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Abstract

We analyze a remarkable class of centrally symmetric polytopes, the Hansen
polytopes of split graphs. We confirm Kalai’s 3d conjecture for such polytopes (they
all have at least 3d nonempty faces) and show that the Hanner polytopes among
them (which have exactly 3d nonempty faces) correspond to threshold graphs. Our
study produces a new family of Hansen polytopes that have only 3d + 16 nonempty
faces.

Keywords: Hansen polytopes, Hanner polytopes, split graphs, threshold graphs,
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1 Introduction

A convex polytope P is centrally symmetric if P = −P . In 1989, Kalai [5] posed three
conjectures on the number of faces and flags of centrally symmetric polytopes, which he
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named Conjectures A, B and C. Two of these, Conjectures B and C, were refuted by
Sanyal et al. [8]. The exposed counterexamples are so-called Hansen polytopes that are
constructed from the stable set structure of certain self-complementary graphs. Conjec-
ture A however, known as the 3d conjecture, was confirmed for dimension d 6 4 but
remains open for d > 4:

Conjecture 1 (3d conjecture). Every centrally symmetric polytope of dimension d has
at least 3d nonempty faces.

The present article is a contribution to the quest for settling Kalai’s conjecture. Based
on the examples in [8], we have originally started this project by experimentally (via
polymake [2]) searching for self-complementary graphs, which yield self-dual Hansen poly-
topes with interesting properties in view of the 3d conjecture. It turned out, however, that
(a) as expected, non-perfect graphs do not yield good results, and (b) the most interest-
ing examples arise not from the “self-complementary/self-dual” criterion, but from certain
split graphs, which are perfect but not self-complementary. This has led to the present
study, which confirms this first experimental evidence.

As our main result, we express the number of nonempty faces of the Hansen polytopes
of a split graph in terms of certain partitions of the node set of the underlying graph.
In particular, we confirm the 3d conjecture for such polytopes, and show that equality in
this class corresponds to threshold graphs.

After introducing Hansen polytopes in Section 2, we analyze Hansen polytopes of
threshold graphs, which are special split graphs, in Section 3. It turns out that a Hansen
polytope is a Hanner polytope if and only if the underlying graph is threshold. In Sec-
tion 4, we investigate the combinatorics of Hansen polytopes of general split graphs and
prove the main result mentioned above. Our study moreover produces examples of cen-
trally symmetric polytopes that have a total number of nonempty faces very close to the
conjectured lower bound of 3d. The article closes in Section 5 with remarks on the be-
havior of our examples with respect to two conjectures that concern the minimal Mahler
volume and the minimal number of full flags for a centrally symmetric d-polytope.

General assumptions. All our graphs are finite and simple. The set of nodes of a
graph G is denoted by V (G), and similarly the edge set is E(G) if no other notation is
specified. The graph complement of G is G. The complete graph on n nodes is Kn. All
polytopes are convex. We denote the polar of a polytope P by P ?. For details on graph
theory we refer to Diestel [1], for polytope theory to [10].

2 Hansen Polytopes

Hansen polytopes were introduced by Hansen [4] in 1977. One constructs them from the
stable set structure of a (perfect) graph G by applying the twisted prism operation to the
stable set polytope. Let us define these terms.

Definition 2 (Twisted prism). Let P ⊂ Rd be a polytope and let Q := {1} × P be its
embedding in Rd+1. The twisted prism of P is defined as the convex hull of Q and its
reflected copy −Q, that is, tp(P ) := conv(Q ∪ −Q).
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Twisted prisms are centrally symmetric by construction. We are interested in twisted
prisms of stable set polytopes, which we introduce next (see also Schrijver [9, Sec. 64.4]).
By ei we denote the ith coordinate unit vector.

Definition 3. Let G be a graph. The stable set polytope of G is defined as

stab(G) := conv
{∑

i∈I

ei : I ⊆ V (G) stable
}
.

Now we can define the main object of our studies.

Definition 4 (Hansen polytope). The Hansen polytope of a graph G is defined as the
twisted prism of its stable set polytope, that is, H(G) := tp(stab(G)).

Examples of Hansen polytopes are cubes (produced from empty graphs) and crosspoly-
topes (from complete graphs). Recall that a graph G is perfect if the size of the largest
clique of any induced subgraph H of G equals the chromatic number of H. The fol-
lowing properties of Hansen polytopes provide a link between its face structure and the
combinatorics of the underlying graph.

Lemma 5. Let G be a graph.

(i) The vertex set of H(G) is vert(H(G)) = {±(e0 +
∑

i∈I ei) : I ⊆ V (G) stable}.

(ii) If G is perfect, then {−1 6 −x0 + 2
∑

i∈C xi 6 1 : C ⊆ V (G) clique} is an irredun-
dant facet description of H(G).

(iii) If G is perfect, then the polar of the Hansen polytope of G is affinely equivalent to
the Hansen polytope of G, in symbols H(G)? ∼= H(G).

Proof. Part (i) follows from the definition. A proof of (ii) can be found in Hansen’s
paper [4] and (iii) follows from (ii).

From now on for the rest of the article we assume all graphs to be perfect.

3 Hansen Polytopes of Threshold Graphs

An important class of polytopes that attain the conjectured lower bound of the 3d con-
jecture are the so-called Hanner polytopes. This class of polytopes includes cubes and
crosspolytopes and was introduced by Hanner [3] in 1956. They are recursively defined
as follows.

Definition 6 (Hanner polytope). A polytope P ⊂ Rd is a Hanner polytope if it is either
a centrally symmetric line segment or, for d > 2, the Cartesian product of two Hanner
polytopes, or the polar of a Hanner polytope.
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It is neither the case that all Hanner polytopes are Hansen polytopes nor vice versa.
A characterization of their relation is our first result. Before we can state it, we need to
introduce threshold graphs, a subclass of perfect graphs. An extensive treatment of this
graph class is Mahadev & Peled [6]. The definition involves the notions of dominating
and isolated nodes: A node in a graph is dominating if it is adjacent to all other nodes;
it is isolated if it is not adjacent to any other node.

Definition 7 (Threshold graph). A graph G is a threshold graph if it can be constructed
from the empty graph by repeatedly adding either an isolated node or a dominating node.

This class of graphs is closed under taking complements.

Theorem 8. The Hansen polytope H(G) is a Hanner polytope if and only if G is a
threshold graph.

Proof. (⇐) We use induction on the number of nodes of G. If G is the empty graph,
then H(G) is just a centrally symmetric segment, and therefore a Hanner polytope. Now
assume that G has n+1 nodes. Since the class of Hanner polytopes is closed under taking
polars and H(G)? ∼= H(G), we can assume G = T ·∪ {v} with T being threshold. Here ·∪
denotes the usual disjoint union of graphs and v is a single node with v 6∈ T . The stable
sets of G are exactly the stable sets of T , with and without the new node v. Given a stable
set S of T the vertices of H(G) are of the form ±(e0 +

∑
i∈S ei) and ±(e0 +

∑
i∈S ei+en+1),

where we assign v the label n+1. By the linear transformation defined by e0 7→ e0−en+1,
en+1 7→ 2en+1, and ei 7→ ei for i = 1, . . . , n, we get H(G) = H(T ·∪ v) ∼= H(T ) × [−1, 1],
which means that H(G) is a Hanner polytope, since H(T ) is by hypothesis.

(⇒) Assume that H(G) is Hanner. Again it is enough to cover just one case, namely
H(G) = P × P ′ with P, P ′ being lower-dimensional Hanner polytopes. The stable set
polytope stab(G) is a facet of H(G) and can therefore be written as stab(G) = Q×Q′ with
Q,Q′ being faces of P, P ′, respectively. Since we have dim(Q)+dim(Q′) = dim(stab(G)) =
dim(P ) + dim(P ′) − 1, we can further assume that Q = P and Q′ is a facet of P ′. Let
q := dim(Q) and q′ := dim(Q′).

We now construct a threshold graph H ′ on q′ nodes such that G = Kq ·∪H ′. This will
prove that G is threshold as well. Since stab(G) is a product, we get vert(stab(G)) =
vert(Q) × vert(Q′). Each coordinate of a vertex of stab(G) corresponds to a node in G.
Let V1 ⊆ V (G) be the node set defined by the first q coordinates and let V2 ⊆ V (G) be
the set defined by the last q′ coordinates. Then

vert(stab(G)) =
{∑

i∈I

ei : I ⊆ V (G) stable set of G
}

=
{∑

i∈I

ei : I ⊆ V1 stable set of G[V1] and N(I) ∩ V2 = ∅
}

×
{∑

i∈I

ei : I ⊆ V2 stable set of G[V2] and N(I) ∩ V1 = ∅
}
,

where N(I) is the set of nodes adjacent to some node in I and G[Vj] is the subgraph of G
induced by Vj, j = 1, 2. In particular, we have ei ∈ vert(stab(G)), for all i = 1, . . . , q+ q′.
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From this and the right-hand side of the equality above, we can deduce that there are no
edges between V1 and V2. By setting H ′ := G[V2], we get G = G[V1] ·∪H ′. So what is left
to show is that G[V1] is an edgeless graph and that H ′ is a threshold graph.

Let us first see that H ′ is threshold. Since P ∼= stab(G[V1]) is at least one-dimensional,
G[V1] has one node minimum, i.e., |V (H ′)| < |V (G)|. From [3, Cor. 3.4 & Thm. 7.4], we
know that Hanner polytopes are twisted prisms over any of their facets, which means for
us that P ′ ∼= tp(Q′) ∼= H(H ′). Thus, by induction, H ′ is a threshold graph.

As P ∼= stab(G[V1]) is Hanner, it has a center of symmetry. So there exists a vector
c ∈ Rq such that stab(G[V1]) = −stab(G[V1]) + 2c. The origin and all unit vectors ei
for 1 6 i 6 q are vertices of stab(G[V1]), thus we must have c = (1

2
, . . . , 1

2
). This means

stab(G[V1]) = [0, 1]q, which in turn yields G[V1] = Kq.

Observe that not all Hanner polytopes can be represented as Hansen polytopes of
perfect graphs. For example, the product of two octahedra is a Hanner polytope but not
a Hansen polytope.

Since every Hanner polytope satisfies the 3d conjecture with equality, we have the
following

Corollary 9. If G is a threshold graph, then H(G) satisfies the 3d conjecture with equality.

4 Hansen Polytopes of Split Graphs

Now we analyze the Hansen polytopes of split graphs. It is easy to verify and well-known
that all threshold graphs are split and that all split graphs are perfect.

Definition 10 (Split graph). A graph G is called split graph if its nodes can be partitioned
into a clique C and a stable set S.

The main result of our paper appears in this section as Theorem 15. We prove it with
a partitioning technique for the faces of Hansen polytopes of split graphs. We start with
describing this partition.

4.1 Partitioning the faces of Hansen polytopes of split graphs

Let G = C∪S be a split graph with clique C = {c1, . . . , ck} and stable set S = {s1, . . . , s`}.
A stable set of G is either of the form A or A ∪ {ci}, for some A ⊆ S. Similarly, a clique
of G must be either of the form A or A ∪ {sj}, for some A ⊆ C. Thanks to the simple
composition of stable sets and cliques of G, we can give a complete description of the
vertices and facets of H(G) with the help of Lemma 5. In the following, we omit set
parentheses of singletons in order to enhance readability.

• The vertices of H(G) will be denoted by

(1) (ε, A) with ε = ± and A ⊆ S,
(2) (ε, A ∪ ci) with ε = ±, A ⊆ S and A ∪ ci stable.
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• The facets of H(G) will be denoted by

(1) [ε, A] with ε = ± and A ⊆ C,
(2) [ε, A ∪ sj] with ε = ±, A ⊆ C and C ∪ sj being a clique.

We refer to the different kinds of vertices and facets as type-(1)-vertices/-facets and type-
(2)-vertices/-facets according to the enumeration above. In the next step, we discuss the
vertex-facet incidences. By Lemma 5, a vertex of H(G) is contained in a facet if and only
if they have the same sign and their defining subsets of V (G) intersect, or if they have
different signs and the defining subsets are disjoint.

Type-(1)-facets:

• (ε, A) ∈ [ε′, B] ⇐⇒ ε = −ε′

• (ε, A ∪ ci) ∈ [ε′, B] ⇐⇒ (ci ∈ B and ε = ε′) or (ci 6∈ B and ε = −ε′)

Type-(2)-facets:

• (ε, A) ∈ [ε′, B ∪ sj] ⇐⇒ (sj ∈ A and ε = ε′) or (sj 6∈ A and ε = −ε′)

• (ε, A ∪ ci) ∈ [ε′, B ∪ sj] ⇐⇒
(ε′ = ε and (ci ∈ B) or (sj ∈ A)) or (ε′ = −ε and ci 6∈ B and sj 6∈ A)

Observe that the events ci ∈ B and sj ∈ A are mutually exclusive if A ∪ ci is stable
and B ∪ sj is a clique. The next two lemmas will be of good use later on.

Lemma 11. Let G = C ∪ S be a split graph. Choose A,B ⊆ C and U ⊆ S such that
A ∪ U and B ∪ U are cliques. Then,

(i) [ε, A ∪ U ] ∩ [ε, B ∪ U ] = [ε, (A ∩B) ∪ U ] ∩ [ε, A ∪B ∪ U ], and

(ii) [ε, A ∪ U ] ∩ [−ε, B ∪ U ] ⊆ [ε, A] ∩ [−ε, B].

Proof. The relations can be easily derived by the vertex-facet incidences described before.
Let us consider the first claim. In the case that U is the empty set, both intersections
[ε, A] ∩ [ε, B] and [ε, A ∩B] ∩ [ε, A ∪B] are given by the following set of vertices:

(−ε, I) with I ⊆ S,

(ε, I ∪ v) with v ∈ A ∩B and I ⊆ S,

(−ε, I ∪ v) with v /∈ A ∪B and I ⊆ S.

In the case that, U = {i} ⊆ S, the two intersections consist of the vertices:

(ε, I) with i ∈ I ⊆ S,

(−ε, I) with i /∈ I ⊆ S,

(ε, I ∪ v) with v ∈ A ∩B or i ∈ I ⊆ S,

(−ε, I ∪ v) with v /∈ A ∪B and i /∈ I ⊆ S.

Part (ii) follows similarly.
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In particular, part (i) shows that every face can be written using at most two type-
(1)-facets of each sign. Indeed, for A1, . . . , At ⊆ C, we get inductively

⋂t
i=1[ε, Ai] =

[ε,
⋂t

i=1Ai] ∩ [ε,
⋃t

i=1Ai]. The next definition relies on this fact and will be essential for
the arguments in the upcoming parts.

Definition 12. For a split graph G we define the following four classes of faces of its
Hansen polytope H(G):

(i) Primitive faces F , that are not contained in any type-(1)-facet.

(ii) Positive faces [+, A] ∩ [+, B] ∩ F , with A ⊆ B and F primitive.

(iii) Negative faces [−, A] ∩ [−, B] ∩ F , with A ⊆ B and F primitive.

(iv) Small faces G, that are contained in type-(1)-facets of both signs.

This definition gives a partition of the faces of H(G). For the primitive faces we get a
nice characterization with respect to the containment of special vertices.

Lemma 13. Let G = C ∪ S be a split graph. A face F of H(G) is primitive if and only
if it contains type-(1)-vertices of both signs.

Proof. (⇒) Assume F is primitive, i.e., we can write it as

F =
⋂
i∈I

[+, Ai ∪ si] ∩
⋂
j∈J

[−, Bj ∪ sj],

for some multisets I and J . If we had {si : i ∈ I} ∩ {sj : j ∈ J} 6= ∅, then Lemma 11 (ii)
would yield a contradiction to primitivity. Thus, these two multisets must be disjoint.
We get the vertex-facet incidences
• (+, A) ∈ F ⇐⇒ {si : i ∈ I} ⊆ A ⊆ S \ {sj : j ∈ J},
• (−, A) ∈ F ⇐⇒ {sj : j ∈ J} ⊆ A ⊆ S \ {si : i ∈ I}.

This means we can always find positive and negative type-(1)-vertices in F .
(⇐) A vertex (ε, A) of F cannot be contained in a facet [ε, B], for every B ⊆ C,

according to the rules above. So if F contains type-(1)-vertices of both signs, it cannot
be contained in any type-(1)-facet. This means that F is primitive.

4.2 The number of faces of Hansen polytopes of split graphs

We need the following definition to state our main theorem.

Definition 14. Let G = C ∪ S be a split graph. Then, we denote by pG(C, S) the
number of partitions of the form (C+, C−, C0, S+, S−, S0) with C = C+ ∪ C− ∪ C0 and
S = S+ ∪ S− ∪ S0 such that either C+ ∪C− 6= ∅ or S+ ∪ S− 6= ∅, and the following hold:

(I) Every element of C+ ∪ C− has a neighbor in S+ ∪ S−.

(II) Every element of S+ ∪ S− has a nonneighbor in C+ ∪ C−.
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In the case of d-dimensional Hansen polytopes of split graphs it turns out that pG(C, S)
is exactly the number of faces that we have additionally to 3d. By s(P ) we denote the
number of nonempty faces of the polytope P .

Theorem 15. Let G = C ∪ S be a split graph on d− 1 nodes. Then

s(H(G)) = 3d + pG(C, S).

In particular, Hansen polytopes of split graphs satisfy the 3d conjecture.

Proof. Let Π be the set of all partitions and ΠA,ΠB ⊆ Π be the subsets for which (I) and
(II) hold, respectively. Observe that if (I) fails for a partition, that there must be a node
in C+ ∪ C− which is not adjacent to any node in S+ ∪ S−. Thus, this partition fulfills
(II). From this we get Πc

A ⊆ ΠB, where Πc
A is the complement of ΠA in Π. Analogously,

Πc
B ⊆ ΠA holds. This yields by some simple counting and inclusion-exclusion

3d−1 = |Π| = |ΠA|+ |ΠB| − |ΠA ∩ ΠB|.

Since pG(C, S) = |ΠA ∩ ΠB| − 1, we thus need to show that

s(H(G)) = 3d + |ΠA ∩ ΠB| − 1 = 2 · 3d−1 + |ΠA|+ |ΠB| − 1.

For this we are going to use the partitioning of the faces of H(G), that was introduced in
Definition 12. Let fp(G) be the number of primitive faces of H(G), f+(G) be the number
of positive, and f−(G) be the number of negative ones. Regarding the small faces, one
observes the following: If F is small, then by definition it is contained in type-(1)-facets
of both signs. Type-(1)-facets correspond to type-(1)-vertices of the same sign of the
polar polytope (via the usual bijection F 7→ F ? between the face lattice of a polytope
and its polar; see [10, Ch. 2]). Lemma 13 yields that F ? must be a primitive face of
H(G)? ∼= H(G). Hence,

s(H(G)) = fp(G) + f+(G) + f−(G) + fp(G)− 1.

All we need in order to finish this proof is the following lemma.

Lemma 16. In the setting above we have

(i) f+(G) = f−(G) = 3d−1, and

(ii) fp(G) = |ΠA| and fp(G) = |ΠB|.

From this lemma the theorem obviously follows.

Proof of Lemma 16. Recall that C = {c1, . . . , ck} is the clique and S = {s1, . . . , sl} is the
stable set that G splits into. We need to refine the notion of a primitive face. Given
multisets S+ = {si : i ∈ I} and S− = {sj : j ∈ J}, a primitive face of the form⋂

i∈I

[+, Ai ∪ si] ∩
⋂
j∈J

[−, Bj ∪ sj]
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is called (S+, S−)-primitive.
(i) The bijection x 7→ −x maps a facet [ε, A] of H(G) to [−ε, A]. Therefore, we have

f+(G) = f−(G), and it is enough to show f+(G) = 3d−1. So let us consider a positive face
P = [+, A′] ∩ [+, A] ∩ F , where A′ ⊆ A ⊆ C and

F =
⋂
i∈I

[+, Ai ∪ si] ∩
⋂
j∈J

[−, Bj ∪ sj]

is primitive. As noted in the proof of Lemma 13, the multisets {si : i ∈ I} and {sj : j ∈ J}
are disjoint and P contains a vertex (−, X), X ⊆ S, if and only if that vertex is contained
in F . That is, if and only if {sj : j ∈ J} ⊆ X ⊆ S \ {si : i ∈ I}. Since there are 3|S|

many possibilities to choose two disjoint subsets from S, it suffices to show that for fixed
{si : i ∈ I} and {sj : j ∈ J}, we have 3|C| many positive faces of the above form.

To this end, let F be a fixed ({si : i ∈ I}, {sj : j ∈ J})-primitive face. The type-(1)-
vertices of a corresponding positive face P are determined as just explained. Thus it is
enough to find out which type-(2)-vertices belong to P . We can describe them as

(+, X ∪ z) ∈ P ⇐⇒ z ∈ A′ and z 6∈
⋃
j∈J

Bj and z ∈
⋂

i∈I,si /∈X

Ai

and {si : i ∈ I, z /∈ Ai} ⊆ X ⊆ S \ {sj : j ∈ J},

and similarly

(−, X ∪ z) ∈ P ⇐⇒ z /∈ A and z 6∈
⋃
i∈I

Ai and z ∈
⋂

j∈J,sj /∈X

Bj

and {sj : j ∈ J, z /∈ Bj} ⊆ X ⊆ S \ {si : i ∈ I}.

These conditions tell us that, for each z ∈ C, either there is an X ⊆ S such that
(+, X ∪ z) ∈ P , or there is an X ⊆ S such that (−, X ∪ z) ∈ P , or none of these is
true. Furthermore, these three cases can be controlled independently by the choices of A′

and A. This gives the desired 3|C| positive faces for fixed {si : i ∈ I} and {sj : j ∈ J}.
(ii) The second part is a bit more involved. First, as noted before, each partition of G

that satisfies (I), automatically satisfies (II) for G, and vice versa. It is therefore enough
to prove fp(G) = |ΠA|. This is achieved by constructing a bijection P → ΠA, where P
is the set of all primitive faces of H(G). For this purpose, we partition the domain and
range as follows.

Denote by P(S+, S−) the set of all (S+, S−)-primitive faces. Then

P =
⋃{
P(S+, S−) : S+, S− ⊆ S disjoint and S+ ∪ S− 6= ∅

}
is a partition of P .

Let ΠA(S+, S−) be the set of partitions (C+, C−, C0, S+, S−, S0) of V (G) that sat-
isfy (I) and where S+, S− are fixed (so only C+, C− vary). Then

ΠA =
⋃{

ΠA(S+, S−) : S+, S− ⊆ S disjoint and S+ ∪ S− 6= ∅
}
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is a partition of ΠA.
For the remainder of the proof we let S+, S− be fixed and disjoint subsets of S such

that S+ ∪ S− 6= ∅. We describe mappings

Ψ(S+,S−) : P(S+, S−)→ ΠA(S+, S−)

and
Φ(S+,S−) : ΠA(S+, S−)→ P(S+, S−),

that will turn out to be inverse to each other. This of course shows that there exists
a bijective correspondence between different parts of the partitions of P and ΠA, which
allows us to conclude the existence of a bijection P → ΠA.

Let Ψ(S+,S−) be defined by

Ψ(S+,S−)(F ) = (C+, C−, C0, S+, S−, S0),

where, for ε = ±, we let

Cε =
{
c ∈ C : (ε, (Sε \N(c)) ∪ c) ∈ F and (−ε, J ∪ c) 6∈ F, J ⊆ S

}
. (1)

Here N(c) denotes the neighborhood of c in G. On the other hand, define Φ(S+,S−) by

Φ(S+,S−)(C
+, C−, C0, S+, S−, S0) =

⋂
s∈S+

[+, A′s∪s]∩ [+, As∪s]∩
⋂

s∈S−

[−, B′s∪s]∩ [−, Bs∪s],

where we let

A′s = C+ ∩N(s), As = N(s) \ C−, B′s = C− ∩N(s) and Bs = N(s) \ C+.

We use the abbreviations Ψ = Ψ(S+,S−) and Φ = Φ(S+,S−) from now on.
Let us show Ψ ◦ Φ = idΠA(S+,S−): Given a partition π ∈ ΠA(S+, S−) it is sufficient to

prove

π = (C+, C−, C0, S+, S−, S0) ⊆ Ψ(Φ(π)) = (D+, D−, D0, S+, S−, S0),

where inclusion is to be understood componentwise. Indeed, both π and its image are,
by construction, partitions of V (G). We begin by explaining C+ ⊆ D+. Let c ∈ C+.
By definition c ∈ D+ if the vertex v = (+, (S+ \ N(c)) ∪ c) ∈ Φ(π), and, for all J ⊆ S,
the vertex wJ = (−, J ∪ c) 6∈ Φ(π). Concerning the first condition, we observe that the
stable set (S+ \ N(c)) ∪ c does not hit any of the Bs ∪ s. So v is contained in all of the
facets with a negative sign. For the facets with a positive sign the containment is clear if
c ∈ A′s, and in the case c 6∈ A′s, we have c 6∈ N(s), i.e., s ∈ S+ \N(c). Next consider the
second condition on c to be contained in D+. Since π fulfills (I), there exists a neighbor
s ∈ S+ ∪ S− of c. If s ∈ S+, then c ∈ C+ ∩ N(s) = A′s, and therefore c ∈ A′s ∪ s. This
rules out that (−, J ∪ c) ∈ Φ(π). If s ∈ S−, then c 6∈ B′s by construction. So if wJ ∈ Φ(π),
we must have s ∈ J which contradicts the fact that J ∪ c is a stable set. Hence c ∈ D+

and thus C+ ⊆ D+. Similarly, we obtain the inclusion C− ⊆ D−.
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It remains to explain C0 ⊆ D0, so assume c ∈ C0. If c 6∈ N(S+∪S−), then N(c)∩S ⊆
S0 and, in view of the vertex-facet incidences, we get (+, S+∪c), (−, S−∪c) ∈ Φ(π), hence
c ∈ D0. If c ∈ N(S+ ∪ S−), then there is an s ∈ S+ (the case s ∈ S− is analogous) such
that {c, s} ∈ E(G). Thus, c ∈ C0∩N(s) ⊆ As, meaning that (−, (S− \N(c))∪ c) /∈ Φ(π).
We also must have c 6∈ A′s, from which we get (+, (S+ \N(c))∪ c) 6∈ Φ(π), since s ∈ N(c).
This shows c ∈ D0, and concludes Ψ ◦ Φ = idΠA(S+,S−).

Now we show Φ ◦Ψ = idP(S+,S−): Given an (S+, S−)-primitive face

F =
⋂
s∈S+

[+, A′s ∪ s] ∩ [+, As ∪ s] ∩
⋂

s∈S−

[−, B′s ∪ s] ∩ [−, Bs ∪ s],

we need to show Φ(Ψ(F )) = F . Both F and its image are (S+, S−)-primitive faces and
hence they contain type-(1)-vertices (ε, J) if and only if Sε ⊆ J ⊆ S \ S−ε. Therefore, we
only need to show that both F and Φ(Ψ(F )) contain the same type-(2)-vertices as well.

We begin with showing that (ε, J ∪ c) ∈ F implies (ε, J ∪ c) ∈ Φ(Ψ(F )). To this end,
we let (ε, J ∪ c) ∈ F and we distinguish two cases.

1) Assume there exists a K ⊆ S such that (−ε,K∪ c) ∈ F . This means, that c cannot
be contained in As or Bs, for s ∈ S+ or s ∈ S−, respectively. Due to (ε, J ∪ c) ∈ F , we
must have S−ε ⊆ K and Sε ⊆ J ⊆ S \ S−ε. From here we see that c has no neighbor
in S−ε. Altogether, this yields (ε, J ∪ c) ∈ [−ε, (C−ε ∩ N(s)) ∪ s], for all s ∈ S−ε, and
(ε, J ∪ c) ∈ [ε, (Cε ∩N(s)) ∪ s], for all s ∈ Sε. Hence, (ε, J ∪ c) ∈ Φ(Ψ(F )) as desired.

2) The other case is (−ε,K ∪ c) 6∈ F , for all K ⊆ S. If s ∈ Sε is not adjacent to c,
then s ∈ J , i.e., Sε \N(c) ⊆ J . According to (1) and (ε, J ∪ c) ∈ F , we also have c ∈ Cε,
independently of s. So, for any s ∈ Sε, either s ∈ J or c ∈ Cε ∩N(s). From this we get
that (ε, J∪c) is contained in every facet of sign ε that defines Φ(Ψ(F )). Since J∩S−ε = ∅,
we conclude that (ε, J ∪ c) is also contained in every facet of sign −ε. Again we obtain
(ε, J ∪ c) ∈ Φ(Ψ(F )).

We finally need to prove also the converse direction, that is, (ε, J ∪ c) ∈ Φ(Ψ(F ))
implies (ε, J ∪ c) ∈ F . By the vertex-facet incidences, we have J ⊆ S \ S−ε, for all
(ε, J ∪ c) ∈ Φ(Ψ(F )). Again, we distinguish between two cases.

1) Let Sε ⊆ J . If c /∈ N(S−ε), then, by Sε ⊆ J , (ε, J ∪ c) is contained in all facets
with sign ε that define F . Since the cliques corresponding to the facets with sign −ε
contain only nodes from N(S−ε) or S−ε, and J ⊆ S \ S−ε, the vertex (ε, J ∪ c) lies in all
facets defining F . So, now let c ∈ N(S−ε). By (ε, J ∪ c) ∈ Φ(Ψ(F )), we have (ε, J ∪ c) ∈
[−ε, (N(s) \ Dε) ∪ s], for all s ∈ S−ε, where Dε is a component of Ψ(F ). Therefore,
c /∈ N(s)\Dε, for all s ∈ S−ε, and thus c ∈ Dε. This implies that (ε, (Sε \N(c))∪ c) ∈ F ,
which gives (ε, J ∪ c) ∈ F because Sε ⊆ J ⊆ S \ S−ε.

2) On the other hand, consider Sε 6⊆ J . Then, because of (ε, J ∪ c) ∈ Φ(Ψ(F )), we
have c ∈ Dε ∩ N(s), for all s ∈ Sε \ J , where Dε is again a component of Ψ(F ). In
particular, c ∈ Dε, which means that the vertex (ε, (Sε \ N(c)) ∪ c) ∈ F . In view of
J ⊆ S \ S−ε and c ∈ N(s), for any s ∈ Sε \ J , this implies (ε, J ∪ c) ∈ F .

This finishes the argument for Ψ ◦ Φ = idΠA(S+,S−), and therefore establishes the
bijection P → ΠA.
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In particular, Theorem 15 says that the partition of the split graph does not play
any role in the number of vertices of the corresponding Hansen polytope. So instead of
pG(C, S) we write pG from now on. What we know about this function is summarized by
the following corollary.

Corollary 17. Let G = C ∪ S be a split graph on d− 1 nodes. Then

s(H(G)) = 3d + 16 · `, for some ` ∈ N,

with ` = 0 if and only if G is a threshold graph.

Proof. Let us first establish that pG = 16 · `. Assume that C = C+ ·∪C− ·∪C0 and
S = S+ ·∪S− ·∪S0 is given. If C+ ∪ C− = ∅, then (II) is only satisfied if S+ ∪ S− = ∅.
Similarly, if S+∪S− = ∅, we have C+∪C− = ∅ because of (I). In both cases we deal with
the trivial partition C0 = C, S0 = S that is not counted by pG, and thus can be ignored.
If C+ ∪C− = {c}, then by (I) there exists a neighbor of c in S+ ∪S−. By (II) again, this
neighbor must have a nonneighbor in C+∪C−, which clearly cannot be. So also this case
is not counted by pG and can be ignored as well. By similar reasoning, we can disregard
the case S+ ∪ S− = {s}. Therefore, we must have |C+ ∪ C−| > 2 and |S+ ∪ S−| > 2.
Since we can assign the elements to C+, C− or S+, S− in an arbitrary way, we get that
pG = 16 · `, for some ` ∈ N.

Now ` = 0 if and only if pG = 0. If G has a path on four nodes P4 as an induced
subgraph, then the partition where C+ is the two middle nodes of P4, S+ is the two
endpoints and C− = S− = ∅, satisfies the conditions (I) and (II). So if ` = 0, then G is a
split graph with no induced path of four nodes. By [6, Thm. 1.2.4], this implies that G is
a threshold graph. On the other hand, if G is threshold then H(G) is a Hanner polytope
by Theorem 8, hence ` = 0.

4.3 High-dimensional Hansen polytopes with few faces

In the rest of this section, we study a construction that leads us to high-dimensional
Hansen polytopes with few faces. To this end, consider a threshold graph T on m nodes
and a split graph G = C ∪ S on n nodes. We construct a new graph Gn T by taking the
union of G and T and adding edges between every node of the clique C of G and every
node of T . Figure 1 is an illustration of our construction with G being the path on four
nodes. It is clear that the resulting graph is again a split graph and therefore perfect.

T

Figure 1: Appending a threshold graph to a split graph.
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Proposition 18. Let G = C ∪ S be a split graph on n nodes. Then, for any threshold
graph T on m nodes, we have

s(H(Gn T )) = 3m+n+1 + pG.

This means pGnT = pG, and therefore pGnT is independent of T .

Proof. By definition the threshold graph T can be built up by successively adding isolated
and dominating nodes. This induces an ordering on the nodes v1, . . . , vm of T . Let
CT := {vi : vi dominating at step i} and ST := {vi : vi isolated at step i}. This splits
T into a clique CT and a stable set ST , which in turn splits G n T into C ∪ CT and
S ∪ ST . By construction every node in CT and ST is connected to all nodes in C and
none in S. Now consider a partition (C+ ∪ C− ∪ C0, S+ ∪ S− ∪ S0) of G n T that is
counted by pGnT (C ∪ CT , S ∪ ST ). By (I) for all x ∈ (C+ ∪ C−) ∩ CT there exists a
neighbor y ∈ (S+ ∪ S−) ∩ ST , which means that in T the once isolated node y was
inserted before the once dominating node x. On the other hand, by (II), any given node
y ∈ (S+ ∪ S−) ∩ ST has to have a nonneighbor z ∈ (C+ ∪ C−) ∩ CT . Such a node z was
used before y in the construction of T . These two observations can only hold in the case
(C+ ∪ C−) ∩ CT = ∅ = (S+ ∪ S−) ∩ ST . Therefore, for this partition we have CT ⊆ C0

and ST ⊆ S0, which implies that pGnT (C ∪ CT , S ∪ ST ) = pG.

This finally yields a series of high-dimensional Hansen polytopes with very few faces.

Corollary 19. Let P4 be a path on four nodes and let T be an arbitrary threshold graph
on m nodes. Then

s(H(P4 n T )) = 3m+5 + 16.

Proof. Determining pP4nT = pP4 = 16 is an easy counting exercise.

5 Experimental results on related conjectures

Our experimental evidence indicates that the polytopes constructed in Corollary 19 are
of interest also in view of two further minimization problems where it is also conjectured
that the Hanner polytopes yield the only optimal examples. The first one is a question
by Kalai about the minimal number of full flags of a centrally symmetric d-polytope; the
second one is the classical Mahler conjecture from 1939 about the minimal product of
volumes of a centrally symmetric polytope and its polar dual.

To make this concrete, define the full flags of a d-dimensional polytope P as the chains
∅ ⊂ F0 ⊂ F1 ⊂ . . . ⊂ Fd−1 ⊂ P , where each Fi is an i-dimensional face of P . We write
ff(P ) for the number of full flags of P . (This parameter ff(P ) also counts the number
of maximal faces of a barycentric subdivision of P , which in special situations, as in the
case of unimodular barycentric subdivisions, might be related to the volumes of P and
its polar dual.)
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Conjecture 20 (Kalai). Let P ⊂ Rd be a centrally symmetric polytope and let H be a
d-dimensional Hanner polytope. Then

ff(P ) > ff(H) = 2dd!,

where equality holds only for Hanner polytopes.

For Mahler’s conjecture, recall that P ? = {x ∈ Rd : 〈x, y〉 6 1 for all y ∈ P} defines
the polar polytope of P and denote the volume in Rd by vol(·).

Conjecture 21 (Mahler [7]). Let P ⊂ Rd be a centrally symmetric polytope and let H
be a d-dimensional Hanner polytope. Then

vol(P ) · vol(P ?) > vol(H) · vol(H?) =
4d

d!
,

where equality holds only for Hanner polytopes.

Now let Gd = P4 nT be an instance of Corollary 19, where T is some threshold graph
on d− 5 nodes. The corresponding Hansen polytope H(Gd) is d-dimensional. A complete
computer enumeration for all such graphs Gd showed that for d 6 10 the numbers of full
flags and the Mahler volume product are again independent of the actual choice of T :

ff(H(Gd)) = 2dd!
(

1 + 4
(d− 4)!

d!

)
and

vol(H(Gd)) · vol(H(Gd)
?) =

4d

d!

(
1 +

(d− 4)!

d!

)
.

We expect that these formulas hold for all dimensions d > 5, so that the graphs Gd lead
to centrally symmetric polytopes that are simultaneously very close to the conjectured
lower bounds in the 3d conjecture, the full flag conjecture, and the Mahler conjecture. This
supports the impression that there is a close relation between, in particular, Conjectures 20
and 21.
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