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Abstract

There are many solutions to prevent the spread of the COVID-19 virus and one of the

most effective solutions is wearing a face mask. Almost everyone is wearing face masks

at all times in public places during the coronavirus pandemic. This encourages us to

explore face mask detection technology to monitor people wearing masks in public

places. Most recent and advanced face mask detection approaches are designed using

deep learning. In this article, two state-of-the-art object detection models, namely,

YOLOv3 and faster R-CNN are used to achieve this task. The authors have trained both

the models on a dataset that consists of images of people of two categories that are with

and without face masks. This work proposes a technique that will draw bounding boxes

(red or green) around the faces of people, based on whether a person is wearing a mask or

not, and keeps the record of the ratio of people wearing face masks on the daily basis. The

authors have also compared the performance of both the models i.e., their precision rate

and inference time.
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1 Introduction

The uncontrolled coronavirus disease 2019 (COVID-19) has brought global crisis with its

deadly spread to 213 countries and territories around the world and 2 international convey-

ances, and about 96.1 million confirmed cases along with 2.06 million deaths globally as of

January 20, 2021. The lack of dynamic medicinal specialists and the absence of resistance

against COVID19 built the vulnerability of the population. WHO pronounced this as pandemic

[10]. Wearing a mask is the main attainable way to deal with the battle against this pandemic.

The knowledge that the use of face masks delays the COVID-19 transmission has gained

popularity in the general population [5]. This situation forces the global community to look for

this preventive measure, along with social distancing to stop the spread of this infectious virus.

Corona vaccines have started to come into the market, but not all parts of the world have

access to them. So, until this virus is completely gone, wearing face masks on regular basis is a

very important practice that will help to prevent the spread of infection and keep the person

from getting any airborne infectious germs. At the point when somebody coughs, talks,

sneezes they could discharge germs into the air that may infect others nearby. Face masks

are part of an infection control methodology to dispense cross-contamination (Figs. 1 and 2).

The primary contributions of this article are twofold: 1) A method for face mask detection

using YOLO and faster R-CNN models. 2) A comprehensive survey on the key difficulties in

face mask detection, which might be useful for developing new face mask detectors in the

future. Transfer learning is used for making the models in this article. It is a machine learning

method where a model developed for some task is reused as the starting point for a model on a

related task. It is a popular approach in deep learning where pre-trained models are used as the

starting point in computer vision and natural language processing tasks, given the vast

computational and time resources required to develop neural network models from the root

of these problems and the huge jumps in a skill that they provide on related problems [4].

YOLOv3 and Faster R-CNN are the two algorithms used by authors for making models and a

comparison is also done between their results. Faster R-CNN has two networks: A Region

proposal network (RPN) [7] for generating region proposals and a network using these

proposals to detect objects. RPN ranks region boxes (called anchors) and proposes the ones

most likely containing objects. YOLO is a clever convolutional neural network (CNN) for

doing object detection in real-time. The algorithm applies a single neural network to the full

image, and then divides the image into regions and predicts bounding boxes and probabilities

for each region [6]. It becomes very difficult to train these models, keeping in mind the

diversity of camera angles in images and mask types, so this issue pops out as a challenge for

Fig. 1 This shows that people not

wearing mask has very high risk

(97.0%) of getting infected
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us. Another challenge the authors faced was the unavailability of a large dataset for training the

two categories- one with mask and the second without mask, so the authors have made a

custom dataset and used transfer learning to achieve this task.

Section 2 of this paper brief us about all the major-related work that has been done in the

field of object detection using CNN and RPN based algorithms. Section 3 contains the work

proposed by the authors. In this section, they have thoroughly explained YOLOv3 and Faster-

RCNN and how these algorithms are used in the development of face mask detection models.

Section 4 contains the experimental results and in this section, the authors have tried to

compare the performance of models developed using both algorithms. In section 5, the authors

have concluded their work and discussed the necessity of this study. In section 6, the authors

have discussed the future scope where these models can be deployed and used in real-world

scenarios.

2 Related work

Whenever there are multiple objects in an image or frame of the video and we want to

localize and classify them all, we look for an object detection algorithm. Over the

decade, lots of algorithms and techniques have been developed for object detection.

YOLO and faster-RCNN are among them and have found their applications in defense

systems. Militaries have started to use them along with surveillance cameras for

enhancing security. Advanced automobiles like Tesla completely rely on these object

detection algorithms for the very concept of self-driving cars. In this section, the

authors will be throwing light on these two algorithms.

Fig. 2 YOLOv3 neural network
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2.1 YOLO algorithm

2.1.1 Image classification using CNN

CNN plays an important role in computer vision related pattern recognition tasks, because of

its superior spatial feature extraction capability and less computation cost [1]. One of its very

useful applications is a binary classification of images. CNN uses convolution kernels to

convolve with the original images or feature maps to extract higher-level features. However,

how to design better Convolutional neural network architectures remains an opening question.

Inception network is one of the most widely used and accepted convolutional neural network

proposed in [9]. It allows the network to learn the best combination of kernels. In order to train

much deeper neural networks, Residual Network (ResNet) [2] was proposed, which can learn

an identity mapping from the previous layer. As object detectors are usually deployed on

mobile or embedded devices, where the computational resources are very limited, Mobile

Network (MobileNet) [3] was proposed. It uses depth-wise convolution to extract features and

channel-wise convolutions to adjust channel numbers, so the computational cost of MobileNet

is much lower than the networks using standard convolutions.

In CNN’s, we take a small matrix of numbers (called kernel or filter), pass it over our

image, and transform it based on the values from the filter. Subsequent feature map values are

calculated according to the following formula, where the input image is denoted by f and our

kernel by h. The indexes of rows and columns of the result matrix are marked with m and n

respectively.

G m; n½ � ¼ f � hð Þ m; n½ � ¼ Σ jΣi h j; k½ � f m− j; n−k½ �

Since our image shrinks every time, we perform convolution, we can do it only a limited

number of times before our image disappears completely. What’s more, if we look at how our

kernel moves through the image, we see that the impact of the pixels located on the outskirts is

much smaller than those in the center of the image. So, we can pad our image with an

additional border. The padding width should meet the following equation, where p is padding

and f is the filter dimension

P ¼ f −1ð Þ=2

Instead of shifting the kernel by one pixel, we can increase the number of steps. So, step length

is also treated as one of the convolution layer hyperparameters. The dimensions of the output

matrix taking into account both padding and stride - can be calculated using the following

formula.

nout ¼ floor 1þ
nþ 2p− f

s

� �

The filter and the image you want to apply it to must have the same number of channels. If we

want to use multiple filters on the same image, we carry out the convolution for each of them

separately, stack the results one on top of the other and combine them into a whole. The

dimensions of the received tensor (as our 3D matrix can be called) meet the following

equation, in which: n — image size, f — filter size, nc — number of channels in the image,

p —used padding, s — used stride, nf — number of filters.
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n; n; nc½ � � f ; f ; nc½ � ¼
h

floor 1þ
nþ 2p− f

s

� �

; floor 1þ
nþ 2p− f

s

� �

; nf
i

During forward propagation, we calculate the intermediate value Z, which is obtained as a

result of the convolution of the input data from the previous layer with W tensor (containing

filters), and then adding bias b. Then we apply a non-linear activation function to our

intermediate value (g).

Z l½ � ¼ W l½ �:A l−1½ � þ b l½ � A l½ � ¼ g l½ � Z l½ �
� �

During back propagation, we use the following formulae for calculating derivatives:

dA l½ � ¼
δl

δA l½ �
dZ l½ � ¼

δl

δZ l½ �
dW l½ � ¼

δl

δW l½ �
db l½ � ¼

δl

δb l½ �

There have been massive developments in the applications of convolutional neural networks.

Researchers have come forward to address the problems like RGBD-based detection and

categorization of waste objects for nuclear decommissioning using multi-image classifiers [8].

Face mask detectors can also be built by simply using CNNs along with any of the famous

architecture like ResNet or inception network and then applying sigmoid activation function at

the end on the fully connected dense final layer. This is a really good application when we

have only one person in the frame and we have to classify if he/she is wearing a mask or not. It

can be used at places like the entrance gate of some institutes, but it cannot detect multiple

faces in an image and also cannot draw different colored bounding boxes around the faces. We

need to address this problem using object detection models instead.

2.1.2 Object detection using CNN

Image classification refers to assigning a class label to an image. Object localization refers to

sketching a bounding box around the object in an image. Object detection is more difficult and

blends these two tasks and draws a bounding box around each object of interest in the image

and allocates them a class label. Let’s see how simple binary or multi-classification algorithms

are modified to draw the bounding boxes around the object. We just change the output labels

from the previous algorithm, so as to make our model learn the class of the object and also the

position of the object in the image. We add 4 more numbers in the output layer which include

the centroid position of the object and the proportion of width and height of the bounding box

in the image. This solves the problem of object localization. Now, we want our algorithm to be

able to classify and localize all the objects in an image, not just one. So, the idea is to crop the

image into multiple images and run CNN for all the cropped images.

First of all, make a window of size much smaller than the actual image size. Crop it and

pass it to CNN and have CNN make the predictions. Keep on sliding the window and pass the

cropped images into CNN. After cropping all the portions of the image with this window size,

repeat all the steps again for a bit bigger window size. Again, pass cropped images into CNN

and let it make predictions. In the end, you will have a set of cropped regions which will have

some object, together with the class and bounding box of the object. This solution is known as

object detection with sliding windows. YOLO algorithm uses this idea for object detection.
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YOLOv3 uses successive 3 × 3 and 1 × 1 convolutional layer and has some shortcut connec-

tions as well. It has 53 convolutional layers.

2.2 Faster R-CNN algorithm

Faster R-CNN is most widely used state of the art version of the R-CNN family. These

networks usually consist of— a) A region proposal algorithm to generate “bounding boxes” or

locations of possible objects in the image. b) A feature generation stage to obtain features of

these objects, usually using a CNN. c) A classification layer to predict which class this object

belongs to and d) A regression layer to make the coordinates of the object bounding box more

precise.

Fast R-CNN used CPU based selective search algorithm for region proposal, which takes

around 2 s per image and runs on CPU computation. The Faster R-CNN [7] paper fixes this by

using Region Proposal Network (RPN) to generate the region proposals. This not only brings

down the region proposal time from 2 s to 10 ms per image but also allows the region proposal

stage to share layers with the following detection stages, causing an overall improvement in

feature representation.

2.2.1 Region proposal network (RPN)

The region proposal network (RPN) starts with the input image being fed into the backbone

convolutional neural network. The input image is first resized such that its shortest side is

600px with the longer side not exceeding 1000px. The output features of the backbone

network are usually much smaller than the input image depending on the stride of the

backbone network. For every point in the output feature map, the network has to learn whether

an object is present in the input image at its corresponding location and estimate its size. This is

done by placing a set of “Anchors” on the input image for each location on the output feature

map from the backbone network. These anchors indicate possible objects in various sizes and

aspect ratios at this location. As the network moves through each pixel in the output feature

map, it has to check whether these k corresponding anchors spanning the input image actually

contain objects, and refine these anchors’ coordinates to give bounding boxes as “Object

proposals” or regions of interest (Figs. 3 and 4).

First, a 3 × 3 convolution with 512 units is applied to the backbone feature map, to give a

512-d feature map for every location. This is followed by two sibling layers: a 1 × 1

convolution layer with 18 units for object classification, and a 1 × 1 convolution with 36 units

for bounding box regression. The 18 units in the classification branch give an output of size

(H, W, 18). This output is used to give probabilities of whether or not each point in the

backbone feature map (size: H ×W) contains an object within all 9 of the anchors at that point.

The 36 units in the regression branch give an output of size (H, W, 36). This output is used to

give the 4 regression coefficients of each of the 9 anchors for every point in the backbone

feature map (size: H ×W). These regression coefficients are used to improve the coordinates of

the anchors that contain objects.

2.2.2 Object detection using RPN and a detector network (fast-RCNN)

The Faster R-CNN architecture consists of the RPN as a region proposal algorithm and the

Fast R-CNN as a detector network. Faster R-CNN tries to find out the areas that might be an
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object by combining similar pixels and textures into several rectangular boxes. The simple R-

CNN used 2000 proposed areas (rectangular boxes) from search selective. But, fast R-CNN

was a significant improvement because instead of applying 2000 times CNN to the proposed

areas, it only passes the original image to a pre-trained CNN model once. Faster R-CNN

makes further progress than Fast R-CNN. Search selective process is replaced by Region

Proposal Network (RPN).

The input image is first passed through the backbone CNN to get the feature map (Feature

size: 60, 40, 512). Besides test time efficiency, another key reason using an RPN as a proposal

generator makes sense is the advantages of weight sharing between the RPN backbone and the

Fast R-CNN detector backbone. Next, the bounding box proposals from the RPN are used to

pool features from the backbone feature map. This is done by the ROI pooling layer. The ROI

pooling layer, in essence, works by a) Taking the region corresponding to a proposal from the

backbone feature map; b) Dividing this region into a fixed number of sub-windows; c)

Fig. 3 RPN architecture

Fig. 4 Masked faces with diversified orientations, degrees of occlusion and mask types
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Performing max-pooling over these sub-windows to give a fixed size output. To understand

the details of the ROI pooling layer and it’s advantages, read Fast R-CNN. The output from the

ROI pooling layer has a size of (N, 7, 7, 512) where N is the number of proposals from the

region proposal algorithm. After passing them through two fully connected layers, the features

are fed into the sibling classification and regression branches. These classification and

detection branches are different from those of the RPN. Here the classification layer has C

units for each of the classes in the detection task (including a catch-all background class). The

features are passed through a soft-max layer to get the classification scores — the probability

of a proposal belonging to each class. The regression layer coefficients are used to improve the

predicted bounding boxes.

From the above descriptions of both algorithms, it can be seen that faster R-CNN’s input

goes under a lot of work before finally sending the image to the detector network. Whereas in

YOLOv3, localization and classification processes, both happen in a single network. So, as

expected, YOLOv3 is much faster than Faster R-CNN but the quality of faster R-CNN output

is indeed greater than YOLO’s output. It can detect finer details. There is a compromise

between quality and speed here. But we will see that this becomes insignificant in real-time

object detection because, in deployed models, it becomes very important to detect quickly, and

also a difference in output’s quality is very small.

3 Proposed work

Many people have come up with creative ideas for detecting face-masks (like putting artificial

mask images on top of non-mask people images) but the authors found that most of them

solved this issue using simple CNN models considering it as a binary classification problem.

This problem needs to be handled using object detection models for detecting multiple people

in the frame, then putting bounding boxes of particular colour around them depending on

whether they are wearing masks or not, and analysing the ratio of people wearing masks. There

was a need for a dataset with labels and annotations. So, the authors have generated a small

custom dataset manually, carefully provided labels, and used transfer learning to achieve this

task. They have also used some datasets available on the web and provided their description.

We trained both our models on the same dataset of ~7500 images. Each face in every image

was labelled with carefully prepared bounding boxes. Annotation records containing all the

data about bounding boxes, image names, and labels are prepared in the various formats as

required by both the models considered in this work. The dataset is composed of MAFA,

WIDER FACE (http://shuoyang1213.me/WIDERFACE/) and many manually prepared

images by surfing various sources on the web and is made accessible along with the

annotation records in the following link:

https://drive.google.com/drive/folders/1pAxEBmfYLoVtZQlBT3doxmesAO7n3ES1?

usp=sharing

Keras API has been used by the authors on top of the TensorFlow machine learning library in

python for implementation of both the models because Keras supports almost all the models of

a neural network – fully connected, convolutional, pooling, recurrent, embedding, etc. Fur-

thermore, these models can be combined to build more complex models. The final models

obtained after training and validation are made accessible by the authors. They are in ‘.h5’ file

format which is a grid format that is ideal for storing multi-dimensional arrays of numbers and
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is supported by Keras only.The model shared by authors can be loaded by public using the

load_model() function and passing the filename. The function returns the model with the same

architecture and weights as obtained by authors after a lot of training and validation.

3.1 YOLO v3

If one can look at the architecture of YOLOv3, it contains 53 convolutional layers, trained on

ImageNet. For the task of detection, 53 more layers are stacked onto it, giving us a 106 layer

fully convolutional underlying architecture for YOLO v3. In YOLO v3, the detection is done

by applying detection kernels on feature maps of three different sizes at three different places

in the network.

The shape of the detection kernel is 1 × 1 × (B×(5 + C)). Here B is the number of bounding

boxes a cell on the feature map can predict, “5” is for the 4 bounding box attributes and one

object confidence, and C is the number of classes. In YOLO v3, B = 3 and C = 80, so the

kernel size is 1× 1× 255. The first detection is made by the 82nd layer. For the first 81 layers,

the image is down-sampled by the network, such that the 81st layer has a stride of 32. If we

have an image of 416 × 416, the resultant feature map would be of size 13 × 13. One detection

is made here using the 1 × 1 detection kernel, giving us a detection feature map of 13 × 13 ×

255. Then, the feature map from layer 79 is subjected to a few convolutional layers before

being upsampled by 2× to dimensions of 26 × 26. This feature map is then depth concatenated

with the feature map from layer 61. Then the combined feature maps are again subjected to a

few 1 × 1 convolutional layer to fuse the features from the earlier layer (61). Then, the second

detection is made by the 94th layer, yielding a detection feature map of 26 × 26 × 255. A

similar procedure is followed again, where the feature map from layer 91 is subjected to few

convolutional layers before being depth concatenated with a feature map from layer 36. Like

before, a few 1 × 1 convolutional layer follow to fuse the information from the previous layer

(36). We make the final of the 3 at the 106th layer, yielding a feature map of size 52 × 52 ×

255.

Fig. 5 Yolov3 architecture
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Detections at different layers help address the issue of detecting small objects found in its

predecessor YOLO v2. The complete architecture of YOLOv3 is depicted in Fig. 5.

For the task of face-mask detection, the authors initially trained this model on their facemask

dataset keeping the final 3 layers unfrozen and later trained the complete model for fine-tuning the

weights. The 9 anchors they used are the ones used by the pre-trained model.

Pseudocode

Training:

1. Generate your own annotation file and class names file:

Row Format: image_file_path box 1, box2, ... boxN.

Box format: x_min, y_min, x_max, y_max, class_id

2. Convert the pre-trained weights to ‘.h5’ format as required by Keras.

3. Freeze all layers except the final layers and train for some epochs until Plateau (no

improvement stage) is reached.

4. Unfreeze all the layers and train all the weights while continuously reducing the learning

rate until again plateau is reached.

5. End

Testing on webcam or video in keras using OpenCV:

1. Capture the video through webcam or any saved video testing file.

2. Pass each frame of video or captured frame from webcam through the model.

3. Get the boxes, scores and classes obtained as output and draw the boxes on the frame

accordingly (colour depending on the class of each box).

4. Display a total number of boxes of both classes at the bottom of the screen and record

them in a variable.

5. After iterating through each frame, we shall be able to get the output video with the results

we wanted.

3.1.1 Training of YOLO v3

For training the YOLO v3 model, we took the weights of a pre-trained model as our starting point.

We used the weights provided by original author Joseph Redmon on his website- https://www.

pjreddie.com. We froze all the layers except the last 3 layers of the model and trained it for ~70

epochs on the dataset. After that model was tested on some videos, but the result was not very

satisfactory as we had not fine-tuned the model. For fine tuning of the model, unfreezing of all the

layers of our model was done and we trained it for some more epochs. After reducing the learning

rate, a couple of times, we were able to get some satisfactory results. In Fig. 6, the authors have

presented the results of the YOLOv3 model. In this case, the thresholds used for IOU and score are

0.5 and 0.4, respectively. Here are the weights obtained after training for a decent amount of time:

https://drive.google.com/file/d/1-zQ1aV5phEGPJauaJ6Z9Go8VndmDT170/view?usp=sharing

Model parameters can be further optimized by retraining this already trained model on

some new dataset. Instead of keeping the weights of pre-trained models (provided by the

original author- Joseph Redmon) as the starting point, if one uses the weights we obtained as

the starting point, further optimized parameters can be obtained.
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Final values of loss we obtained after ~63 epochs (plateau was reached) are:

Training loss- 0.1.

Validation loss- 0.25.

3.2 Faster-RCNN

The architecture of faster R-CNN is a simple convolution layer with kernel size 3 × 3 followed

by a regional proposal network (RPN) and then a detector network. The input image is first

resized such that its shortest side is 600px with the longer side not exceeding 1000px and

passed through the RPN network. After passing through RPN, we get an output feature map

with a significantly smaller size from the input. If the input image has 600 × 800 × 3 dimen-

sions, the output feature map would be 37 × 50 × 256 dimensions. Two consecutive pixels in

the backbone output features correspond to two points 16 pixels apart in the input image. Each

point in 37 × 50 is considered as an anchor.

Next, RPN is connected to a Conv layer with 3 × 3 filters, 1 padding, 512 output channels. The

output is connected to two 1 × 1 convolutional layer for classification and box-regression. Every

anchor has 3 × 3 = 9 corresponding boxes in the original image, which means there are 37 × 50 ×

9 = 16,650 boxes in the original image. We just choose 256 of these 16,650 boxes as a mini-batch

Fig. 6 Results from YOLO_v3 model
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which contains 128 foregrounds (pos) and 128 backgrounds (neg). At the same time, non-max

suppression is applied to make sure there is no overlapping for the proposed regions.

Then we go to the second stage of frcnn. Similar to Fast R-CNN, ROI pooling is used for

these proposed regions (ROIs). The output is 7 × 7 × 512. Then, we flatten this layer with

some fully connected layers. The final step is a soft-max function for classification and linear

regression to fix the boxes’ location.

The architecture of faster-RCNN is shown in Fig. 7.

Again, in this case, thresholds used for IOU and score are 0.5 and 0.4, respectively.

3.2.1 Training of faster-RCNN

Pseudocode

Training of Faster R-CNN:

1. Put training and validation images in separate train_images and test_images folders.

2. Generate train.csv annotation file and class names file: -

Row Format: image_file_path,x_min,y_min,x_max,y_max,class_name.

Note that in the case of F-RCNN, all boxes of the image are not written in a single row.

Each box is written on a different row and we must write class name instead of class id

unlike YOLOv3 format.

Fig. 7 Faster-RCNN architecture
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3. We need to convert the .csv format into a .txt file which will have the same format as

described above. Make a new data frame, fill all the values as per the format into that data

frame, and then save it as a .txt file.

4. onvert the pre-trained weights to ‘.h5’ format as required by Keras.

5. Unfreeze all the layers and train all the weights while continuously reducing the learning

rate until a plateau is reached and loss is low and constant for both validation and training

dataset.

Pseudo code for testing on webcam or video in Keras using OpenCV:

1. Capture the video through the webcam or any saved video testing file.

2. Pass each frame of video or captured frame from the webcam through the model.

3. Define the threshold for IOU and scores.

4. Get the boxes, scores and transform the coordinates of the bounding boxes to their original

size.

5. Draw coloured rectangles in place of coordinates and display a total number of boxes of

both classes at the bottom of the screen and record them in a variable.

6. After iterating through each frame, we shall be able to get the output video with the results

we wanted.

For training the Faster-RCNN model, the authors used ResNet-101-FPN architecture as the

backbone for the base model. They used pre-trained weights provided by facebook’s model

zoo as the starting point and trained all the layers for ~50 epochs on their dataset while

reducing the learning rate occasionally. The same dataset is considered for experimental work

which is used for experimental work with the YOLO v3 model.

3.2.2 Final results of faster R-CNN

In faster R-CNN, there were two loss functions that we applied to both the RPN model and

Classifier model. They both showed a similar tendency and even similar loss value while

training. The total loss i.e., the sum of both the losses had a decreasing tendency. Total training

loss we obtained after ~50 epochs was 0.04 and total validation loss was 0.15.

It would be better if we could analyze the percentage of people wearing masks on a daily

basis. For this task, both the models (YOLOv3 and FRCNN) are modified in such a way that

the algorithm is tested on videos. For each frame of video, we calculated the ratio of people

wearing masks and record it. After testing each frame of the video, we convert the new frames

back to a video and take the average of all ratios to analyze the number of people wearing

masks on a daily basis.

4 Experimental results

After testing a significant number of videos, we found that the accuracy of both the models is

good but F-RCNN is marginally better. F-RCNN has a place with the RCNN family and falls

under the two-phase identifier’s classification. The procedure contains two phases. To start

with, we obtain region proposals and afterward classify each proposal and predict the
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bounding box. These detectors normally lead to great identification accuracy yet the interpre-

tation time of these detectors with region proposals require massive computation and run-time

memory, whereas, detectors having a place with the YOLO series fall under single stage

detectors. It is a solitary stage process. These models use the predefined stays that cover spatial

position, scales, and aspect ratios across an image. Hence, we do not need an additional branch

for separating the area proposition. Since all computations are in a solitary system, they are

bound to run quicker than the two-phase detectors. YOLOv3 is also a single-stage detector and

at present the state-of-the-art for object detection. For a rough comparison of these two object

detection models, we calculated the Average Precision by taking IOU = 0.5 for both the

models on some examples and got the following results (Table 1).

So, from our results, both our models are fairly accurate but for applying these models in

real-world surveillance cameras or other real-world applications, it would be preferable to use

the model with the YOLOv3 algorithm as it performs single-shot detection and has much less

inference time than Faster-RCNN or any other state-of-the-art object detection algorithms

though there is some trade-off between speed and precision. Let us take the case of self-driving

vehicles. Consider that we have trained an object identification model that takes a couple of

moments to recognize objects in an image and we employed this model in a self-driving

vehicle. We positively might not want to see such a model in action! The inference time here is

excessive. The vehicle will set aside a great deal of effort to settle on choices that may prompt

significant circumstances like mishaps too. Hence, in such situations, we need a model that

will give us real-time results. Experimental results of both models, namely, YOLOv3 and

Faster-RCNN are depicted in Figs. 6 and 8, respectively.

5 Conclusion

The article proposed an efficient real-time deep learning-based technique to automate the

process of detecting masked faces, where each masked face is identified in real-time with the

help of bounding boxes. The extensive trials were conducted with popular models, namely,

Faster RCNN and YOLO v3. F-RCNN has better precision, but for applying this in real-world

surveillance cameras, it would be preferred to use the model with YOLO algorithm as it

performs single-shot detection and has a much higher frame rate than Faster-RCNN or any

other state-of-the-art object detection algorithms. If we look at the speed/accuracy tradeoff on

the mAP at .5 IOU metric, one can tell YOLOv3 is better than faster R-CNN. Which model to

use, also depends on the resources available. If high-end GPUs are available on the deployed

devices, faster R-CNN must be used. YOLOv3 can be deployed on mobile phones also. Since

this approach is highly sensitive to the spatial location of the camera, the same approach can be

fine-tuned to better adjust with the corresponding field of view. These models can be used

along with surveillance cameras in offices, metros, railway stations and crowded public areas

to check if people are following rules and wearing marks. The trained weights provided by the

Table 1 Comparative analysis

MODEL Average Precision Inference Time

YOLOv3 55 0.045 s

Faster R-CNN 62 0.15 s
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authors can be further improved by training on larger datasets and can then be used in real-

world applications.

6 Future scope

This application can be used in any working environment like any public place, station,

corporate environment, streets, shopping malls, examination centers, etc., where accuracy

and precision are highly desired to serve the purpose. This technique can be used in smart

city innovation and it would boost up the development process in many developing countries.

Our analysis of the current circumstance presents a chance to be more ready for the next crisis,

or to evaluate the effects of huge scope social change.
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