
Chapter 15
Face Morphing Attack Detection
Methods

Ulrich Scherhag, Christian Rathgeb, and Christoph Busch

Abstract Morphing attacks pose a serious threat to face recognition systems, espe-
cially in the border control scenario. In order to guarantee a secure operation of
face recognition algorithms in the future, it is necessary to be able to reliably detect
morphed facial images and thus be able to reject them during enrolment or verifica-
tion. This chapter provides an overview of morphing attack detection algorithms and
metrics to measure and compare their performance. Different concepts of morphing
attack detection are introduced and state-of-the-art detection methods are evaluated
in a comprehensive cross-database experiments considering various realistic image
post-processings.

15.1 Introduction

Facial recognition systems have been found vulnerable to Morphing Attacks (MAs).
In these attacks, the facial images of two (or more) individuals are combined (mor-
phed) and the resulting morphed facial image is then presented during registration as
a biometric reference. If themorphed image is accepted, it is likely that all individuals
that contributed to themorphed facial image can be successfully authenticated against
it. Morphing attacks thus pose a serious threat to facial recognition systems, in partic-
ular in scenarios where the reference image is often provided in printed form by the
applicant. The vulnerability of facial recognition systems to faceMAs is already well
known [5, 29]. Many different approaches for Morphing Attack Detection (MAD)
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Fig. 15.1 Categorisation to no-reference and differential morphing attack detection scheme

have been proposed in the scientific literature. For a comprehensive survey on pub-
lished morphing attack detection methods the interested reader is referred to [29,
31]. An automated detection of morphed face images is vital to retain the security
of operational face recognition systems. According to [25], MAD systems can be
divided into two categories: no-reference or single image MAD and reference-based
or differential MAD. The corresponding scheme for single image MAD is shown in
Fig. 15.1a.

The image to be analysed is passed to the MAD system. First, features are
extracted, based on which a classifier decides whether the presented image is a
morph or bona fide. The single image MAD scheme can be used during enrolment
as well as during verification.

Differential MAD can be used in scenarios where another image, a Trusted Live
Capture (TLC), is available in addition to the suspected morph. For example, during
verification in an Automated Border Control (ABC) gate, when the probe image is
acquired in addition to the extracted reference image from the electronic travel doc-
ument (suspected morph). The schematic process of differential MAD is depicted in
Fig. 15.1b. In general, the same features are extracted from both provided images.
These are compared according to a fixed metric and the classifier uses this difference
to decide if the suspected morph is a morph or bona fide. This method has the advan-
tage that the additional information of the TLC is used for the decision. However, it
should be noted that in real scenarios TLCs are usually acquired in semi-supervised
environments, e.g. border gate, and therefore may show a lower quality and higher
variance compared to the suspected images.

This bookchapter is organised as follows: Sect. 15.2 brieflydiscusses relatedworks
on MAD. Section15.3 describes the considered MAD pipeline. The used database
is described in Sect. 15.4. MAD methods are presented in Sect. 15.5 and evaluated
in Sect. 15.6. Finally, a summary is given in Sect. 15.7.
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15.2 Related Works

In recent years, numerous approaches for the automated detection of MAs have been
presented. The majority of works is based on the single image scenario. The single
image MAD approaches can be categorised into three classes: texture descriptors,
e.g. in [20, 24, 26], forensic image analysis, e.g. in [23, 32], and methods based on
deep neural networks, e.g. in [7, 21]. These differ in the artefacts they can potentially
detect. A brief overview is given in Table15.1.

Differential MAD can be categorised into approaches that perform a biometric
comparison directly with the two facial images, e.g. in [30], and algorithms that
attempt to reverse the (potential) morphing process, e.g. in [6, 16]. In the former
category, features from both face images, the potentially morphed facial image and
the probe image, are extracted and then compared. The comparison of the two fea-
ture vectors and the classification as bona fide comparison or MA is usually done
using machine learning techniques. By specifically training these procedures for the
recognition of MAs, they can—in contrast to facial recognition algorithms—learn to
recognise specific patterns within the differences between the two feature vectors for
these attacks. This has already been demonstrated for features derived from general
purpose texture descriptors. While training a deep neural network from scratch in
order to learn discriminative features for MAD requires a high amount of training
data, pre-trained deep networks can be employed. The second type of differential
MAD procedure aims at reversing the morphing process in the reference image (“de-
morphing”) by using a probe image. If the reference image was morphed from two
images and the probe image shows a person contributing to the morph (the attacker),
the face of the accomplice would ideally be reconstructed, which would be rejected
in a subsequent comparison with the probe image using biometric face recognition;
if, on the other hand, a bona fide reference image is available, the same subject should
still be recognisable after the reversal of a presumed morph process with the probe
image, and thus the subsequent comparison of the facial recognition process should
be successful.

Despite promising results reported in many studies, the reliable detection of mor-
phed facial images is still an open research task [14]. In particular, the generalis-

Table 15.1 Categories of singe image MAD approaches and analysed artefacts

Category Analysed artefacts

Texture descriptors Smoothened skin texture, ghost artefacts/
half-shade effects (e.g. on pupils, nostrils),
distorted edges, offset image areas

Forensic image analysis Sensor pattern noise, compression artefacts,
inconsistent illumination or colour values

Deep-learning approaches All possible artefacts learned from a training
dataset
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ability and robustness of the published approaches could not yet be proven while
some results are hardly comparable and comprehensible. The vast majority of pub-
lications use internal databases of the respective research groups for training and
testing [27]. In addition, different evaluation metrics are used in the publications.
Since most implemented MAD procedures are not made publicly accessible, com-
parative independent evaluation of the detection performance is difficult. First efforts
towards benchmarking MAD algorithms have been made in [15, 22]. Furthermore,
most publications only use images from a single database andmorphs generated with
a single algorithm for training and testing, so that the generalisation capability of
the methods cannot be assessed across different databases and morphing methods.
In publications on differential MAD, the comparison images used often show a low
variance with respect to poses, facial expressions and illumination and are usually
produced shortly after the reference image—in real scenarios such as border con-
trol, a much higher variance is to be expected. In addition, many studies neglect the
probable application of image post-processing techniques by an attacker, such as
subsequent image sharpening, and the print-scan transformation [14].

15.3 Morphing Attack Detection Pipeline

The individualmodules of the pipeline considered forMADalgorithms are illustrated
in Fig. 15.2. The pipeline consists of the following 4 steps: data preparation, feature
extraction, feature preparation, and classifier training.

15.3.1 Data Preparation and Feature Extraction

For most feature extractors it is necessary to pre-process the face image beforehand.
The result of feature extractors depends on the resolution of the analysed image,
requiring a normalisation of the image size. Especially with the TLCs, variances in
position and pose may occur, which can be corrected by the data preparation. In
addition, it is useful, for example, for texture-based feature extractors, to crop the
image to the relevant facial area, ensuring that no information from the background
influences the feature vector.

Depending on the feature extractor selected and the configuration, the obtained
feature vector will contain different information, information not contained in the
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Fig. 15.2 Design of MAD pipeline
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feature vector is not available to the algorithms in the further process. For example, if
a basic Local Binary Patterns (LBP) histogram is calculated, the feature vector will
not contain any spatial information. If, despite the use of LBP histograms, spatial
information is to be included in the feature vector, the image to be analysed can
be divided into cells, a histogram can be calculated for each cell and the resulting
histograms can be concatenated. Thus, spatial information in resolution of the cells
can be preserved, however, the length of the feature vector increases accordingly.

15.3.2 Feature Preparation and Classifier Training

Once the feature vectors have been created, they have to be prepared for the training
of the classifier. For example, many classifiers only accept one-dimensional input
data, requiringmulti-dimensional characteristics to be prepared accordingly. Further,
for differentialMADalgorithms, thismodule combines the feature vectors of the sus-
pected morph and the TLC. The choice of the combination method is arbitrary but
determines the length of the resulting feature vector as well as the contained infor-
mation. Most classifiers require normalised data for optimal training, thus feature
normalisation may be required.

In the last module classifiers are trained on basis of the previously prepared fea-
ture vectors. In order to achieve the best possible separation of the feature vectors
into classes, appropriate classifiers and parameters have to be chosen. The optimal
classifier and parameters depend on the information in the respective feature vectors.

15.4 Database

The face image database used in this work is based on the publicly available FERET
[19] and FRGC [18] face image databases. The creation of the database requires
3 categories of images: bona fide reference images, morph input images, and TLC
images. The bona fide reference images correspond to an unaltered passport image
and should meet the corresponding quality criteria. The morph input images are used
in pairs for the morphing process. These should be of passport image quality as well.
For the selection of the images in passport image quality, the guidelines standardised
in ISO/IEC 19794-5 [8] were followed. Consequently, only images with a closed
or minimally opened mouth and a neutral facial expression or a slight smile were
included. Images with reflecting glasses were discarded. The class of TLC images
corresponds to live recordings, for example, at an ABC gate. Therefore, the images
should not be of a controlled, high quality, as this cannot be expected from semi-
supervised capturing. For this class, all images not classified as suitable for passport
photos in the above pre-selection can be considered. Thus, these images may contain
variations in sharpness, lighting, facial expressions, pose, etc.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 15.3 Examples of reference and grey scale TLC images for FERET

Table 15.2 Composition of the database resulting from the image pre-selection

Database Subjects Male Female Bona fide Morph input TLC

FERET 530 330 200 530 530 791

FRGC 533 231 302 984 964 1726

The partitioning of the images into the classes passport image quality and TLC
qualitywas carried outmanually. In the FERETsubset,mainly different facial expres-
sions and slight rotations in the pose are included, examples are given in Fig. 15.3.
In the FRGC subset, the variances are more significant. In addition to different facial
expressions, different backgrounds, illuminations and focuses of the images can be
observed, examples are shown in Fig. 15.4.

Based on the two pre-sorted classes, the images are divided into three categories:
bona fide reference images, morph input images and TLC images. In order to create
realistic scenarios, the time of capture between the passport images and the probe
images is maximised as far as possible on the basis of the databases. Due to the large
differences in the number of images per subject between the databases, different
protocols are used for both databases. The composition of the resulting database is
listed in Table15.2.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 15.4 Examples of reference and grey scale TLC images for FRGC

15.4.1 Image Morphing

In order to enable the database to be used for evaluating the generalisability of
MAD algorithms towards differing morphing algorithms, four different morphing
algorithms are applied to construct the database, hereafter referred to as FaceFusion,1

FaceMorpher,2 OpenCV and UBO Morpher:

• FaceFusion is a proprietary morphing algorithm. Originally being an iOS app,
an adaptation for Windows which uses the 68 landmarks of Dlib and Delaunay
triangles was applied. After the morphing process, certain regions (eyes, nostrils,
hair) of the first face image are blended over themorph to hide artefacts. Optionally,
the corresponding landmarks of upper and lower lips can be reduced as described
in [12] to avoid artefacts at closed mouths. The created morphs have a high quality
and low to no visible artefacts. An example is shown in Fig. 15.5b.

• FaceMorpher is an open-source implementation using Python. In the version
applied for this work, the algorithm uses STASM for landmark localisation. Delau-
nay triangles, which are formed from the landmarks, are warped and blended. The

1 www.wearemoment.com/FaceFusion.
2 https://github.com/alyssaq/face_morpher.

www.wearemoment.com/FaceFusion
https://github.com/alyssaq/face_morpher
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(a) Subject 1 (b) FaceFusion (c) FaceMorpher

(d) OpenCV (e) UBO Morpher (f) Subject 2

Fig. 15.5 Examples of morphing face images a and f using all four algorithms (b)–(e)

area outside the landmarks is averaged. The generated morphs show strong arte-
facts in particular in the area of neck and hair. An example is shown in Fig. 15.5c.

• OpenCV is a self implemented morphing algorithm derived from “Face Morph
Using OpenCV”.3 This algorithmworks similar to FaceMorpher. Important differ-
ences between the algorithms are that for landmark detection Dlib is used instead
of STASM and that for this algorithm landmarks are positioned at the edge of the
image, which are also used to create morphs. Thus, in contrast to FaceMorpher,
the edge does not consist of an averaged image, but like the rest of the image, of
morphed triangles. However, strong artefacts outside the face area can be observed,
which is mainly due to missing landmarks. An example is shown in Fig. 15.5d.

• UBOMorpher is the morphing tool of University of Bologna, as used, e.g. in [6].
This algorithm receives two input images as well as the corresponding landmarks.
Dlib landmarks were used in this work. Themorphs are generated by triangulation,

3 www.learnopencv.com/face-morph-using-opencv-cpp-python.

www.learnopencv.com/face-morph-using-opencv-cpp-python
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Table 15.3 Number of comparisons per post-processing in the resulting database

Database Genuine
Comp. Bona
Fide Comp.

Impostor
comparisons

Morph
comparisons

Bona fide
samples

Morph
samples

FERET 791 418,966 791 530 529

FRGC 3,298 1,695,086 3,246 984 964

warping and blending. To avoid artefacts in the area outside the face, the morphed
face is copied to the background of one of the original images. Even if the colours
are adjusted, visible edges may appear at borderline of the blended areas. An
example is shown in Fig. 15.5e.

The morph input images are used to create the morphs. Morph pairs were formed
in a way to keep the ratio between morphs and bona fide images in balance. Two
parameters, namely, sex andwhether the subject wears glasses, are taken into account
for the construction of the morph pairs. Morphing subjects of different sexes usually
results in morphs with unnatural appearance. The creation of morphs with subjects of
different sex are not to be expected in the real scenario, thus they are excluded from
the database. Furthermore, it has been found, that if two subjects wearing glasses are
morphed, the resultingmorph contains double glasses. To avoid this kind of artefacts,
morph pairs are formed with at most one subject wearing glasses.

The morph pairs are formed within one face database, in order to enable a clear
separation of datasets during training and evaluation. Due to the different number of
morph input images per subject in both databases, different protocols are defined.
With each morphing tool morphs were created from all available morph pairs. The
morphs were created with a blending and warping factor of 0.5. However, due to
the automatic improvement processes of FaceFusion and UBOMorpher, the morphs
created by these algorithms are not symmetrical.

The properties of the resulting database are listed in Table15.3. For the evaluation
of differential MAD algorithms the number of bona fide comparisons and morph
comparisons is relevant, for single image MAD algorithms the number of bona fide
samples and morph samples, respectively. The values given are per post-processing,
quadrupling the actual number of passport images contained in the database.

15.4.2 Image Post-Processing

The passport images (morph and bona fide) and the TLC images are post-processed in
a different way. The TLC images are converted to greyscale, as some camera systems
used at border control are only providing monochrome images. Since the morphing
algorithms produce different, and sometimes recognisable, outputs, for example, by
partially normalising the images, all passport images (including the bona fides) are
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(a) original (b) resized (c) JPEG2000 (d) Print/Scan

Fig. 15.6 Examples of an original image and the three post-processing types

normalised. This also prevents from over-fitting to artefacts not present in a real
scenario, such as different image sizes between morphs and bona fides. During the
normalisation process, images are scaled to 960× 720 pixels, resulting in a face
region of 320× 320 pixels.

Depending on the process by which the facial image is inserted into the passport,
various post-processing steps are performed on the image. To reflect the realistic
scenarios, the database contains four different post-processing chains for all passport
photographs (Fig. 15.6):

• Unprocessed: The images are not further processed. In the text below referred to
as NPP (no post-processing). This serves as baseline.

• Resized: The resolution of the images is reduced by half, reflecting the average
size of a passport image. This pre-processing corresponds to the scenario that an
image is submitted digitally by the applicant.

• JPEG2000: The images are resized by half and then compressed using JPEG2000,
awavelet-based image compressionmethod that is recommended for EU passports
[4]. The setting is selected in a way that a target file size of 15KB is achieved.
This scenario reflects the post-processing path of passport images if handed over
digitally at the application desk.

• Print/Scan–JPEG2000 The original images (uncompressed and not resized) are
first printed with a high quality laser printer (Fujifilm Frontier 5700R Minlab
on Fujicolor Crystal Archive Paper Supreme HD Lustre photo paper) and then
scanned with a premium flatbed scanner (Epson DS-50000) with 300 dpi. A dust
and scratch filter is then applied in order to reduce image noise. Subsequently, the
images are resized by half and then compressed to 15 KB using JPEG2000.4 This
scenario reflects the post-processing path of passport images if handed over at the
application desk as a printed photograph.

4 Due to the glossy print, the scans exhibit a visible pattern of the paper surface, which is only partly
removed by the dust and scratch filter and results in stronger compression artefacts than for scans
of glossy prints.
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15.5 Morphing Attack Detection Methods

Different types of MAD methods are considered in a single image and differential
scenario. According to the previously described MAD pipeline, these use a similar
pre-processing and the same classification. For the feature extraction step different
types of texture descriptors are employed, including traditional algorithms as well
as gradient-based methods. In addition, deeply learned features are used.

15.5.1 Pre-Processing

In the pre-processing, face images are normalised by applying suitable scaling, rota-
tion and padding/cropping to ensure alignment with respect to the eyes’ positions.
Precisely, facial landmarks are detected applying the dlib algorithm [11] and align-
ment is performed with respect to the detected eye coordinates with a fixed position
and an intra-eye distance of 180 pixels. Subsequently, the normalised images are
cropped to regions of 160×160 pixels centred around the tip of the nose.

15.5.2 Feature Extraction

For the feature extraction step, three types of descriptors are considered: texture
descriptors, gradient-based descriptors, as well as descriptors learned by a deep
neural network.

Texture Descriptors: During the creation ofmorphed facial images, themorphing
process introduces changes into the image that can be used to detect said images.
In particular, these changes are reflected by faulty regions, such as overlapping
landmarks, which result in incorrectly distorted triangles, as shown in Fig. 15.7a.
Another error common to automated morphing algorithms is artefacts in the eye
region, which is particularly prone to errors due to the high contrast provided
by shadows and wrinkles, and the difficult detection of the iris. An example of
artefacts in the eye region is given in Fig. 15.7b. Furthermore, ghost artefacts can
be caused by landmarks that are too few or too poorly positioned. This happens
frequently in the area of the neck or hair, as visualised in Fig. 15.7c. In order to be
able to map this kind of image changes in feature vectors, texture descriptors can
be used. In this work, the suitability of LBP [1] and Binarized Statistical Image
Features (BSIF) [10] for detecting these artefacts is investigated.

By calculating the classical LBP histogram obtained from 3 LBP patches, any
local information contained in the image is discarded. To preserve local infor-
mation, the LBP image can be divided into cells, subsequently a histogram is
calculated for each cell. As a result, the length of the feature vector multiplies by
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the number of cells, but spatial information is obtained in resolution of the cell
division. An inevitable correlation exists between cell division, patch size, image
size and the resulting histogram. The finer the cell division and the larger the
patch, the fewer values can be calculated per cell and the sparser the histogram.
As the resolution increases, the number of values per cell increases as well. For
the applied patch sizes and the region of 160× 160 pixels, a subdivision into
4× 4 cells has shown to be appropriate, thus it is implemented in addition to the
LBP calculation without cell division.

As a further texture descriptor, BSIF is used. As for LBP, it has been shown that
the use of larger BSIF patches results in more robust systems, but using smaller
BSIF patches results in significantly higher performance [28]. In order to allow
a better comparison to BSIF with a patch size of 3× 3 pixels with 8 filters are
used. The resulting feature vector is of length 256. Also, to ensure comparability,
the same configuration as for LBP of division into 4× 4 cells is implemented.

Gradient-based Descriptors: Histograms of Oriented Gradients (HOG) [2, 13]
represents a gradient-based descriptor. For HOG, the definition of the parameters
influences the result of the histogram calculation, as well as the length and content
of the feature vector. In order to achieve a robust and general applicable HOG
extraction, recommended standard parameters5 are applied, namely 9 orientations,
8× 8 pixels per cell (which corresponds to 20× 20 cells for regions of 160× 160
pixels), and 3× 3 cells per block, resulting in a feature vector of length 26,244.

Deep Features: Machine learning algorithms, especiallyDeepConvolutionalNeu-
ral Networks (D-CNN), can be used to extract statistically significant features
from images in addition to hand-crafted feature extractors. The difficulty of this
approach is the dependence of the information represented in the extracted fea-
tures on the nature of the training data used to train the feature extractor. If the
wrong training data is chosen, this might cause an over-fitting of the feature
extractor, resulting in very good results on known data, which, however, cannot
be reproduced in a real use case on unknown data. In order to avoid this effect,
only D-CNN pre-trained for face recognition are applied in this thesis. These
networks have been trained to extract representative features from facial images,
without containing morphed facial images in the training process, thus implicitly
preventing an over-fitting to artefacts of a specific morphing algorithm. In the
implemented MAD pipeline the feature extractors of three different face recogni-
tion systems are used, which are described inmore detail in the following sections.

In the MAD pipeline the existing implementation6 of the authors of [3] is
utilised. In contrast to the previously mentioned methods, here the images are

5 The standard parameters are derived from the documentation of the used HOG implementation:
https://scikit-image.org/docs/dev/api/skimage.feature.html.
6 The corresponding source code can be found at:
https://github.com/deepinsight/insightface.

https://scikit-image.org/docs/dev/api/skimage.feature.html
https://github.com/deepinsight/insightface
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(a) Example of errors intro-
duced by incorrectly distorted
triangles

(b) Example of errors in eye re-
gion

(c) Example of errors in hair re-
gion

Fig. 15.7 Example of errors introduced by incorrect morphing

normalised using MTCNN and scaled to 112× 112 pixels, prior to training or
feature extraction. The authors offer several pre-trained models, in this pipeline
the model LResNet50E-IR,ArcFace@ms1m-refine-v1 is chosen, since, according
to the authors, it achieves themost stable performance on the tested databases. The
architecture of the selected network is, as the name suggests, a residual network
comprised of 50 layers. A residual network is characterised by shortcut connec-
tions between different layers, allowing the output of a previous layer (residuals)
to be processed as input on subsequent layers, simplifying the computationally
expensive training of very deep CNN.

15.5.3 Classification

In a single image MAD system, the detector processes only the suspected reference
image. For this detection approach, the extracted feature vectors are directly anal-
ysed. In contrast, in the differential detection systems, a trusted live capture from
an authentication attempt serves as additional source of information for the detec-
tor. This information is utilised by estimating the vector differences between feature
vectors extracted from processed pairs of images. Specifically, an element-wise sub-
traction of feature vectors is performed.

Support Vector Machines (SVMs) with Radial Basis Function (RBF) kernels
are used to distinguish between bona fide and retouched face images. In order to
train SVMs, the scikit-learn library [17] is applied. Since the feature elements of
extracted feature vectors are expected to have different ranges, data-normalisation is
employed. Data-normalisation turned out to be of high importance in cross-database
experiments. It aims to rescale the feature elements to exhibit a mean of 0 and a
standard deviation of 1. At the time of training, a regularisation parameter of C = 1
and a kernel coefficient Gamma of 1/n is used, where n represents the number of
feature elements.
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15.6 Experiments

To compare different MAD algorithms with each other, uniform evaluation methods
and metrics are essential. For the evaluation of the vulnerability of face recognition
systems against MAs, different metrics have been introduced in previous publica-
tions, e.g. [25], which will not be described further. To evaluate the performance of
MAD algorithms, each comparison is considered individually, since each morph has
to be detected separately. For this reason, the metrics defined in ISO/IEC 30107-
3 [9] for the performance reporting of presentation attacks can be used, namely,
Attack Presentation Classification Error Rate (APCER) and Bona Fide Presentation
Classification Error Rate (BPCER), which are defined as follows [9]:

• APCER: proportion of attack presentations using the same PAI species incorrectly
classified as bona fide presentations in a specific scenario.

• BPCER: proportion of bona fide presentations incorrectly classified as presenta-
tion attacks in a specific scenario.

In an effectiveMAD system, the resultingMAD scores ofMA and bona fide samples
should be clearly separable. For overlapping MAD score distributions, a trade-off
between security (low APCER) and high throughput (low BPCER) has to be found
by setting a corresponding decision threshold. The Detection Equal Error Rate (D-
EER) reflects the error rates in a single operating point where the APCER is equal
to the BPCER. Hereafter the D-EER will be used for measuring the performance of
MAD methods.

15.6.1 Generalisability

In the first experiment, the generalisability of MAD methods across heterogeneous
data sources in analysed. To this end, the MAD methods based on LBP and BSIF
texture descriptors are evaluated in a single image and a differential scenario. On
the one hand, this is done for a split of the FRGC dataset into a training and test
set. On the other hand, the entire FRGC dataset is used for training while testing is
performed on the FERET dataset. Obtained results are summarised in Table15.4. It
can be observed that D-EER values significantly increase in case the data source is
unknown. This holds for both, the single image and differential scenario when using
LBP and BSIF for the feature extraction. That is, MAD algorithms may overfit to
certain data sources which underlines the importance of evaluatingMADmethods in
cross-database experiments. In all of the following experiments, the FRGC database
will be used during the training stage and testing is performed on the FERET dataset.
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Table 15.4 Influence of unknown data sources on MAD methods

Training Test Single image Differential

Database Morphing
algorithm

Database Morphing
algorithm

LBP (%) BSIF (%) LBP (%) BSIF (%)

FRGC-
Train

OpenCV FRGC-
Test

OpenCV 5.2 3.5 3.9 4.7

FRGC OpenCV FERET OpenCV 22.4 20.1 28.8 18.1

15.6.2 Detection Performance

In the next experiment, the suitability of all feature extractors forMADis investigated.
Here, training is conducted on lowqualitymorphs (FaceMorpher andOpenCV)while
the testing is done on high quality morphs (FaceFusion, UBO Morpher) in order to
obtain amore challenging scenario. Table15.5 summarised the three best performing
MAD methods in the single image and differential scenario (best results marked
bold). For the single image scenario, the most competitive results are achieved when
usingHOG for feature extraction.However, obtainedD-EERs are still rather high, i.e.
reliable MAD appears more challenging in the single image scenario. In contrast,
for the differential MAD methods significantly lower D-EER can be obtained. In
particular, for the use of deep features D-EER values below 3% are achieved. Note,
that deep features have not been found suitable for the single image MAD. Hence, it
can be concluded that deep features are highly suitable for differential MAD which
has also been reported in [15, 30]. Focusing on single image MAD more elaborated
feature extractors are required to better distinguish between bona fide and morphed
face images.

Table 15.5 Performance of MAD algorithms

Training Test Single image Differential

Morphing
algorithm

Morphing
algorithm

LBP (%) BSIF (%) HOG (%) LBP (%) HOG (%) Deep
features
(%)

FaceMorpher FaceFusion 31.01 30.76 24.05 24.30 19.37 2.71

UBO
morpher

26.71 28.99 19.75 19.62 15.70 2.58

OpenCV FaceFusion 26.20 31.01 23.92 22.41 18.73 2.71

UBO
morpher

24.05 28.61 20.63 19.11 15.70 2.71
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15.6.3 Post-Processing

Eventually, the influence of considered image post-processings on the used MAD
methods is estimated. Here, training is performed on the original images and testing
on post-processed ones. It was found that resizing has negligible impact on MAD
performance of the considered methods. Table15.6 summarises the impact of image
compression using JPEG2000 for the best performing single image and differential
MADapproach. Focusing on the best single imageMADbased onHOG, a significant
increase ofD-EERvalues canbeobserved.Thismeans image compression negatively
impacts this single image MAD algorithm. Due to the compression, artefacts which
have been learned to distinguishmorphed images frombona fide imagesmight vanish
which is particularly the case for the used JPEG2000 algorithm. In contrast, deep
features turn out to be robust to image compression. This is the case since these are
extracted by a face recognitionmodelwhich has been trained to extract discriminative
face representations which are highly robust to such post-processings.

Finally, the impact of printing and scanning on theMADperformance is evaluated.
Corresponding results are summarised in Table15.7. Again, a significant drop in the
detection performance can be observed for the single image MAD method based on
HOG. The artefacts introduced by the printing and scanning process increase the
D-EER to a large extent. However, the differential MAD algorithm based on deep
features maintains detection performance for printed and scanned images.

Table 15.6 Influence of image compression on MAD methods

Morphing algorithm Single image Differential

Training Test HOG Deep features

FaceMorpher FaceFusion 28.2% (+4.1) 3.0% (+0.3)

UBO morpher 27.3% (+7.6) 3.1% (+0.5)

OpenCV FaceFusion 31.9% (+8.0) 2.7% (+-0)

UBO morpher 31.0% (+10.4) 2.7% (+-0)

Table 15.7 Influence of printing and scanning on MAD methods

Morphing algorithm Single image Differential

Training Test HOG Deep features

FaceMorpher FaceFusion 34.1% (+10) 1.3% (-1.4)

UBO Morpher 36.6% (+16.8) 3.2% (+0.6)

OpenCV FaceFusion 53.4% (+29.5) 1.4% (-1.3)

UBO Morpher 37.1% (+19.5) 3.1% (+0.4)
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15.7 Summary

MAs pose a high security risk to modern facial recognition systems in particular for
border control. To counteract this, reliable methods for MAD must be developed.
Various research groups from the fields of image processing and biometrics have
recently published scientific papers on this topic, and several publicly funded research
projects are currently dealing with this problem. However, research in this field is
still in its infancy and does typically not address the variance of the image data
available in border control scenarios. The development of MAD approaches that are
effective and robust in real-world scenarios will require a considerable amount of
future research as well as close collaborations with border guard agencies.

The majority of the MAD methods published so far—in particular the single
image MAD methods—aim at the detection of artefacts that can easily be avoided,
e.g. clearly visible ghost artefacts, double compression artefacts and changed image
noise patterns. Further, usually face images are taken from a single data source, i.e.
face image database.Hence, reported detection rates tend to be over-optimistic.MAD
approaches are, like any classification task, susceptible to over-fitting to training
data. When evaluating MAD approaches, images of which source and properties
differ from those of the training data, i.e. images from other databases and morphs
created with other techniques should be employed. In case of unknownMAs, i.e. face
images stem from different data sources and were created with unknown morphing
algorithms, the detection performance of MAD methods may significantly drop,
as shown in this work. Further, it was shown that post-processing steps applied to
reference images like printing/scanning and strong image compression may cause
drastic drops in the detection performance at least for single image MAD, since
artefacts caused by morphing vanish in the post-processed reference. In contrast to
many published works on MAD (see [29, 31]), the results reported in this work are
supported by external evaluations conducted in [15, 22].

In contrast, research should focus on the development ofMADmethods that detect
artefacts that are difficult to avoid. While the detection performance for differential
MAD based on deep features showed promising results in the experiments of this
work, the used datasets might not fully reflect real-world scenarios. For border con-
trol scenarios, MAD techniques need to be robust against print-scan transformations,
resizing and strong compression of reference images. Similarly, in the case of differ-
ential MAD, considerable variance of illumination, background, pose, appearance
(hair, beard, glasses, etc.) and ageing (up to 10 years for passports) can be expected in
probe images. In order to be applicable to these scenarios, MAD approaches should
be trained and evaluated on images exhibiting these characteristics.
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