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Abstract

Faces represent complex, multidimensional, meaningful visual stimdldaxeloping a computa-
tional model for face recognition is difficult [42]. We present a hybreiral network solution which
compares favorably with other methods. The system combines local imagérspma self-organizing
map neural network, and a convolutional neural network. The self-organmap provides a quanti-
zation of the image samples into a topological space where inputs thatagyrin the original space
are also nearby in the output space, thereby providing dimensionalitgtied and invariance to mi-
nor changes in the image sample, and the convolutional neural networkiggdar partial invariance
to translation, rotation, scale, and deformation. The convolutionalarktextracts successively larger
features in a hierarchical set of layers. We present results using the Karhaaea transform in place
of the self-organizing map, and a multi-layer perceptron in place of theobational network. The
Karhunen-Loeve transform performs almost as well (5.3% error ver8%)3 The multi-layer per-
ceptron performs very poorly (40% error versus 3.8%). The method ebéajpef rapid classification,
requires only fast, approximate normalization and preprocessing, anisteoly exhibits better clas-
sification performance than the eigenfaces approach [42] on the database emha&l#re number of
images per person in the training database is varied from 1 to 5. With By person the proposed
method and eigenfaces result in 3.8% and 10.5% error respectively. The mmqgovides a measure
of confidence in its output and classification error approaches zero when rejastieyy as 10% of
the examples. We use a database of 400 images of 40 individuals whicinsogtite a high degree
of variability in expression, pose, and facial details. We analyze compo#itomplexity and discuss
how new classes could be added to the trained recognizer.
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1 Introduction

The requirement for reliable personal identification in porerized access control has resulted in an in-
creased interest in biometricsBiometrics being investigated include fingerprints [4fesch [7], signature
dynamics [36], and face recognition [8]. Sales of identigyification products exceed $100 million [29].
Face recognition has the benefit of being a passive, nomsiné system for verifying personal identity. The
techniques used in the best face recognition systems mandem the application of the system. We can
identify at least two broad categories of face recognitigstems:

1. We want to find a person within a large database of facesiiiegpolice database). These systems
typically return a list of the most likely people in the dadab [34]. Often only one image is available
per person. It is usually not necessary for recognition tddoee in real-time.

2. We want to identify particular people in real-time (eg. arsecurity monitoring system, location
tracking system, etc.), or we want to allow access to a gréygeople and deny access to all others
(eg. access to a building, computer, etc.) [8]. Multiple ges per person are often available for
training and real-time recognition is required.

In this paper, we are primarily interested in the second’case are interested in recognition with varying
facial detail, expression, pose, etc. We do not considerriamce to high degrees of rotation or scaling - we
assume that a minimal preprocessing stage is availablgufred. We are interested in rapid classification
and hence we do not assume that time is available for extepseprocessing and normalization. Good
algorithms for locating faces in images can be found in [4R,3¥].

The remainder of this paper is organized as follows. The watased is presented in section 2 and related
work with this and other databases is discussed in sectiofh®. components and details of our system
are described in sections 4 and 5 respectively. We presehtignuss our results in sections 6 and 7.
Computational complexity is considered in section 8 and m&donclusions in section 10.

2 Data

We have used the ORL database which contains a set of faaas ttakween April 1992 and April 1994 at
the Olivetti Research Laboratory in Cambridge, UKhere are 10 different images of 40 distinct subjects.
For some of the subjects, the images were taken at differaast There are variations in facial expression
(open/closed eyes, smiling/non-smiling), and facial ite(@lasses/no glasses). All the images were taken
against a dark homogeneous background with the subjectslip-sight, frontal position, with tolerance for
some tilting and rotation of up to about 20 degrees. Therernsesvariation in scale of up to about 10%.
Thumbnails of all of the images are shown in figure 1 and a tasgeof images for one subject is shown in
figure 2. The images are greyscale with a resolution of 92x112

!Physiological or behavioral characteristics which unigigentify us.

2However, we have not performed any experiments where wereausred the system to reject people that are not in a select
group (important, for example, when allowing access to &ing).

3The ORL database is available free of chargeseg://wuw.cam-orl.co.uk/facedatabase.html.



Figure 1. The ORL face database. There are 10 images each of the 40 subjects.

Figure 2: The set of 10 images for one subject. Considerable variation can be seen.



3 Related Work

3.1 Geometrical Features

Many people have explored geometrical feature based metbofhce recognition. Kanade [18] presented
an automatic feature extraction method based on ratiosstdrdies and reported a recognition rate of be-
tween 45-75% with a database of 20 people. Brunelli and Pdéyicompute a set of geometrical features
such as nose width and length, mouth position, and chin shipey report a 90% recognition rate on a
database of 47 people. However, they show that a simple &enpiatching scheme provides 100% recog-
nition for the same database. Cox et al. [9] have recentipdiniced amixture-distancgechnique which
achieves a recognition rate of 95% using a query databadeinfdyjes from a total of 685 individuals. Each
face is represented by 3@anuallyextracted distances.

Systems which employ precisely measured distances betiwatmes may be most useful for finding pos-
sible matches in a large mugshot databag®r other applications, automatic identification of thpe@ts
would be required, and the resulting system would be depermiethe accuracy of the feature location
algorithm. Current algorithms for automatic location oftigre points do not consistently provide a high
degree of accuracy [41].

3.2 Eigenfaces

High-level recognition tasks are typically modeled withnpatages of processing as in the Marr paradigm
of progressing from images to surfaces to three-dimenkimoaels to matched models [28]. However,

Turk and Pentland [42] argue that it is likely that there &k recognition process based on low-level, two-
dimensional image processing. Their argument is basedeoaatly development and extreme rapidity of

face recognition in humans, and on physiological expertsienmonkey cortex which claim to have isolated

neurons that respond selectively to faces [35]. Howevés, ribt clear that these experiments exclude the
sole operation of the Marr paradigm.

Turk and Pentland [42] present a face recognition schemdiich#dace images are projected onto the princi-
pal components of the original set of training images. TiBelteg eigenfacesire classified by comparison
with known individuals. The linear principle componentshrique assumes that the faces lie in a lower
dimensional space, and hence the sum or average of two tagcek @1so be a face. Clearly this is not true
when principal components is applied to an entire face [17].

Turk and Pentland present results on a database of 16 subjgbtvarious head orientation, scaling, and
lighting. Their images appear identical otherwise withiditvariation in facial expression, facial details,
pose, etc. For lighting, orientation, and scale variatizgirtsystem achieves 96%, 85% and 64% correct
classification respectively. Scale is renormalized to therdace size based on an estimate of the head size.
The middle of the faces is accentuated, reducing any negaffiect of changing hairstyle and backgrounds.

In Pentland et al. [34, 33] good results are reported on & ldagabase (95% recognition of 200 people from
a database of 3,000). It is difficult to draw broad conclusias many of the images of the same people look
very similar, and the database has accurate registratidralgnment [30]. In Moghaddam and Pentland
[30], very good results are reported with the FERET databasdy one mistake was made in classifying
150 frontal view images. The system used extensive pregsowgfor head location, feature detection, and

4A mugshot database typically contains side views where ¢hf@pnance of feature point methods is known to improve [8].



normalization for the geometry of the face, translatioghtiing, contrast, rotation, and scale.

In summary, it appears that eigenfaces is a fast, simplepeauical algorithm that may be limited due to
the requirement that there is a high degree of correlatibnden the pixel intensities of the training and test
images. This limitation has been addressed by using extepséprocessing to normalize the images.

3.3 Template Matching

Template matching methods such as [6] operate by perfordinegt correlation of image segments. Tem-
plate matching is only effective when the query images hia@esame scale, orientation, and illumination as
the training images [9].

3.4 Neural Network Approaches

Much of the present literature on face recognition with atanetworks presents results with only a small
number of classes (often below 20). For example, in [10] tis¢ 50 principal components of the images are
extracted and reduced to 5 dimensions using an autoasgeciatiral network. The resulting representation
is classified using a standard multi-layer perceptron. Gesdlts are reported but the database is quite
simple: the pictures are manually aligned and there is nditig variation, rotation, or tilting. There are 20
people in the database.

3.5 The ORL Database

In [38] a HMM-based approach is used for classification of @RL database images. The best model
resulted in a 13% error rate. Samaria also performed exttesits using the popular eigenfaces algorithm
[42] on the ORL database and reported a best error rate ohdrd0% when the number of eigenfaces
was between 175 and 199. We implemented the eigenfacedtlalg@nd also observed around 10% error.
In [39] Samaria extends the top-down HMM of [38] with pseudmtdimensional HMMs. The error rate
reduces to 5% at the expense of high computational comyplexzitsingle classification takes four minutes
on a Sun Sparc Il. Samaria notes that although an increasegniéon rate was achieved the segmentation
obtained with the pseudo two-dimensional HMMs appearetkarratic. Samaria uses the same training
and test set sizes as we do (200 training images and 200 &gedwvith no overlap between the two sets).
The 5% error rate is the best error rate previously repordethe ORL database that we are aware of.

4 System Components

4.1 Overview

In the following sections we introduce the techniques wiigchn the components of our system and describe
our motivation for using them. Briefly, we explore the use afdl image sampling and a technique for
partial lighting invariance, a self-organizing map (SOMj projection of the texture representation into
a quantized lower dimensional space, the Karhunen-LoKi tfansform for comparison with the self-



organizing map, a convolutional network (CN) for partiarslation and deformation invariance, and a
multi-layer perceptron (MLP) for comparison with the colutmnal network.

4.2 Local Image Sampling

We have evaluated two different methods of representingl latage samples. In each method a window is
scanned over the image as shown in figure 3.

1. The first method simply creates a vector from a local windavthe image using the intensity values
at each point in the window. Leat;; be the intensity at théth column, and thgth row of the given
image. If the local window is a square of sid8% +1 long, centered om;;, then the vector associated
with this window is Simply[:ri,w,j,w, Ti—W,j— W1y Tijy ooy TitWj+W—1, xi+W,j+W]-

2. The second method creates a representation of the laoglesdy forming a vector out of a) the
intensity of the center pixel;;, and b) the difference in intensity between the center @irelall other
pixels within the square window. The vector is given[by; — «;_w j_w, Zij — Ti—w,j—W+1,-- -,
WijTijy - -+ Tij — TigW,j+W—1, Lij — Tigw,j+w). The resulting representation becomes partially
invariant to variations in intensity of the complete samflae degree of invariance can be modified
by adjusting the weight);; connected to the central intensity component.

Original Image

— Image Sample Vectors

SR >
— [T IIIITTII I

Figure 3: A depiction of the local image sampling process. A window is stepped beeintage and a vector is
created at each location.

4.3 The Self-Organizing Map
4.3.1 Introduction

Maps are an important part of both natural and artificial akinformation processing systems [2]. Ex-
amples of maps in the nervous system are retinotopic magwiwisual cortex [32], tonotopic maps in

the auditory cortex [19], and maps from the skin onto the dos@msoric cortex [31]. The self-organizing

map, or SOM, introduced by Teuvo Kohonen [21, 20] is an unsdged learning process which learns the
distribution of a set of patterns without any class infoliorat A pattern is projected from an input space to
a position in the map - information is coded as the locatioarofctivated node. The SOM is unlike most
classification or clustering techniques in that it providdspological ordering of the classes. Similarity in



input patterns is preserved in the output of the process.tdpwogical preservation of the SOM process
makes it especially useful in the classification of data wincludes a large number of classes. In the local
image sample classification, for example, there may be aamgg number of classes in which the transition
from one class to the next is practically continuous (makimtifficult to define hard class boundaries).

4.3.2 Algorithm

We give a brief description of the SOM algorithm, for moreailstsee [21]. The SOM defines a mapping
from an input spac&” onto a topologically ordered set of nodes, usually in a lodierensional space.
An example of a two-dimensional SOM is shown in figure 4. Arefiee vector in the input space, =
[14i1, phiz, s piin] T € R™, is assigned to each node in the SOM. During training, egolitjn, is compared
to all of them;, obtaining the location of the closest mat ¢ m.|| = min;{||z —m;||}). The input point

is mapped to this location in the SOM. Nodes in the SOM are tggbaccording to:

it +1) = my(t) + hai(0)[e(t) — mi(t)] (1)

wheret is the time during learning ankl.;(¢) is the neighborhood functigna smoothing kernel which is
maximum atm.. Usually, he;(t) = h(||r. — 7il|,t), wherer. andr; represent the location of the nodes
in the SOM output spacer, is the node with the closest weight vector to the input saraplir; ranges
over all nodesh;(t) approaches 0 d&. — r;|| increases and also aspproachesc. A widely applied
neighborhood function is:

re — ;]|
hei = at) exp <—%> 2)

whereq(t) is a scalar valued learning rate am() defines the width of the kernel. They are generally both
monotonically decreasing with time. The use of the neighbod function means that nodes which are
topographically close in the SOM structure activate eabkrab learn something from the same inpuA
relaxation or smoothing effect results which leads to agllobdering of the map. Note tha{t) should not

be reduced too far as the map will lose its topographical rafdeighboring nodes are not updated along
with the closest node. The SOM can be considered a non-Ipregction of the probability density(x)
[21].

4.3.3 Improving the Basic SOM

The original self-organizing map is computationally exgiea due to:

1. In the early stages of learning, many nodes are adjust@danrelated manner. Luttrel [27] proposed
a method which we use that starts by learning in a small nétvemd doubles the size of the network
periodically during training. When doubling, new nodes iaserted between the current nodes. The
weights of the new nodes are set equal to the average of tlyhtweaif the immediately neighboring
nodes.



Figure 4: A two-dimensional SOM showing a square neighborhood functiorhvhiarts as..(¢;) and reduces in
size ton.(t3) over time.

2. Each learning pass requires computation of the distahtieeocurrent sample to all nodes in the
network, which isO(N). However, this may be reduced @(log/N) using a hierarchy of networks
which is created from the above node doubling strategy

4.4 Karhunen-Loéve Transform

The optimal linear methddfor reducing redundancy in a dataset is the Karhunen-L¢glse transform or
eigenvector expansion via Principle Components Analya{34) [12]. PCA generates a set of orthogonal
axes of projections known as the principal components,®eifenvectors, of the input data distribution in
the order of decreasing variance. The KL transform is a walldn statistical method for feature extraction
and multivariate data projection and has been used widgbatitern recognition, signal processing, image
processing, and data analysis. Points imafimensional input space are projected intamaglimensional
spaceyn < n. We use the KL transform for comparison with the SOM in theelisionality reduction of
the local image samples. The use of the KL transform heretisheosame as in the eigenfaces approach
because we operate on small local image samples as oppdbedetatire images.

The KL technique is fundamentally different to the SOM methas it assumes the images are sufficiently
described by second order statistics, while the SOM is amgit to approximate the probability density as
shown in Kohonen [21].

45 Convolutional Networks

Theoretically, we should be able to train a large enoughidayer perceptron neural network to perform
any required mapping [14], including that required to petffedistinguish the classes in face recognition.
However, in practice, such a system is unable to form theiredjfieatures in order to generalize to unseen
inputs (the class of functions which can perfectly clastify training data is too large and it is not easy to
constrain the solution to the subset of this class whichletshgood generalization). In other words, the
problem is ill-posed - there is not enough training pointshie space created by the input images in order

®This assumes that the topological order is optimal priorithedoubling step.
®In the least mean squared error sense.



to allow accurate approximation of class probabilitie®tighout the input space. Additionally, there is no
invariance to translation or local deformation of the imaf#8]. Convolutional networks (CN) incorporate
constraints and achieve some degree of shift and deformimi@riance using three ideas: local receptive
fields, shared weights, and spatial subsampling. The usbaséd weights also reduces the number of
parameters in the system aiding generalization. Conwslatinetworks have been successfully applied to
character recognition [24, 22, 23, 5, 3].

A typical convolutional network for recognizing charactés shown in figure 5 [24]. The network consists
of a set of layers each of which contains one or more planesproXmmately centered and normalized
images enter at the input layer. Each unit in a plane recéipes from a small neighborhood in the planes
of the previous layer. The idea of connecting units to loeakptive fields dates back to the 1960s with the
perceptron and Hubel and Wiesel's [15] discovery of localpsitive, orientation-selective neurons in the
cat’s visual system [23]. The weights forming the recepfietd for a plane are forced to be equal at all
points in the plane. Each plane can be considered as a feafyrevhich has a fixed feature detector that is
convolved with a local window which is scanned over the pdainethe previous layer. Multiple planes are
usually used in each layer so that multiple features can tecel. These layers are called convolutional
layers. Once a feature has been detected, its exact locatess important. Hence, the convolutional layers
are typically followed by another layer which does a locaraging and subsampling operation (eg. for a
subsampling factor of 2y;; = (x2;2; + T2i41,2j + Z2i2j+1 + T2i41,2j+1) /4 Wherey;; is the output of a
subsampling plane at positiary andz;; is the output of the same plane in the previous layer). Theorét

is trained with the usual backpropagation gradient-ddguetedure [13].

Input Feature maps Feature maps Feature maps Feature maps Output
28x28 4@24x24 4@12x12 12@8x8 12@4x4 26@1x1

Convolutional Subsampling Convolutional ~ Subsampling Fully
connected

Figure 5: A typical convolutional network for recognizing characters.

5 System Details

The system we have used for face recognition is a combinafitime preceding parts - a high-level block
diagram is shown in figure 6 and figure 7 shows a breakdown ofatfieus subsystems that we experimented
with or discuss.

Image Dimensionality Feature

Images I Sampling Reduction Extraction

Classifier | Classification

Y

Figure 6: A high-level block diagram of the system we have used for face recognitio
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Figure 7: A diagram of the system we have used for face recognition showing altermaéthods which we con-
sider in this paper. We present results with either a self-organizing mtpe darhunen-Loéve transform used for
dimensionality reduction, and either a convolutional neural networknouléi-layer perceptron for classification. We
consider the possibility of replacing the final classification stageerctinvolutional neural network with a nearest-
neighbor or related classifier. A complete recognizer consists of only ohafpatigh the diagram.

Our system works as follows (we give complete details of disiens etc. later):

1. For the images in the training set, a fixed size window (etp) & stepped over the entire image as
shown in figure 3 and local image samples are extracted atsaph At each step the window is
moved by 4 pixels.

2. Aself-organizing map (eg. with three dimensions and foa@as per dimensios? = 125 total nodes)
is trained on the vectors from the previous stage. The SOMtqes the 25-dimensional input vectors
into 125 topologically ordered values. The three dimersioiithe SOM can be thought of as three
features. We also experimented with replacing the SOM waighitarhunen-Loéve transform. In this
case, the KL transform projects the vectors in the 25-dimo@as space into a 3-dimensional space.

3. The same window as in the first step is stepped over all dfithges in the training and test sets. The
local image samples are passed through the SOM at eachftsteghy creating new training and test
sets in the output space created by the self-organizing (Eagh input image is now represented by
3 maps, each of which corresponds to a dimension in the SOMIsikle of these maps is equal to the
size of the input image (92x112) divided by the step sizedfstep size of 4, the maps are 23x28).)

4. A convolutional neural network is trained on the newlyateel training set. We also experimented
with training a standard multi-layer perceptron for conigamn.

5.1 Simulation Details

In this section we give the details of one of the best perfogwsystems.

For the SOM, training is split into two phases as recommengeldohonen [21] - an ordering phase, and
a fine-adjustment phase. 100,000 updates are performee iir¢hphase, and 50,000 in the second. In
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the first phase, the neighborhood radius starts at twoghifdhe size of the map and reduces linearly to 1.
The learning rate during this phase @s7 * (1 — n/N) wheren is the current update number, afidis the
total number of updates. In the second phase, the neightintaalius starts at 2 and is reduced to 1. The
learning rate during this phase 02 % (1 — n/N).

The convolutional network contained five layers excludimginput layer. A confidence measure was calcu-
lated for each classification;,, (v, — y2mn) Wherey,, is the maximum output, ang,, is the second maxi-

mum output (for outputs which have been transformed usiagaftmaxtransformationzy; = %
wherew; are the original outputsy; are the transformed outputs, akhds the number of ouf[pbts). ]The
number of planes in each layer, the dimensions of the plamesthe dimensions of the receptive fields are
shown in table 1. The network was trained with backpropagdii 3] for a total of 20,000 updates. Weights
in the network were updated after each pattern presentatsoapposed to batch update where weights are
only updated once per pass through the training set. AlltByauere normalized to lie in the range minus
one to one. All nodes included a bias input which was part efgitimization process. The best of 10 ran-
dom weight sets was chosen for the initial parameters of éiwork by evaluating the performance on the
training set. Weights were initialized on a node by nodeshasiuniformly distributed random numbers in
the rangg—2.4/ F;, 2.4/ F;) whereF; is the fan-in of neuron [13]. Target outputs were -0.8 and 0.8 using
thetanh output activation functioh The quadratic cost function was used. A search then coaeagning
rate schedule was used) = — 0 wheren = learning ratey, = initial learning

P man (10 - 2oL a0 )
rate = 0.1,N = total training epochsp = current training epoch;; = 50, co = 0.65. The schedule is
shown in figure 8. Total training time was around four hour@orsGI Indy 100Mhz MIPS R4600 system.

T
Layer 1 —
Layer 2 -----

Learning Rate
o
N
o
T T T T T T

0 Il Il Il Il Il Il Il Il Il
50 100 150 200 250 300 350 400 450 500
Epoch

Figure 8: The learning rate as a function of the epoch number.

6 Experimental Results

We performed various experiments and present the results B&cept where noted, all experiments were
performed with 5 training images and 5 test images per pdamantotal of 200 training images and 200 test
images. There was no overlap between the training and tsst\8e note that a system which guesses the
correct answer would be right one out of forty times, givimgearor rate of 97.5%. For the following sets

"This helps avoid saturating the sigmoid function. If tasgetre set to the asymptotes of the sigmoid this would tend)to:
drive the weights to infinity, b) cause outlier data to praglvery large gradients due to the large weights, and c) pebdimary
outputs even when incorrect - leading to decreased reatiabfithe confidence measure.

8Relatively high learning rates are typically used in oraenélp avoid slow convergence and local minima. Howevernatemt
learning rate results in significant parameter and perfagadluctuation during the entire training cycle such thatgarformance
of the network can alter significantly from the beginninghe £nd of the final epoch. Moody and Darkin have proposed ¢kear
then converge” learning rate schedules. We have found lieaetschedules still result in considerable parameteuéition and
hence we have added another term to further reduce thengamatie over the final epochs. We have found the use of learateg
schedules to improve performance considerably.
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Layer Type Units | x | v | Receptive| Receptive| Connection

field x field y Percentage
1 Convolutional 20 |21 26 3 3 100
2 Subsampling | 20 9 |11 2 2 -
3 Convolutional 25 9 |11 3 3 30
4 Subsampling | 25 5|6 2 2 -
5 Fully connected 40 1)1 5 6 100

Table 1. Dimensions for the convolutional network. The connection percentagesref the percentage of nodes
in the previous layer which each node in the current layer is connected to ualeak than 100% reduces the total
number of weights in the network and may improve generalization. Theection strategy used here is similar to
that used by Le Cun et al. for character recognition. As an example of howehis@connections can be determined
from the table - the size of the first layer planes (21x26) is equal taatiaé number of ways of positioning a 3x3
receptive field on the input layer planes (23x28).

of experiments, we vary only one parameter in each case. fftieb@rs shown in the graphs represent plus
or minus one standard deviation of the distribution of ressitbm a number of simulatioRs We note that
ideally we would like to have performed more simulations iggorted result, however, we were limited in
terms of computational capacity available to us. The constased in each set of experiments were: number
of classes: 40, dimensionality reduction method: SOM, disians in the SOM: 3, number of nodes per
SOM dimension: 5, texture extraction: original intensiglues, training images per class: 5. Note that
the constants in each set of experiments may not give theplossible performance as the current best
performing system was only obtained as a result of theseriexpets. The experiments are as follows:

1. Variation of the number of output classegable 2 and figure 9 show the error rate of the system as the
number of classes is varied from 10 to 20 to 40. We made no pttEnoptimize the system for the
smaller numbers of classes. As we expect, performance uagpnoith fewer classes to discriminate
between (if we continue to add new classes then the chance@k alass being very similar to an
existing class increases).

| Numberofclasses 10 | 20 | 40 |
\ Error rate \ 1.33%\ 4.33%\ 5.75%\

Table 2. Error rate of the face recognition system with varying number of classésggcts). Each resultis the average
of three simulations.

2. Variation of the dimensionality of the SOMtable 3 and figure 10 show the error rate of the system
as the dimension of the self-organizing map is varied from 4.tThe best performing value is three
dimensions.

3. Variation of the quantization level of the SGMable 4 and figure 11 show the error rate of the system
as the size of the self-organizing map is varied from 4 to 8&sqekr dimension. The SOM has three
dimensions in each case. The best error rate occurs for & nmmtedimension. This is also the best
error rate of all experiments.

®We ran multiple simulations in each experiment where weeghifie selection of the training and test images (out of &dbta
10!/5! = 30240 possibilities) and the random seed used to initialize thighte in the convolutional neural network.
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Figure 9: The error rate as a function of the number of classes. We did not mbaifyetwork from that used for the
40 class case.

| SOMDimensionf] 1 | 2 | 3 | 4 |
\ Errorrate | 8.25%] 6.75% 5.75% | 5.83%|

Table 3. Error rate of the face recognition system with varying number of dimoessin the self-organizing map.
Each result given is the average of three simulations.

10 T T T T

Test Error %

2 3
SOM Dimensions

Figure 10: The error rate as a function of the number of dimensions in the SOM.

|SOMSize] 4 | 5 | 6 | 7 [ 8 |
| Errorrate | 8.5% | 5.75%| 6.0% | 5.75%| 3.83%|

Table 4: Error rate of the face recognition system with varying number of nodedimension in the self-organizing
map. Each result given is the average of three simulations.
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Figure 11: The error rate as a function of the number of nodes per dimension irQht S
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4. Variation of the texture extraction algorithmtable 5 shows the result of using the two local image
sample representations described earlier. We found tlvag tise original intensity values gave the
best performance. We tried altering the weight assignelaetaéntral intensity value in the alternative
representation but were unable to improve the results.

| Input type | Pixel intensities| Differences w/base intensity
| Error rate | 575% | 7.17% \

Table 5. Error rate of the face recognition system with varying image sampleseptation. Each result is the
average of three simulations.

5. Substituting the SOM with the KL transforatable 6 shows the results of replacing the self-organizing
map with the Karhunen-Loéve transform. We tried using th& fine, two, or three eigenvectors
for projection. Surprisingly, the system performed beghvanly 1 eigenvector. The best SOM
parameters we tried produced slightly better performantiee quantization inherent in the SOM
could provide a degree of invariance to minor image samfilerdnces and quantization of the PCA
projections may improve performance.

| Dimensionality reductior] Linear PCA| SOM |
\ Error rate | 5.33% |3.83%|

Table 6. Error rate of the face recognition system with linear PCA and SOM featuraation mechanisms. Each
result is the average of three simulations.

6. Replacing the CN with an MLP table 7 shows the results of replacing the convolutionalvoek
with a multi-layer perceptron. Performance is very poorwasexpect due to the loss of shift and
deformation invariance. We tried a number of different kiddayer sizes for the multi-layer percep-
tron in the range 20 to 100. Note that the best performing Kilampeters were used while the best
performing SOM parameters were not.

\ | Linear PCA| SOM |

MLP 41.2% 39.6%
CN 5.33% 3.83%

Table 7: Error rate comparison of the various feature extraction and classificatimods. Each result is the average
of three simulations.

7. The tradeoff between rejection threshold and recognitiocusacy— Figure 12 shows a histogram of
the recognizer’s confidence for the cases when the clagsifierrect and when it is wrong for one of
the best performing systems. From this graph we expect thsgification performance will increase
significantly if we reject cases below a certain confidencesttold. Figure 13 shows the system
performance as the rejection threshold is increased. Wsaathat by rejecting examples with low
confidence we can significantly increase the classificat@fopmance of the system. If we consider
a system which used a video camera to take a number of picuees short period, we could expect
that a high performance would be attainable with an appatgriejection threshold.
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Figure 12 A histogram depicting the confidence of the classifier when it turns dog iworrect, and the confidence
when it is wrong. The graph suggests that we can improve classificatitormpance considerably by rejecting cases
where the classifier has a low confidence.
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Figure 13: The test set classification performance as a function of the percentage oésamjptted. Classification
performance can be improved significantly by rejecting cases with low confidence.

8. Comparison with other known results on the same databaBable 8 shows a summary of the per-
formance of the systems for which we have results using the @Rabase. In this case, we used a
SOM quantization level of 8. Our system is the best perfognsipstem® and performs recognition
roughly 500 times faster than the second best performingmsysthe pseudo 2D-HMMs of Samaria.
Figure 14 shows the images which were incorrectly classiiedne of the best performing systems.

\ System | Error rate| Classification time]
Top-down HMM 13% n/a
Eigenfaces 10.5% n/a
Pseudo 2D-HMM| 5% 240 seconds
SOM+CN 3.8% < 0.5 seconds

Table 8: Error rate of the various systemsOn a Sun Sparc IF On an SGI Indy MIPS R4600 100Mhz system.

9. Variation of the number of training images per persomfiable 9 shows the results of varying the
number of images per class used in the training set from 1 twr PCA+CN, SOM+CN and also
for the eigenfaces algorithm. We implemented two versidnthe eigenfaces algorithm - the first
version creates vectors for each class in the training setvbyaging the results of the eigenface
representation over all images for the same person. Thissmonds to the algorithm as described
by Turk and Pentland [42]. However, we found that using saparaining vectors for each training
image resulted in better performance. We found that usibhgdsn 40 to 100 eigenfaces resulted in
similar performance. We can see that the PCA+CN and SOM+Ctlade are both superior to the

"The 4% error rate reported is an average of multiple sinarati individual simulations have given error rates as lo.5%6
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Figure 14: Testimages. The images with a thick white border were incorrectly clasbifiede of the best perform-
ing systems.

eigenfaces technigue even when there is only one trainiageénper person. The SOM+CN method
consistently performs better than the PCA+CN method.

\ Imagesperperson | 1 | 2 [ 3 | 4 | 5 |
Eigenfaces - average per clas88.6 | 28.8| 28.9| 27.1| 26
Eigenfaces - one perimage 38.6 | 20.9| 18.2| 15.4| 10.5
PCA+CN 3421 17.2|13.2|12.1| 7.5
SOM+CN 30.0(170| 118 71 | 3.5

Table 9: Error rate for the eigenfaces algorithm and the SOM+CN as the size ofihang set is varied from 1to 5
images per person. Averaged over two different selections of the trainingstrebts.

7 Discussion

Figure 15 shows the randomly chosen initial local image dasnporresponding to each node in a two-
dimensional SOM, and the final samples which the SOM congetge Scanning across the rows and
columns we can see that the quantized samples representhdynaitanging shading patterns. This is the
initial representation from which successively higherelefeatures are extracted using the convolutional
network. Figure 16 shows the activation of the nodes in a aogmvolutional network for a particular test

image.

We use both fixed feature extraction (the representatioma#l limage samples), and a trainable feature
extractor (the convolutional network). Can this trainafeleture extractor form the optimal set of features?
The answer is negative - it is unlikely that the network canttact an optimal set of features for all images.
Although the exact process of human face recognition is owvkn there are many features which humans
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Figure 15 SOM image samples before training (a random set of image samples) andzaftiegt

Figure 16: A depiction of the node maps in a sample convolutional network shpttia activation values for a
particular test image. In this case the the image is correctly classified nlighoae activated output node (the top
node). From left to right, the layers are: the input layer, convolatiteyer 1, subsampling layer 1, convolutional
layer 2, subsampling layer 2, and the output layer.

may use but our system is unlikely to discover optimally - &). knowledge of the three-dimensional
structure of the face, b) knowledge of the nose, eyes, metth, c) generalization to glasses/no glasses,
different hair growth, etc., and d) knowledge of facial eegsions.

8 Computational Complexity

The SOM takes considerable time to train. This is not a drawld the approach however, as the system
can be extended to cover new classes without retraining @M. All that is required is that the image
samples originally used to train the SOM are sufficientlyrespntative of the image samples used in new
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images. For the experiments we have reported here, theizgguutput of the SOM is very similar if we
train it with only 20 classes instead of 40. In addition, thertkunen-Loéve transform can be used in place
of the SOM with a minimal impact on system performance.

It also takes a considerable amount of time to train a cotienial network, how significant is this? The con-
volutional network extracts features from the image. Othethods have fixed feature extraction algorithms
which are not trained (eg. eigenfaces) - we can do the saree Gensider if we separate the convolutional
network into two parts: the initial feature extraction lesyand the final feature extraction and classification
layers. Given a well chosen sample of the complete distabuif faces which we want to recognize, the
features extracted from the first section could be expedelsb be useful for the classification of new
classes. These features could then be considered fixeddeand the first part of the network may not
need to be retrained when adding new classes. The point ehwhe convolutional network is broken into
two would depend on how well the features at each stage afd fizethe classification of new classes (the
larger features in the final layers are less likely to be a duaxis for classification of new examples). We
note that it may be possible to replace the second part withantype of classifier - eg. a nearest-neighbor
classifier. In this case the time required for retrainingdizgtem when adding new classes is minimal (the
extracted feature vectors are simply stored for the trgiiimages).

To give an idea of the computational complexity of each paihe system we define:

N, The number of classes

Ny The number of nodes in the self-organizing map

Nyt The number of weights in the convolutional network

Ny2 The number of weights in the classifier

Ny, The number of training examples

N, The number of nodes in the neighborhood function

Nina The total number of next nodes used to backpropagate the error in the CN
Nin2 The total number of next nodes used to backpropagate the error in theldés$fier
Nog The output dimension of the KL projection

N; The input dimension of the KL projection

Nsamples  The number of training samples for the SOM or the KL projection
Nuwindow The number of local image samples per image

Tables 10 and 11 show the approximate complexity of the uarfarts of the system during training and
classification. We show the complexity for both the SOM anddfiernatives for dimensionality reduction
and for both the neural network (MLP) and a nearest-neighlaasifier (as the last part of the convolutional
network - not as a complete replacement, ie. this is not theesas the earlier multi-layer perceptron
experiments). We note that the constant associated witloghtactors may increase exponentially in the
worst case (cf. neighbor searching in high dimensionalesp§l]).

9 Further Research
We can identify the following avenues for improving perfamce:

1. More careful selection of the convolutional network deatture, eg. by using the Optimal Brain Dam-
age algorithm [25] as used by Le Cun et al. [24] to improve gaimtion and speedup handwritten
digit recognition.
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| Section | Training complexity \
KL O((2 + N2%) Noamples +3N3,) = O(NZ + N3,

SOM O (k1 Nyampies NnkalogNg) = O(Nampies NnlogNs) (N, varies)
CN ( Ntr( wl"’Nnnl)) O(NtrN )

MLP Classifier| O(ksNy-(Ny2 + Npn2)) = O(Ny-Ne)

NN Classifier | O(Ny)

Table 1Q Training complexity.k, andks represent the number of times the training set is presented to the network
for the SOM and the CN respectively.

| Section | Classification complexity \
KL O(NwmdowdeNod)
SOM wzndowkllogN) O(NwindowlogNs)

o(
CN O(kaNy1) = O(Ny1)
MLP Classifier| O(Nyz2) =~ O(N,)
NN Classifier (k4logNtr) ~ O(logN,)

Table 11 Classification complexityks represents the degree of shared weight replication.

2. More precise normalization of the images to account fandlation, rotation. Any normalization
would be limited by the desired recognition speed.

3. The various facial features could be ranked accordingped timportance in recognizing faces and
separate modules could be introduced for various partedbtte, eg. the eye region, the nose region,
and the mouth region (Brunelli and Poggio [6] obtain verydjperformance using a simple template
matching strategy on precisely these regions).

4. An ensemble of recognizers could be used. These couldrobiged via simple methods such as
a linear combination based on the performance of each nletworvia a gating network and the
Expectation-Maximization algorithm [16, 11]. Examinatiof the errors made by networks trained
with different random seeds and by networks trained witi2d/ data versus networks trained with
the KL data shows that a combination of networks should iwgimerformance (the set of common
errors between the recognizers is often much smaller tratothl number of errors).

5. Invariance to a group of desired transformations coulerttexnced with the addition of pseudo-data to
the training database - ie. the addition of new examplegsendeom the current examples using local
deformation, etc. Leen [26] shows that adding pseudo-datebe equivalent to adding a regularizer
to the cost function that penalizes changes in the outpubwiieinput goes under a transformation
for which invariance is desired.

10 Conclusions

We have presented a fast, automatic system for face reamgmihich is a combination of a local image
sample representation, a self-organizing map network,aaconvolutional network. The self-organizing
map provides a quantization of the image samples into adgpal space where inputs that are nearby in
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the original space are also nearby in the output space, whgtlits in invariance to minor changes in the
image samples, and the convolutional neural network pesvidr partial invariance to translation, rotation,
scale, and deformation. Substitution of the Karhunenviedéansform for the self-organizing map produced
similar but slightly worse results. The method is capableapfd classification, requires only fast, approx-
imate normalization and preprocessing, and consisterHipis better classification performance than the
eigenfaces approach [42] on the database considered asmiigenof images per person in the training
database is varied from 1 to 5. With 5 images per person thmpenl method and eigenfaces result in 3.8%
and 10.5% error respectively. The recognizer provides asureaof confidence in its output and classifi-
cation error approaches zero when rejecting as few as 10¥eafxamples. Training is computationally
expensive (around four hours on a MIPS R4600 100Mhz systema)ever we have shown that retraining of
the complete system may not be required in order to add nesgedao the recognizer. We have presented
avenues for further improvement.

There are no explicit three-dimensional models in our systowever we have found that the quantized lo-
cal image samples used as input to the convolutional netrepriesent smoothly changing shading patterns.
Higher level features are constructed from these buildiogks in successive layers of the convolutional
network. In comparison with the eigenfaces approach, wie\methat the system presented here is able to
learn more appropriate features in order to provide impt@eneralization. The system is partially invariant
to changes in the local image samples, scaling, translatidrdeformation by design.
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