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Abstract One of the major tasks in some human-computer
interface applications, such as face recognition and videotele-
phony, is to localize a human face in an image.

In this paper, we propose to use hierarchical neural net-
works with local recurrent connectivity to solve this task not
only in unambiguous situations, but also in the presence of
complex backgrounds, difficult lighting, and noise.

The networks are trained using a database of gray-scale
still images and manually determined eye coordinates. They
are able to produce reliable and accurate eye coordinates for
unknown images by iteratively refining initial solutions. Be-
cause the networks process entire images, there is no need for
any time-consuming scanning across positions and scales.

Furthermore, the fast network updates allow for real-time
face tracking. In this case, the networks are trained using still
images that move in random directions. The trained networks
are able to accurately track the eye positions in test image
sequences.

Key words Face localization and tracking – Hierarchical
network – Local connectivity – Recurrence – Iterative refine-
ment – Continuous attractors

1 Introduction

Computers must adapt to the user’s needs to make human-
computer interaction more pleasant, and for adaptation it is
necessary to perceive the user. One important step for many
adaptive human-computer interface applications, such as face
recognition, lip reading, and video telephony is the localiza-
tion of the user’s face in a captured image or an image se-
quence.

A large body of literature exists on the topic of face de-
tection and localization. Recent surveys have been compiled,
e.g., by Hjelmas and Kee Low [7] and by Yang, Kriegman,
and Ahuja [17].

Many existing localization techniques rely on image mo-
tion or skin color – features that are not always available.
Here, we focus on still gray-scale images.

One of the most popular neural approaches for face detec-
tion in still gray-scale images has been proposed by Rowley,
Baluja, and Kanade [13]. It uses a window that scans across
image positions and scales as input to a neural classifier. Such
sequential search techniques are computationally expensive.
Viola and Jones [15] recently introduced an intermediate rep-
resentation, called integral image, to speed-up the computa-
tion of overcomplete rectangular features. Using a cascade
of classifiers trained by boosting, they cut-down dramatically
the computation time needed for the scanning process. Other
face localization methods preprocess the data intensivelyto
extract facial features and match them with predefined mod-
els [8,10].

In this paper, we propose a method that uses a hierarchi-
cal neural network with local recurrent connectivity to local-
ize a face in gray-scale still images. The network operates by
iteratively refining an initial solution. It is trained withsuper-
vision to perform the task. The face localization also works
well if the static images are moved in a random direction. In
this case, the network is trained to track the eye positions.

The paper is organized as follows. The next section de-
scribes the database used for the experiments and the prepro-
cessing procedure. Section 3 introduces the network architec-
ture and details its training. We present experimental results
with still images in Section 4.1 and with moving images in
Section 4.2. The paper concludes with a discussion.

2 Face Database and Preprocessing

In order to validate the proposed approach to face localization
and tracking, we used the BioID database [8]. It consists of
1.521 gray-scale images showing 23 individuals in complex
office environments (see Fig. 1). The people differ in gender,
age, and skin color. Some of them wear glasses or have a
beard. The BioID data set is challenging because face size,
position and view, as well as the facial expression and lighting
vary considerably.
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Such real-world conditions are the ones that reveal the
limits of current localization techniques. While the hybrid
system proposed by Jesorsky, Kirchberg, and Frischholz [8]
correctly localized 98.4% of the XM2VTS database [11] (pro-
duced under controlled conditions), the same system local-
ized only 91.8% of the BioID faces.

The BioID images have a size of 384×288 pixels. Fig. 2
illustrates the preprocessing we applied to the images before
presenting them to the face localization network. We decided
to lower the contrast towards the edges of the image to reduce
border effects. Furthermore, we subsampled the images to
48×36, 24×18, and 12×9 pixels in order to limit the amount
of data the face localization network has to process.

In addition to the images, the BioID data set also con-
tains manually labeled eye positions, indicated in the figure
by crosses. We produced a multiresolutional Gaussian blob
for each eye that serves as a target output for training the face
localization network, as shown in the right part of the figure.

→

Fig. 2 Preprocessing: Framing and subsampling. Blobs indicate eye
positions.

Because the BioID data set does not specify which im-
ages should be used for training and testing, we divided it
randomly into 1000 training images and 521 test examples.
In order to facilitate the learning of translation invariance, we
also generated eight image variants for each training example
by translating it by±3 pixels in different directions before
subsampling.

For experiments with moving images, we created another
version of the BioID data set by generating three image se-
quences of length 21 for each original image. To do so, we
randomly selected a direction of motion from({−1, 0, +1},
{−1, 0, +1}) and moved the static images in this direction
with constant speed such that in the middle of a sequence
the original position was obtained. As illustrated in Figure 3,
this approximates the output of a moving camera capturing a
static scene.

For the training of face tracking networks, it is necessary
to move the blobs indicating the target eye positions accord-
ingly.

3 Network Architecture and Training

3.1 Neural Abstraction Pyramid Architecture

The preprocessed images are presented to a Neural Abstrac-
tion Pyramid [4,3]. This hierarchical neural architecturehas

↗ ↗

Fig. 3 Moving input created by translating a still image in a random
direction with constant speed.

been motivated by the structure of the human visual system.
It represents images at different levels of abstraction using 2D
feature arrays.

High-resolution signal-like representations are presentat
the bottom of the pyramid. The character of the representa-
tions changes continuously when going up in the abstraction
hierarchy. The resolution of the feature maps decreases while
the number and the diversity of the represented features in-
crease. This yields symbol-like high-level features represent-
ing large image areas that are less variant to image transfor-
mations than the lower-level features.

All these representations are produced by simple process-
ing elements, called feature cells, that interact locally.Be-
cause the connections between the feature cells form hori-
zontal and vertical feedback loops, the network constitutes a
dynamical system whose activity develops over time. The it-
erative computation of the network allows for a refinement of
an initial solution by incorporating contextual information.
While unambiguous stimuli are interpreted quickly, the in-
terpretation of local ambiguities is deferred until further ev-
idence arrives from already interpreted neighboring stimuli.
This is an efficient way to resolve ambiguities.

As can be seen in Figure 4, the network variant used here
consists of four layers. Each layer contains excitatory andin-
hibitory feature arrays. Each feature is computed at a 2D-grid
of locations by

∑

-units that share a common weight tem-
plate.

The resolution of the feature arrays decreases from layer
L0 (48×36) toL2 (12×9) by a factor of 2 in both dimensions.
LayerL3 has only one cell per feature array. In contrast, the
number of feature arrays per layer increases when going from
layerL0 (4+2) toL2 (16+8). LayerL3 contains 10 excitatory
and 5 inhibitory feature cells.

The network’s connectivity is recurrent and local. The
weights of all cells of a feature array are described by a com-
mon template. Such weight sharing has been used in the Neo-
cognitron [6] and in convolutional neural networks [9] to re-
duce the number of free parameters in situations where trans-
lational invariance is desirable.

Each feature cell receives input from only a small window
of cells that correspond to similar locations in the layer be-
low (forward weights), the same layer (lateral weights), and
the layer above (backward weights). Weights from excitatory
cells are non-negative, weights from inhibitory cells are non-
positive, and input weights can have any sign.

The excitatory feature cells ofL0-L2 receive input from
4×4 windows of the feature arrays one layer below them.
They look at 5×5 input cells and at a 3×3 neighborhood at
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Fig. 1 Some images from the BioID face localization data set.
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Fig. 4 Sketch of the Neural Abstraction Pyramid network used for face localization.

the same layer. Their backward weights have a window size
of 2×2.

Connections betweenL2 and the topmost layerL3 are
different, because the resolution drops from 12×9 to 1×1.
Both, forward- and backward weights have a 12×9 window
size.

The input to the inhibitory feature cells is less complex.
They look only at 5×5 windows of all excitatory feature ar-
rays at the same layer. Of course, in layerL3 the size of this
input window reduces to 1×1.

The activities of the feature cells are updated for each iter-
ation of the network. The update step(t+1) of valuevx,y,z,q

at position(x, y) in layer Lz for feature arrayq is done as
follows:

vt+1
x,y,z,q = σ





∑

j∈L(i)

W(j) vt
X (j,x),Y(j,y),Z(j,z),Q(j) + B(i)



 .

The templatei = T (z, q) is associated with feature arrayq at
layerz. Its set of input links is represented byL(i), andB(i)
denotes the template bias. The index(X (j, x),Y(j, y),Z(j, z),
Q(j)) describes location and feature array of the input for
link j. The link weight is denoted byW(j).

The output functionσ(x) = ln(1 + eβx)/β used here is a
smooth approximation to the rectifying functionmax(0, x). It
limits the activity of a feature cell to be positive and provides
a nonlinearity which is essential to network stability.

For the uniform initialization att = 0, the activity of all
feature cells associated with templatei is set to a start value
V0(i).

During all time steps, the value of an input node at posi-
tion (x, y, z, q) is set to a copy of the corresponding compo-
nentI(x, y, z, q) of the input vectorxk of the current exam-
plek:

vt
x,y,z,q = xt

k,I(x,y,z,q), if i = T (z, q) is an input template.

3.2 Supervised Training

The network described above is trained in a supervised man-
ner to solve the face localization and tracking tasks. Due to
the non-linear dynamics of such recurrent neural networks,it
is difficult to train them. One possible training method, back-
propagation through time (BPTT) [16], unfolds the recurrent
network in time and applies backpropagation to compute the
gradient of an error function. This can be done efficiently if
the number of time steps is limited.

For face localization, we present a static inputxk to the
network and train it to quickly produce the desired outputyk,
wherek = 1 . . .K is the example index. The network is up-
dated for a fixed numberT = 10 of iterations. The output er-
ror δt

k = yk−v
t
k at timet is defined as the difference between

the activity of the output cellsvt
k and the desired outputyk.

It is not only computed at the end of the sequence, but after
every update step. The squared differences are weighted pro-
gressively in the error functionE, as the number of iterations
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t increases:

E =

K
∑

k=1

T
∑

t=1

t ‖δt
k‖

2.

For the experiments with moving inputs, the network was
updated forT = 21 steps. The increasing error weight was
saturated at the level reached after 10 iterations to give the
following time steps equal importance.

Minimizing the error function with gradient descent faces
the problem that the gradient in recurrent networks either van-
ishes or grows exponentially in time, depending on the mag-
nitude of gains in loops [5]. Hence, it is very difficult to de-
termine a learning constant that allows for both stability and
fast convergence.

For that reason, we decided to employ the resilient back-
propagation (RPROP) algorithm [12] which maintains a sep-
arate learning rate for each weight and that uses only the sign
of the gradient to determine the weight change. The combi-
nation of BPTT and RPROP proved to be stable. Not only the
template weightsW are modified in this way, but their biases
B and start valuesV0 are adapted as well.

To accelerate the training, we initially trained with small
randomly chosen subsets of the training set that increased in
size over time [2].

4 Experimental Results

4.1 Still Input

After the training, the network is able to localize the BioID
faces. Figure 5 shows the development of the trained net-
work’s output when the test image from Fig. 2 is presented as
input. One can see that the blobs indicating the eye positions
develop in a top-down fashion. After the first iteration they
appear only in the lowest resolution. This coarse localization
is used to bias the development of blobs in lower layers. Af-
ter five iterations, the network’s output is close to the desired
blob pattern. The output does not change significantly dur-
ing the next iterations. Each iteration takes only 16ms on an
AMD Athlon XP 2.08GHz PC.

The generation of stable blobs is the typical behavior of
the network. This behavior is similar to the emergence of sta-
ble activity blobs in neural fields, investigated by Amari [1].
Usually, exactly one blob per eye rises. In a few cases, blobs
are unstable, no blobs are produced, or multiple blobs repre-
sent multiple localization hypothesis.

To evaluate the localization performance quantitatively,
one has to estimate eye coordinates from the blobs and to
compare them to the target coordinates.

Each eye position is estimated separately by finding the
feature cell with the highest activity in the correspondinghigh-
resolution output array. In a 7×7 window around the most
active cell the feature cells are segmented as belonging to the
blob or not by comparing their activity with a threshold. This
threshold depends on the activity of the most active cell and
increases with greater distance from it. The weighted mean

of the cells segmented as belonging to the blob is used as an
estimate for the eye position.

After transforming the estimated eye positions into the
original coordinate system, a scale-independent distancemea-
suredeye is computed as suggested by the creators of the data
set [8]:

deye = max(dl, dr)/||Cl − Cr||.

The distances of the estimated eye positions to the target co-
ordinatesCl andCr are denoted bydl anddr, respectively. A
distancedeye < 0.25 is considered to be a successful local-
ization, sincedeye = 0.25 corresponds approximately to the
half-width of an eye.
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Fig. 6 Localization performance: (a) test examples with smalldeye

for pyramid trained with the{ original translated} images and for
a hybrid system (Hausdorff+MLP) [8]; (b) rejecting the least confi-
dent examples lowers the number of mislocalizations.

Not surprisingly, all training examples have been local-
ized successfully by the trained network. The localization
performance on the test set is good as well. Figure 6(a) shows
the network’s test set localization performance when trained
with the { original translated} images in comparison to
the performance from the hybrid reference system [8] (Haus-
dorff+MLP). Only { 1.5% 1.3%} of the test examples have
not been localized accurately enough. Compare this to the
8.2% mislocalizations of the reference system.

A detailed analysis of the network’s output for the mis-
localizations showed that in these cases the output deviates
from the one-blob-per-eye pattern. It can happen that no blob
or that several blobs are present for an eye. By comparing the
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Fig. 5 Recall. The activities of the network’s output over time.

(a)

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

0 2 4 6 8 10 12

av
er

ag
e 

d_
ey

e

iteration

TST
TRN

(b)

0

0.5

1

1.5

2

0 2 4 6 8 10 12

su
m

 s
qu

ar
ed

 d
el

ta
 o

ut
pu

t

iteration

TST
TRN

Fig. 7 Performance over time: (a) average distancedeye; (b) output
changes.

activity of a segmented blob to a threshold and to the total ac-
tivity of its feature array, a confidence measure is computed
for each eye. Both eye confidences are combined to a single
confidence which is compared to a rejection threshold.

In Figure 6(b) one can see that rejecting the least con-
fident test examples lowers the number of mislocalizations
rapidly. When rejecting{ 3.1% 1.7%} of the images, only
one mislocalization is left. The average localization error of
the accepted examples isdeye = 0.06. That is well within the
area of the iris and corresponds to the accuracy of the manu-
ally determined target coordinates.

Figure 7 illustrates the network’s performance over time
when trained with the original images. The average errordeye

drops rapidly within the first five iterations and stays low af-
terwards. The changes in the network’s output are large dur-
ing the first iterations and decrease even when updated longer
than the ten steps it has been trained for.

4.2 Moving Input

Although the network has only seen still images so far, it is
also able to track a moving face. Fig. 8 shows the localization
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Fig. 8 Tracking of a horizontally moving input (see Fig. 2 for orig-
inal).

error as the example from Fig. 2 is translated horizontally by
±40 pixels with a speed of one pixel per iteration. The local-
ization error drops quickly during the first iterations and stays
low afterwards at a value of about 0.075. The blobs indicat-
ing the eye positions follow the movement of the image with
a small lag. They catch up at iterations 40 and 120, when the
direction of movement is reversed.

As described in Section 2, we created a version of the
BioID data set to investigate the behavior of the network in
the case of moving input more systematically. It contains for
each still image three image sequences moving in a random
direction.

Starting from the weights trained with still images, we
continued the supervised training with these moving inputs
and targets. The behavior of the trained network when con-
fronted with image sequences was very similar to the still-
image case. Blobs indicating the eye positions were produced
in a top-down fashion and were refined over time. The main
difference was that these blobs were not stationary, but moved
along with the input. This is illustrated in Figure 9. In Part(c)
of the figure one can see that, after the initial iterations are
over, most changes in the network outputs correspond to the
blob motion. The network dynamics can be viewed as being
settled into a continuous attractor [14], where input changes
along a manifold (in this case translations) make little differ-
ence to the energy of the system.

Figure 10 illustrates the network’s test set performance
over time. The average localization errordeye drops rapidly
within the first five iterations and stays below 0.09 afterwards.
The average changes in the network’s output are large during
the first iterations and decrease to a floor that corresponds to
the blob motion.

The test set localization performance of the network is
shown in Figure 11(a) for iterations 11 and 21. Both curves
are very similar. The percentages of examples that have not
been localized accurately enough are 2.56% and 2.62%, re-
spectively. While these are significantly higher mislocaliza-
tion rates than have been observed for static images, this still
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(a)

(b)

(c)
1 21

Fig. 9 Tracking the eye positions in an image sequence: (a) input moving towards NW (↖); (b) output activity in layerL0; (c) change of
output activity (medium gray indicates no change; the bright SE half together with the dark NW half of a blob indicates that it moves towards
NW).
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Fig. 10 Test set performance for moving input over time: (a) aver-
age distancedeye; (b) output changes.

means that in about 97.4% of all test image sequences the eye
positions can be tracked accurately enough.

Part (b) of the figure shows that one can lower the mis-
localization rate by rejecting the least confident examples.
Rejecting also increases the localization accuracy of the ac-
cepted image sequences. When rejecting about 2.3% of the
examples, the average localization error drops to 0.068 after
both 11 and 21 iterations. This shows that the vast majority
of test faces can be tracked accurately.

5 Conclusions

In this paper, we presented an approach to face localization
and tracking that is based on a hierarchical neural network
with local recurrent connectivity. The network is trained to
solve this task even in the presence of complex backgrounds,
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Fig. 11 Localization performance with moving input: (a) test exam-
ples with smalldeye after 11 and 21 iterations; (b) rejecting the least
confident examples lowers the number of mislocalizations.

difficult lighting, and noise through iterative refinement.Since
it processes an entire image in parallel, it does not need any
time-consuming scanning over positions and scales.

The network’s localization performance was evaluated on
the BioID data set. It compares favorably to a hybrid refer-
ence system that uses a Hausdorff shape matching approach
in combination with a multilayer perceptron.

Adding slightly translated variants to the training set fa-
cilitated generalization. One could extend this approach by
using a larger variety of transformations, including rotation,
scaling, changes in lighting, and noise.

The proposed method is not limited to gray-scale images.
The extension to color is straight forward and should improve
localization performance even further.
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Because the network works iteratively and one iteration
takes only a few milliseconds, it is also possible to use it for
real-time face tracking. We trained a version of the networkto
localize and track faces in still images that move in a random
direction. Although localization performance was not quite as
good as it was in the static case, the network was still able to
track the vast majority of test faces with high accuracy. Be-
cause the tracking task is more challenging than still-image
localization, it would be worth investigating whether a sim-
ilar network with more free parameters could approach the
still-image localization performance again.

In the described tracking experiments, the image sequences
have been created from still images. Hence, no motion cues
could aid the tracking. For that reason, it would be desirable
to train the network with annotated real video sequences.
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