesis. performance on the test set is good as well. Figure 6(a) shows
To evaluate the localization performance quantitatively,the network’s test set localization performance when &ain
one has to estimate eye coordinates from the blobs and twith the { original| translated} images in comparison to
compare them to the target coordinates. the performance from the hybrid reference system [8] (Haus-
Each eye position is estimated separately by finding thedorff+MLP). Only { 1.5%]| 1.3%} of the test examples have
feature cell with the highest activity in the correspondiigh-  not been localized accurately enough. Compare this to the
resolution output array. In ax77 window around the most 8.2% mislocalizations of the reference system.
active cell the feature cells are segmented as belongirmgpto t A detailed analysis of the network’s output for the mis-
blob or not by comparing their activity with a threshold. $hi localizations showed that in these cases the output deviate
threshold depends on the activity of the most active cell androm the one-blob-per-eye pattern. It can happen that no blo
increases with greater distance from it. The weighted mearor that several blobs are present for an eye. By comparing the

d_eye > 0.25in %
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Fig. 5 Recall. The activities of the network’s output over time.
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0.45 | TST ——
04 .
0.35 | .
03 .
0.25 F .
02 .
0.15 - ° 2

d_eye

average d_eye

40 60 80 100 120 140 160
iteration

0.05 + R Fig. 8 Tracking of a horizontally moving input (see Fig. 2 for orig-
0 ] ] ] ] ] ] inal)_

(@) iteration
error as the example from Fig. 2 is translated horizontally b
+40 pixels with a speed of one pixel per iteration. The local-
ization error drops quickly during the first iterations arals

low afterwards at a value of about 0.075. The blobs indicat-
ing the eye positions follow the movement of the image with
a small lag. They catch up at iterations 40 and 120, when the
direction of movement is reversed.

sum squared delta output
-
T

051 i As described in Section 2, we created a version of the
. BiolD data set to investigate the behavior of the network in
0 0o 2 the case of moving input more systematically. It contaims fo
(b) iteration each still image three image sequences moving in a random

direction.

Starting from the weights trained with still images, we
continued the supervised training with these moving inputs
and targets. The behavior of the trained network when con-
activity of a segmented blob to a threshold and to the total acfronted with image sequences was very similar to the still-
tivity of its feature array, a confidence measure is computedmage case. Blobs indicating the eye positions were pratiuce
for each eye. Both eye confidences are combined to a singlé a top-down fashion and were refined over time. The main
confidence which is compared to a rejection threshold. difference was that these blobs were not stationary, bueghov

In Figure 6(b) one can see that rejecting the least conalong with the input. This is illustrated in Figure 9. In P@a}
fident test examples lowers the number of mislocalization®f the figure one can see that, after the initial iteratiores ar
rapidly. When rejecting 3.1%| 1.7%} of the images, only ~over, most changes in the network outputs correspond to the
one mislocalization is left. The average localization egb  blob motion. The network dynamics can be viewed as being
the accepted examplesds,. = 0.06. Thatis well within the ~ settled into a continuous attractor [14], where input cfesng
area of the iris and corresponds to the accuracy of the manwlong a manifold (in this case translations) make littldeutif
ally determined target coordinates. ence to the energy of the system.

Figure 7 illustrates the network’s performance over time  Figure 10 illustrates the network’s test set performance
when trained with the original images. The average efggr ~ over time. The average localization erify,. drops rapidly
drops rapidly within the first five iterations and stays low af within the first five iterations and stays below 0.09 aftedgar
terwards. The changes in the network’s output are large durfhe average changes in the network’s output are large during
ing the first iterations and decrease even when updatediongghe first iterations and decrease to a floor that correspands t
than the ten steps it has been trained for. the blob motion.

The test set localization performance of the network is
shown in Figure 11(a) for iterations 11 and 21. Both curves
4.2 Moving Input are very similar. The percentages of examples that have not
been localized accurately enough are 2.56% and 2.62%, re-
Although the network has only seen still images so far, it isspectively. While these are significantly higher mislarai
also able to track a moving face. Fig. 8 shows the localinatio tion rates than have been observed for static images, ttis st

Fig. 7 Performance over time: (a) average distatigg ; (b) output
changes.
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(b)

(©

1 21

Fig. 9 Tracking the eye positions in an image sequence: (a) inpuingdowards NW {\); (b) output activity in layerL,; (c) change of
output activity (medium gray indicates no change; the lr&fa half together with the dark NW half of a blob indicates ihenoves towards
NW).

0.5 T T T T 100 T T ) I :
0.45 - 1
04 1 80 b
0.35 | 1
0.3 1
0.25 | 1
02 1
0.15 - 1

0.1 7] 20

L i TST11 ——
0.05 TST 21 -------
0 L L L L 1 1 1 1 1 1 1

0 5 10 15 20 0 005 01 015 02 025 03 035 04
(@) iteration (a) x

2 T T T T T T T T

60 - 1

40 g

average d_eye
d_eye <=xin %

sum squared delta output
-
T
1
d_eye > 0.25in %

0 1 1
0 5 10 15 20 0 5 10 15 20 25

(b) iteration (b) reject in %

Fig. 10 Test set performance for moving input over time: (a) aver- Fig. 11 Localization performance with moving input: (a) test exam-
age distancd..; (b) output changes. ples with smalli.,. after 11 and 21 iterations; (b) rejecting the least
confident examples lowers the number of mislocalizations.

means that in about 97.4% of all test image sequences the eye
positions can be tracked accurately enough.

Part (b) of the figure shows that one can lower the mis-
localization rate by rejecting the least confident examples
Rejecting also increases the localization accuracy of the a
cepted image sequences. When rejecting about 2.3% of the The network’s localization performance was evaluated on
examples, the average localization error drops to 0.0&8 aft the BiolD data set. It compares favorably to a hybrid refer-
both 11 and 21 iterations. This shows that the vast majorityence system that uses a Hausdorff shape matching approach
of test faces can be tracked accurately. in combination with a multilayer perceptron.

difficult lighting, and noise through iterative refineme®itce
it processes an entire image in parallel, it does not need any
time-consuming scanning over positions and scales.

Adding slightly translated variants to the training set fa-
cilitated generalization. One could extend this approach b
using a larger variety of transformations, including riatat

In this paper, we presented an approach to face localizatiofC@iNg, changes in lighting, and noise.

and tracking that is based on a hierarchical neural network The proposed method is not limited to gray-scale images.
with local recurrent connectivity. The network is trained t The extension to color is straight forward and should improv
solve this task even in the presence of complex background$pcalization performance even further.

5 Conclusions
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Because the network works iteratively and one iteration ~ Networks (ICNN'93) — San Franciscpages 586-591. |IEEE,
takes only a few milliseconds, it is also possible to userit fo 1993.
real-time face tracking. We trained a version of the network  13. Henry A. Rowley, Shumeet Baluja, and Takeo Kanade. Neura
localize and track faces in still images that move in a random  Network based face detectidEEE Trans. Pattern Analysis and
direction. Although localization performance was not gais Machine Intelligencg20:23-38, 1998. _
good as it was in the static case, the network was still able tg# H- Sebastian Seung. Learning continuous attractoecurrent

track the vast maiority of test faces with hiah accuracy. Be- networks. In M.1. Jordan, M.J. Kearns, and S.A. Solla, edito
Jority 9 Y. Advances in Neural Information Processing Systemga0es

cause the tracking task is more challenging than still-ienag 654—660. MIT Press. 1998.

localization, it would be worth investigating whether a sim 15 paul Viola and Michael J. Jones. Robust real-time fatecde
ilar network with more free parameters could approach the  tion. International Journal of Computer Visio@(57):137—154,
still-image localization performance again. 2004.

Inthe described tracking experiments, the image sequendds Ronald J. Williams and Jing Peng. An efficient gradieaged
have been created from still images. Hence, no motion cues algorithm for on-line training of recurrent network trajesdes.
could aid the tracking. For that reason, it would be des#abl Neural Computation2(4):491-501, 1990.

to train the network with annotated real video sequences. ~17- Ming-Hsuan Yang, David Kriegman, and Narendra Ahuja: De
tecting faces in images: A surveEE Transactions on Pattern

Analysis and Machine Intelligence (PAMB4(1):34-58, 2002.
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