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The last decade has seen automatic face recognition evolve from small scale re-
search systems to a wide range of commercial products. Driven by the FERET face
database and evaluation protocol, the currently best commercial systems achieve
verification accuracies comparable to those of fingerprint recognizers. In these ex-
periments, only frontal face images taken under controlled lighting conditions were
used. As the use of face recognition systems expands towards less restricted envi-
ronments, the development of algorithms for view and illumination invariant face
recognition becomes important. However, the performance of current algorithms
degrades significantly when tested across pose and illumination as documented in
a number of evaluations. In this chapter we review previously proposed algorithms
for pose and illumination invariant face recognition. We then describe in detail
two successful appearance-based algorithms for face recognition across pose, eigen
light-fields and Bayesian face subregions. We furthermore show how both of these
algorithms can be extended towards face recognition across pose and illumination.

1 Introduction

The most recent evaluation of commercial face recognition systems shows the level
of performance for face verification of the best systems to be on par with fingerprint
recognizers for frontal, uniformly illuminated faces [39]. Recognizing faces reliably
across changes in pose and illumination has proved to be a much harder problem [10,
25, 39]. While the majority of research has so far focused on frontal face recognition,
there is a sizable body of work on pose invariant face recognition and illumination
invariant face recognition. However, face recognition across pose and illumination
has received very little attention.

1.1 Multi-view Face Recognition and Face Recognition Across Pose

Approaches addressing pose variation can be classified into two categories depend-
ing on the type of gallery images they use. Multi-view face recognition is a direct
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extension of frontal face recognition in which the algorithms require gallery images
of every subject at every pose. In face recognition across pose we are concerned
with the problem of building algorithms to recognize a face from a novel viewpoint,
i.e. a viewpoint from which it has not previously been seen. In both categories we
furthermore distinguish between model-based and appearance-based algorithms.
Model-based algorithms use an explicit 2D [13] or 3D [11, 16] model of the face,
whereas appearance-based methods directly use image pixels or features derived
from image pixels [37].

One of the earliest appearance-based multi-view algorithms is described in [7].
After a pose estimation step the algorithm geometrically aligns the probe images to
candidate poses of the gallery subjects using the automatically determined locations
of three feature points. This alignment is then refined using optical flow. Recognition
is performed by computing normalized correlation scores. Good recognition results
are reported on a database of 62 subjects imaged in a number of poses ranging
from −30◦ to +30◦ (yaw) and from −20◦ to +20◦ (pitch). However, the probe
and gallery poses are very similar. In [38] the popular eigenface approach of Turk
and Pentland [48] is extended to handle multiple views. The authors compare the
performance of a parametric eigenspace (computed using all views from all subjects)
with view-based eigenspaces (separate eigenspaces for each view). In experiments
on a database of 21 people recorded in nine evenly spaced views from −90◦ to +90◦,
view-based eigenspaces outperform the parametric eigenspace by a small margin.

A number of 2D model-based algorithms have been proposed for face tracking
through large pose changes. In [14] separate active appearance models are trained
for profile, half profile and frontal views, with models for opposing views created by
simple reflection. Using a heuristic for switching between models the system is able
to track faces through wide angle changes. It has been shown that linear models
are able to deal with considerable pose variation as long as all the modeled features
remain visible [33]. A different way of dealing with larger pose variations is then
to introduce non-linearities into the model. Romdhani et al. extended active shape
models [42] and active appearance models [43] using a kernel PCA to model shape
and texture nonlinearities across views. In both cases models are successfully fit to
face images across a full 180◦ rotation. However, no face recognition experiments
were performed.

In many face recognition scenarios the pose of the probe and gallery images
are different. For example, the gallery image might be a frontal “mug-shot” and
the probe image might be a 3/4 view captured from a camera in the corner of a
room. The number of gallery and probe images can also vary. For example, the
gallery might consist of a pair of images for each subject, a frontal mug-shot and
full profile view (like the images typically captured by police departments). The
probe might be a similar pair of images, a single 3/4 view, or even a collection of
views from random poses. In these scenarios multi-view face recognition algorithms
can not be used. Early work on face recognition across pose was based on the
idea of linear object classes [49]. The underlying assumption is that the 3D shape
of an object (and 2D projections of 3D objects) can be represented by a linear
combination of prototypical objects. It follows that a rotated view of the object
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is a linear combination of the rotated views of the prototype objects. Using this
idea the authors are able to synthesize rotated views of face images from a single
example view. In [8] this algorithm is used to create virtual views from a single
input image for use in a multi-view face recognition system. Lando and Edelman
use a comparable example-based technique to generalize to new poses from a single
view [32].

A completely different approach to face recognition across pose is based on
the work of Murase and Nayar [37]. They showed that different views of a rigid
object projected into an eigenspace fall on a 2D manifold. Using a model of the
manifold they could recognize objects from arbitrary views. In a similar manner
Graham and Allison observe that a densely sampled image sequence of a rotating
head forms a characteristic eigensignature when projected into an eigenspace [20].
They use Radial Basis Function Networks to generate eigensignatures based on a
single view input. Recognition is then performed by distance computation between
the projection of a probe image into eigenspace and the eigensignatures created
from gallery views. Good generalization is observed from half profile training views.
However, recognition rates for tests across wide pose variations (e.g. frontal gallery
and profile probe) are weak.

One of the early model-based approaches for face recognition is based on Elastic
Bunch Graph Matching [50]. Facial landmarks are encoded with sets of complex
Gabor wavelet coefficients called jets. A face is then represented with a graph where
the different jets form the nodes. Based on a small number of hand-labeled exam-
ples, graphs for new images are generated automatically. The similarity between
a probe graph and the gallery graphs is determined as average over the similari-
ties between pairs of corresponding jets. Correspondences between nodes in different
poses is established manually. Good recognition results are reported on frontal faces
in the FERET evaluation [40]. Recognition accuracies decrease drastically though
for matching half profile images with either frontal or full profile views. For the
same framework a method for transforming jets across pose is introduced in [36]. In
limited experiments the authors show improved recognition rates over the original
representation.

1.2 Illumination Invariant Face Recognition

Besides face pose, illumination is the next most significant factor affecting the
appearance of faces. Ambient lighting changes greatly within and between days
and among indoor and outdoor environments. Due to the 3D structure of the face,
a direct lighting source can cast strong shadows that accentuate or diminish certain
facial features. It has been shown experimentally [2] and theoretically for systems
based on Principal Component Analysis [51] that differences in appearance induced
by illumination are larger than differences between individuals. Since dealing with
illumination variation is a central topic in computer vision numerous approaches
for illumination invariant face recognition have been proposed.

Early work in illumination invariant face recognition focused on image repre-
sentations that are mostly insensitive to changes in illumination. In [2] different
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image representations and distance measures are evaluated on a tightly controlled
face database which varied face pose, illumination and expression. The image rep-
resentations include edge maps, 2D Gabor-like filters, first and second derivatives
of the gray-level image and the logarithmic transformations of the intensity image
along with these representations. However, none of the different image representa-
tions is found to be sufficient by itself to overcome variations due to illumination
changes. In more recent work it was shown that the ratio of two images from the
same object is simpler than the ratio of images from different objects [28]. In limited
experiments this method outperformed both correlation and Principal Component
Analysis, but did not perform as well as the illumination cone method described
below. A related line of work attempts to extract the object’s surface reflectance
as an illumination invariant description of the object [26, 31]. We will discuss the
most recent algorithm in this area in more detail in Section 4.2. In [45] a differ-
ent illumination invariant image representation, the quotient image, was proposed.
Computed from a small set of example images, the quotient image can be used
to re-render an object of the same class under a different illumination condition.
In limited recognition experiments the method outperforms Principal Component
Analysis.

A different approach to the problem is based on the observation that the im-
ages of a Lambertian surface, taken from a fixed viewpoint but under varying
illumination lie in a 3D linear subspace of the image space [44]. A number of
appearance-based methods exploit this fact to model the variability of faces un-
der changing illumination. In [6] the eigenface algorithm of Turk and Pentland [48]
is extended to Fisherfaces by employing a classifier based on Fisher’s Linear Dis-
criminant Analysis. In experiments on a face database with strong variations in
illumination Fisherfaces outperform eigenfaces by a wide margin. Further work in
the area by Belhumeur and Kriegman showed that the set of images of an object
in fixed pose but under varying illumination forms a convex cone in the space of
images [5]. The illumination cones of human faces can be approximated well by
low-dimensional linear subspaces [17]. An algorithm based on this method outper-
forms both eigenfaces and Fisherfaces. More recently Basri and Jacobs showed that
the illumination cone of a convex Lambertian surface can be approximated by a
9-dimensional linear subspace [3]. In limited experiments good recognition rates
across illumination conditions are reported.

Common to all these appearance-based methods is the need for training images
of database subjects under a number of different illumination conditions. An algo-
rithm proposed by Sim and Kanade overcomes this restriction [47]. The authors
use a statistical shape-from-shading model to recover the face shape from a single
image and synthesize the face under a new illumination. Using this method they
generate images of the gallery subjects under many different illumination conditions
to serve as gallery images in a recognizer based on Principal Component Analysis.
High recognition rates are reported on the illumination subset of the CMU PIE
database [46].
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1.3 Algorithms for Face Recognition across Pose and Illumination

To simultaneously address the problems of face recognition across pose and illumi-
nation a number of appearance and model-based algorithms have been proposed.
In [18] a variant of photometric stereo is used to recover shape and albedo of a face
based on seven images of the subject seen in a fixed pose. In combination with the il-
lumination cone representation introduced in [5] the authors can synthesize faces in
novel pose and illumination conditions. In tests on 4050 images from the Yale Face
Database B the method performed almost without error. In [12] a morphable model
of three dimensional faces is introduced. The model is created using a database of
Cyberware laser scans of 200 subjects. Following an analysis-by-synthesis paradigm
the algorithm automatically recovers face pose and illumination from a single image.
For initialization, the algorithm requires the manual localization of seven facial fea-
ture points. After fitting the model to a new image the extracted model parameters
describing the face shape and texture are used for recognition. The authors report
excellent recognition rates on both the FERET [40] and CMU PIE [46] databases.
Once fit, the model can also be used to synthesize an image of the subject under
new conditions. This method was used in the most recent Face Recognition Ven-
dor Test to create frontal view images from rotated views [39]. For 9 out of 10
face recognition systems tested, accuracies on the synthesized frontal views were
significantly higher than on the original images.

2 Eigen Light-Fields

We propose an appearance-based algorithm for face recognition across pose. Our
algorithm can use any number of gallery images captured at arbitrary poses, and any
number of probe images also captured with arbitrary poses. A minimum of 1 gallery
and 1 probe image are needed, but if more images are available the performance of
our algorithm generally improves.

Our algorithm operates by estimating (a representation of) the light-field [35]
of the subject’s head. First, generic training data is used to compute an eigen-space
of head light-fields, similar to the construction of eigenfaces [48]. Light-fields are
simply used rather than images. Given a collection of gallery or probe images, the
projection into the eigen-space is performed by setting up a least-squares problem
and solving for the projection coefficients similarly to approaches used to deal with
occlusions in the eigen-space approach [9, 34]. This simple linear algorithm can be
applied to any number of images, captured from any poses. Finally, matching is
performed by comparing the probe and gallery eigen light-fields.

2.1 Light-Fields Theory

Object Light-Fields

The plenoptic function [1] or light-field [35] is a function which specifies the radiance
of light in free space. It is a 5D function of position (3D) and orientation (2D).
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Fig. 1. The object is conceptually placed within a circle. The angle to the viewpoint
v around the circle is measured by the angle θ, and the direction that the viewing ray
makes with the radius of the circle is denoted φ. For each pair of angles θ and φ, the
radiance of light reaching the viewpoint from the object is then denoted by L(θ, φ), the
light-field. Although the light-field of a 3D object is actually 4D, we will continue to use
the 2D notation of this figure in this paper for ease of explanation.

In addition, it is also sometimes modeled as a function of time, wavelength, and
polarization, depending on the application in mind. In 2D, the light-field of a 2D
object is actually 2D rather than the 3D that might be expected. See Figure 1 for
an illustration.

Eigen Light-Fields

Suppose we are given a collection of light-fields Li(θ, φ) of objects Oi (here faces
of different subjects) where i = 1, . . . , N . See Figure 1 for the definition of this
notation. If we perform an eigen-decomposition of these vectors using Principal
Component Analysis (PCA), we obtain d ≤ N eigen light-fields Ei(θ, φ) where i =
1, . . . , d. Then, assuming that the eigen-space of light-fields is a good representation
of the set of light-fields under consideration, we can approximate any light-field
L(θ, φ) as:

L(θ, φ) ≈

d
∑

i=1

λiEi(θ, φ) (1)

where λi = 〈L(θ, φ), Ei(θ, φ)〉 is the inner (or dot) product between L(θ, φ) and
Ei(θ, φ). This decomposition is analogous to that used in face and object recognition
[37, 48]; The mean light-field could also be estimated and subtracted from all of
the light-fields.

Capturing the complete light-field of an object is a difficult task, primarily
because it requires a huge number of images [19, 35]. In most object recognition
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scenarios it is unreasonable to expect more than a few images of the object; often
just one. However, any image of the object corresponds to a curve (for 3D objects, a
surface) in the light-field. One way to look at this curve is as a highly occluded light-
field; only a very small part of the light-field is visible. Can the eigen coefficients
λi be estimated from this highly occluded view? Although this may seem hopeless,
consider that light-fields are highly redundant, especially for objects with simple
reflectance properties such as Lambertian. An algorithm is presented in [34] to solve
for the unknown λi for eigen-images. A similar algorithm was implicitly used in [9].
Rather than using the inner product λi = 〈L(θ, φ), Ei(θ, φ)〉, Leonardis and Bischof
[34] solve for λi as the least squares solution of:

L(θ, φ) −
d

∑

i=1

λiEi(θ, φ) = 0 (2)

where there is one such equation for each pair of θ and φ that are un-occluded
in L(θ, φ). Assuming that L(θ, φ) lies completely within the eigen-space and that
enough pixels are un-occluded, then the solution of Equation (2) will be exactly
the same as that obtained using the inner product [23]. Since there are d unknowns
(λ1 . . . λd) in Equation (2), at least d un-occluded light-field pixels are needed to
over-constrain the problem, but more may be required due to linear dependencies
between the equations. In practice, 2− 3 times as many equations as unknowns are
typically required to get a reasonable solution [34]. Given an image I(m, n), the
following is then an algorithm for estimating the eigen light-field coefficients λi:

1. For each pixel (m, n) in I(m, n) compute the corresponding light-field angles
θm,n and φm,n. (This step assumes that the camera intrinsics are known, as
well as the relative orientation of the camera to the object.)

2. Find the least-squares solution (for λ1 . . . λd) to the set of equations:

I(m, n) −

d
∑

i=1

λiEi(θm,n, φm,n) = 0 (3)

where m and n range over their allowed values. (In general, the eigen light-fields
Ei need to be interpolated to estimate Ei(θm,n, φm,n). Also, all of the equations
for which the pixel I(m, n) does not image the object should be excluded from
the computation.)

Although we have described this algorithm for a single image I(m, n), any number
of images can obviously be used (so long as the camera intrinsics and relative
orientation to the object are known for each image). The extra pixels from the other
images are simply added in as additional constraints on the unknown coefficients λi

in Equation (3). The algorithm can be used to estimate a light-field from a collection
of images. Once the light-field has been estimated, it can then be used to render new
images of the same object under different poses. (See [49] for a related algorithm.)
In [23] we show that the algorithm correctly re-renders a given object assuming a
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Input Rerendered Original

Fig. 2. An illustration of using our eigen light-field estimation algorithm for re-rendering
a face across pose. The algorithm is given the left-most (frontal) image as input from
which it estimates the eigen light-field and then creates the rotated view shown in the
middle. For comparison, the original rotated view is shown in the right-most column. In
the figure we show one of the better results (top) and one of the worst (bottom.) Although
in both cases the output looks like a face, the identity is altered in the second case.

Lambertian reflectance model. The extent to which these assumptions are valid are
illustrated in Figure 2 where we present results of using our algorithm to re-render
faces across pose. In each case the algorithm received the left-most (frontal) image
as input and created the rotated view in the middle. For comparison, the original
rotated view is included as the right-most image. The re-rendered image for the
first subject is very similar to the original. While the image created for the second
subject still shows a face in the correct pose, the identity of the subject is not as
accurately recreated. We conclude that overall our algorithm works fairly well, but
that more training data is needed so that the eigen light-field of faces can more
accurately represent any given face light-field.

2.2 Application to Face Recognition Across Pose

The Eigen Light-Field Estimation Algorithm described above is somewhat abstract.
In order to be able to use it for face recognition across pose we need to do the
following things:

Vectorization: The input to a face recognition algorithm consists of a collec-
tion of images (possibly just one) captured from a variety of poses. The Eigen
Light-Field Estimation Algorithm operates on light-field vectors (light-fields
represented as vectors). Vectorization consists of converting the input images
into a light-field vector (with missing elements, as appropriate.)
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Fig. 3. Vectorization by normalization. Vectorization is the process of converting a set
of images of a face into a light-field vector. Vectorization is performed by first classifying
each input image into one of a finite number of poses. For each pose, a normalization is
then applied to convert the image into a sub-vector of the light-field vector. If poses are
missing, the corresponding part of the light-field vector is missing.

Classification: Given the eigen coefficients a1 . . . ad for a collection of gallery faces
and for a probe face, we need to classify which gallery face is the most likely
match.

Selecting Training and Testing Sets: To evaluate our algorithm we have to
divide the database used into (disjoint) subsets for training and testing.

We now describe each of these tasks in turn.

Vectorization by Normalization

Vectorization is the process of converting a collection of images of a face into a
light-field vector. Before we can do this we first have to decide how to discretize
the light-field into pixels. Perhaps the most natural way to do this is to uniformly
sample the light-field angles, θ and φ in the 2D case of Figure 1. This is not the only
way to discretize the light-field. Any sampling, uniform or non-uniform, could be
used. All that is needed is a way of specifying what is the allowed set of light-field
pixels. For each such pixel, there is a corresponding index in the light-field vector;
i.e. if the light-field is sampled at K pixels, the light-field vectors are K dimensional
vectors.

We specify the set of light-field pixels in the following manner. We assume that
there are only a finite set of poses 1, 2, . . . , P in which the face can occur. Each face
image is first classified into the nearest pose. (Although this assumption is clearly an
approximation, its validity is demonstrated by the empirical results in Section 2.3.
In both the FERET [40] and PIE [46] databases, there is considerable variation in
the pose of the faces. Although the subjects are asked to place their face in a fixed
pose, they rarely do this perfectly. Both databases therefore contain considerable
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variation away from the finite set of poses. Since our algorithm performs well on
both databases, the approximation of classifying faces into a finite set of poses is
validated.)

Each pose i = 1, . . . , P is then allocated a fixed number of pixels Ki. The total
number of pixels in a light-field vector is therefore K =

∑P

i=1
Ki. If we have images

from pose 3 and 7, for example, we know K3 + K7 of the K pixels in the light-field
vector. The remaining K −K3 −K7 are unknown, missing data. This vectorization
process is illustrated in Figure 3.

We still need to specify how to sample the Ki pixels of a face in pose i. This
process is analogous to that needed in appearance-based object recognition and is
usually performed by “normalization.” In eigenfaces [48], the standard approach is
to find the positions of several canonical points, typically the eyes and the nose, and
to warp the input image onto a coordinate frame where these points are in fixed
locations. The resulting image is then masked. To generalize eigenface normalization
to eigen light-fields, we just need to define such a normalization for each pose.

We report results using two different normalizations. The first one is a simple
one based on the location of the eyes and the nose. Just as in eigenfaces, we assume
that the eye and nose locations are known, warp the face into a coordinate frame in
which these canonical points are in a fixed location and finally crop the image with a
(pose dependent) mask to yield the Ki pixels. For this simple 3-point normalization,
the resulting masked images vary in size between 7200 and 12600 pixels, depending
on the pose.

The second normalization is more complex and is motivated by the success of
Active Appearance Models [13]. This normalization is based on the location of a
large number (39–54 depending on the pose) of points on the face. These canonical
points are triangulated and the image warped with a piecewise affine warp onto a
coordinate frame in which the canonical points are in fixed locations. The resulting
masked images for this multi-point normalization vary in size between 20800 and
36000 pixels. Although currently the multi-point normalization is performed using
hand-marked points, it could be performed by fitting an Active Appearance Model
[13] and then using the implied canonical point locations.

Classification using Nearest Neighbor

The Eigen Light-Field Estimation Algorithm outputs a vector of eigen coefficients
(a1, . . . , ad). Given a set of gallery faces, we obtain a corresponding set of vectors
(aid

1
, . . . , aid

d ), where id is an index over the set of gallery faces. Similarly, given
a probe face, we obtain a vector (a1, . . . , ad) of eigen coefficients for that face.
To complete the face recognition algorithm we need an algorithm which classifies
(a1, . . . , ad) with the index id which is the most likely match. Many different clas-
sification algorithms could be used for this task. For simplicity, we use the nearest
neighbor algorithm which classifies the vector (a1, . . . , ad) with the index:

arg min
id

dist
(

(a1, . . . , ad), (a
id

1 , . . . , aid

d )
)

= arg min
id

d
∑

i=1

(

ai − aid

i

)2

. (4)



Face Recognition Across Pose and Illumination 11

All of the results reported in this paper use the Euclidean distance in Equation (4).
Alternative distance functions, such as the Mahalanobis distance, could be used
instead if so desired.

Selecting the Gallery, Probe, and Generic Training Data

In each of our experiments we divided the database into three disjoint subsets:

Generic Training Data: Many face recognition algorithms such as eigenfaces,
and including our algorithm, require “generic training data” to build a generic
face model. In eigenfaces, for example, generic training data is needed to com-
pute the eigenspace. Similarly, in our algorithm generic data is needed to con-
struct the eigen light-field.

Gallery: The gallery is the set of reference images of the people to be recognized;
i.e. the images given to the algorithm as examples of each person that might
need to be recognized.

Probe: The probe set contains the “test” images; i.e. the images that will be
presented to the system to be classified with the identity of the person in the
image.

The division into these three subsets is performed as follows. First we randomly
select half of the subjects as the generic training data. The images of the remaining
subjects are used for the gallery and probe. There is therefore never any overlap
between the generic training data and the gallery and probe.

After the generic training data has been removed, the remainder of the databases
are divided into probe and gallery sets based on the pose of the images. For example,
we might set the gallery to be the frontal images and the probe set to be the left
profiles. In this case, we evaluate how well our algorithm is able to recognize people
from their profiles given that the algorithm has only seen them from the front. In
the experiments described below we choose the gallery and probe poses in various
different ways. The gallery and probe are always disjoint unless otherwise noted.

2.3 Experimental Results

Databases

We used two databases in our face recognition across pose experiments, the CMU
Pose, Illumination, and Expression (PIE) database [46] and the FERET database
[40]. Each of these databases contains substantial pose variation. In the pose subset
of the CMU PIE database (see Figure 4), the 68 subjects are imaged simultaneously
under 13 different poses totaling 884 images. In the FERET database, the subjects
are imaged non-simultaneously in 9 different poses. We used 200 subjects from the
FERET pose subset giving 1800 images in total. If not stated otherwise we used
half of the available subjects for training of the generic eigenspace (34 subjects
for PIE, 100 subjects for FERET) and the remaining subjects for testing. In all
experiments (if not stated otherwise) we retain a number of eigenvectors sufficient
to explain 95% of the variance in the input data.
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Fig. 4. Pose variation in the PIE database. The pose varies from full left profile (c34)
to full frontal (c27) and on to full right profile (c22). Approximate pose angles are shown
below the camera numbers.

Comparison with Other Algorithms

We compared our algorithm with eigenfaces [48] and FaceIt, the commercial face
recognition system from Identix (formerly Visionics).1

We first performed a comparison using the PIE database. After randomly se-
lecting the generic training data, we selected the gallery pose as one of the 13 PIE
poses and the probe pose as any other of the remaining 12 PIE poses. For each
disjoint pair of gallery and probe poses, we compute the average recognition rate
over all subjects in the probe and gallery sets. The details of the results are included
in Figure 5 and a summary is included in Table 1.

In Figure 5 we plot color-coded 13×13 “confusion matrices” of the results. The
row denotes the pose of the gallery, the column the pose of the probe, and the
displayed intensity the average recognition rate. A lighter color denotes a higher
recognition rate. (On the diagonals the gallery and probe images are the same and
so all three algorithms obtain a 100% recognition rate.)

Eigen light-fields performs far better than the other algorithms, as is witnessed
by the lighter color of Figures 5(a–b) compared to Figures 5(c–d). Note how eigen
light-fields is far better able to generalize across wide variations in pose, and in
particular to and from near profile views.

The results in Figure 5 are summarized in Table 1. In this table we include the
average recognition rate computed over all disjoint gallery-probe poses. As can be
seen, eigen light-fields outperforms both the standard eigenfaces algorithm and the
commercial FaceIt system.

We next performed a similar comparison using the FERET database [40]. Just
as with the PIE database, we selected the gallery pose as one of the 9 FERET poses
and the probe pose as any other of the remaining 8 FERET poses. For each disjoint
pair of gallery and probe poses, we compute the average recognition rate over all
subjects in the probe and gallery sets, and then average the results. The results are
very similar to those for the PIE database and are summarized in Table 2. Again,
eigen light-fields performs significantly better than both FaceIt and eigenfaces.

1 In the experiments version 2.5.0.17 of the FaceIt recognition engine was used.
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Fig. 5. A comparison with FaceIt and eigenfaces for face recognition across pose on the
CMU PIE [46] database. For each pair of gallery and probe poses, we plot the color-coded
average recognition rate. The row denotes the pose of the gallery, the column the pose of
the probe. The fact that the images in (a) and (b) are lighter in color than those in (c)
and (d) implies that our algorithm performs better.

Table 1. A comparison of eigen light-fields with FaceIt and eigenfaces for face recognition
across pose on the CMU PIE database. The table contains the average recognition rate
computed across all disjoint pairs of gallery and probe poses; i.e. this table summarizes
the average performance in Figure 5.

Eigenfaces FaceIt Eigen Light-Fields Eigen Light-Fields
3-Point Norm Multi-Point Norm

Average Recognition Accuracy 16.6% 24.3% 52.5% 66.3%

Overall, the performance improvement of eigen light-fields over the other two
algorithms is more significant on the PIE database than on the FERET database.
This is because the PIE database contains more variation in pose than the FERET
database. For more evaluation results see [22].
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Table 2. A comparison of Eigen Light-Fields with FaceIt and eigenfaces for face recog-
nition across pose on the FERET database. The table contains the average recognition
rate computed across all disjoint pairs of gallery and probe poses. Again, eigen light-fields
outperforms both eigenfaces and FaceIt.

Eigenfaces FaceIt Eigen Light-Fields
3-Point Normalization

Average Recognition Accuracy 39.4% 59.3% 75%

3 Bayesian Face Subregions

Due to the complicated three dimensional nature of the face, differences exist in
how the appearance of various face regions change for different face poses. If for
example a head rotates from a frontal to a right profile position, the appearance of
the mostly featureless cheek region will only change little (if we ignore the influence
of illumination), while other regions such as the left eye will disappear, and the
nose will look vastly different. Our algorithm models the appearance changes of the
different face regions in a probabilistic framework [29]. Using probability distribu-
tions for similarity values of face subregions we compute the likelihood of probe
and gallery images coming from the same subject. For training and testing of our
algorithm we use the CMU PIE database [46].

3.1 Face Subregions and Feature Representation

Using the hand-marked locations of both eyes and the midpoint of the mouth we
warp the input face images into a common coordinate frame in which the landmark
points are in a fixed location and crop the face region to a standard 128x128 pixel
size. Each image I in the database is labeled with the identity i and pose φ of the
face in the image: I = (i, φ), i ∈ {1, . . . , 68}, φ ∈ {1, . . . , 13}. As shown in Figure
6 a 7-by-3 lattice is placed on the normalized faces and 9x15 pixel subregions
are extracted around every lattice point. The intensity values in each of the 21
subregions are normalized to have zero mean and unit variance.

As similarity measure between subregions we use SSD (sum of squared differ-
ence) values sj between corresponding regions j for all image pairs. Since we com-
pute SSD after image normalization it effectively contains the same information as
normalized correlation.

3.2 Modeling Local Appearance Change across Pose

For probe image Ii,p = (i, φp) with unknown identity i we compute the probability
that Ii,p is coming from the same subject k as gallery image Ik,g for each face
subregion j, j ∈ {1, . . . , 21}. Using Bayes’ rule we write:
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Fig. 6. Face subregions for two different poses of the CMU PIE database. Each face in the
database is warped into a normalized coordinate frame using the hand-labeled locations
of both eyes and the midpoint of the mouth. A 7x3 lattice is placed on the normalized
face and 9x15 pixel subregions are extracted around every lattice point resulting in a total
of 21 subregions.

P (i = k|sj , φp, φg) =
P (sj |i = k, φp, φg)P (i = k)

P (sj |i = k, φp, φg)P (i = k) + P (sj |i 6= k, φp, φg)P (i 6= k)
(5)

We assume the conditional probabilities P (sj |i = k, φp, φg) and P (sj |i 6= k, φp, φg)
to be Gaussian distributed and learn the parameters from data. Figure 7 shows
example histograms of similarity values for the right eye region. The examples in
Figure 7 show that the discriminative power of the right eye region diminishes as
the probe pose changes from almost frontal (Figure 7(a)) to right profile (Figure
7(c)).

It is reasonable to assume that the pose of each gallery image is known. However,
since the pose φp of the probe images is in general not known we marginalize over
it. We can then compute the conditional densities for similarity value sj as

P (sj |i = k, φg) =
∑

p

P (φp)P (sj |i = k, φp, φg)

and

P (sj |i 6= k, φg) =
∑

p

P (φp)P (sj |i 6= k, φp, φg)

If no other knowledge about the probe pose is given, the pose prior P (φp) is assumed
to be uniformly distributed. Similar to the posterior probability defined in (5) we
compute the probability of the unknown probe image coming from the same subject
(given similarity value sj and gallery pose φg) as

P (i = k|sj , φg) =
P (sj |i = k, φg)P (i = k)

P (sj |i = k, φg)P (i = k) + P (sj |i 6= k, φg)P (i 6= k)
(6)

In order to decide on the most likely identity of an unknown probe image Ii,p =
(i, φp) we compute match probabilities between Ii,p and all gallery images for all
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(a) c27 vs. c5 (b) c27 vs. c37 (c) c27 vs. c22

Fig. 7. Histograms of similarity values sj for the right eye region across multiple poses.
The distribution of similarity values for identical gallery and probe subjects are shown
with solid curves, the distributions for different gallery and probe subjects are shown with
broken curves.

face subregions (using Equation (5) or (6)). We currently do not model dependencies
between subregions, so we simply combine the different probabilities using the sum
rule [30] and choose the identity of the gallery image with the highest score as
recognition result.

3.3 Experimental Results

We used half of the 68 subjects in the CMU PIE database for training of the models
described in Section 3.2. The remaining 34 subjects are used for testing. The images
of all 68 subjects are used in the gallery. We compare our algorithm to eigenfaces
[48] and the commercial FaceIt system.

Experiment 1: Unknown Probe Pose

For the first experiment we assume the pose of the probe images to be unknown. We
therefore must use Equation (6) to compute the posterior probability that probe
and gallery images come from the same subject. We assume P (φp) to be uniformly
distributed, i.e. P (φp) = 1

13
. Figure 8 compares the recognition accuracies of our

algorithm with eigenfaces and FaceIt for frontal gallery images. Our system clearly
outperforms both eigenfaces and FaceIt. Our algorithm shows good performance
up until 45◦ head rotation between probe and gallery image (poses 02 and 31).
The performance of eigenfaces and FaceIt already drops at 15◦ and 30◦ rotation,
respectively.

Experiment 2: Known Probe Pose

In the case of known probe pose we can use Equation (5) to compute the probability
that probe and gallery images come from the same subject. Figure 9 compares the
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Fig. 8. Recognition accuracies for our algorithm (labeled ’BFS’), eigenfaces and FaceIt
for frontal gallery images and unknown probe poses. Our algorithm clearly outperforms
both eigenfaces and FaceIt.
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Fig. 9. Comparison of recognition accuracies of our algorithm for frontal gallery images
for known and unknown probe poses. Only small differences are visible.

recognition accuracies of our algorithm for frontal gallery images for known and
unknown probe poses. Only small differences in performances are visible. Figure 10
shows recognition accuracies for all three algorithms for all possible combinations of
gallery and probe poses. The area around the diagonal in which good performance
is achieved is much wider for our algorithm than for either eigenfaces or FaceIt.
We therefore conclude that our algorithm generalizes much better across pose than
either eigenfaces or FaceIt.
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(a) Our algorithm (b) Eigenfaces (c) FaceIt

Fig. 10. Recognition accuracies for our algorithm, eigenfaces and FaceIt for all pos-
sible combinations of gallery and probe poses. Here lighter pixel values correspond to
higher recognition accuracies. The area around the diagonal in which good performance
is achieved is much wider for our algorithm than for either eigenfaces or FaceIt.

4 Face Recognition Across Pose and Illumination

Since appearance-based methods use image intensities directly they are inher-
ently sensitive to variations in illumination. Drastic changes in illumination such
as between indoor and outdoor scenes therefore cause significant problems for
appearance-based face recognition algorithms [25, 39]. In this section we describe
two different ways of handling illumination variations in facial imagery. The first
algorithm extracts illumination invariant subspaces by extending the previously in-
troduced eigen light-fields to Fisher light-fields [24], mirroring the step from eigen-
faces [48] to Fisherfaces [4]. The second approach combines Bayesian face subregions
with an image preprocessing algorithm, that removes illumination variation prior
to recognition [21]. In both cases we demonstrate results for face recognition across
pose and illumination.

4.1 Fisher Light-Fields

Suppose we are given a set of light-fields Li,j(θ, φ), i = 1, . . . , N, j = 1, . . . , M where
each of N objects Oi is imaged under M different illumination conditions. We could
proceed as described in Section 2.1 and perform Principal Component Analysis on
the whole set of N × M light-fields. An alternative approach is Fisher’s Linear
Discriminant (FLD) [15], also known as Linear Discriminant Analysis (LDA) [52],
which uses the available class information to compute a projection better suited for
discrimination tasks. Analogous to the algorithm described in Section 2.1, we now
find the least squares solution to the set of equations:

L(θ, φ) −

m
∑

i=1

λiWi(θ, φ) = 0 (7)

where Wi, i = 1, . . . , m are the generalized eigenvectors computed by LDA.
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Table 3. A comparison of the performance of eigen light-fields and Fisher light-fields
with FaceIt on three different face recognition across pose and illumination scenarios.
In all three cases, eigen light-fields and Fisher light-fields outperform FaceIt by a large
margin.

Eigen Light-Fields Fisher Light-Fields FaceIt

Same pose, Different illumination - 81.1 41.6

Different pose, Same illumination 72.9 - 25.8

Different pose, Different illumination - 36.0 18.1

Experimental Results

For our face recognition across pose and illumination experiments we used the
pose and illumination subset of the CMU PIE database [46]. In this subset, 68
subjects are imaged under 13 different poses and 21 illumination conditions. Many
of the illumination directions introduce fairly subtle variations in appearance, so
we selected 12 of the 21 illumination conditions which span the set widely. In total
we used 68× 13 × 12 = 10, 6084 images in the experiments.

We randomly select 34 subjects of the PIE database for the generic training
data and then remove this data from the experiments (see Section 2.2). There are
then a variety of ways of selecting the gallery and probe images from the remaining
data:

Same Pose, Different Illumination: The gallery and probe poses are the same. The
gallery and probe illuminations are different. This scenario is like traditional
face recognition across illumination, but is performed separately for each pose.

Different Pose, Same Illumination: The gallery and probe poses are different. The
gallery and probe illuminations are the same. This scenario is like traditional
face recognition across pose, but is performed separately for each possible illu-
mination.

Different Pose, Different Illumination: Both the pose and illumination of the probe
and gallery are different. This is the hardest and most general scenario.

We compare our algorithms with FaceIt under these three scenarios. In all cases
we generate every possible test scenario and then average the results. For “same
pose, different illumination”, for example, we consider every possible pose. We gen-
erate every pair of disjoint probe and gallery illumination conditions. We then
compute the average recognition rate for each such case. We average over every
pose and every pair of distinct illumination conditions.

The results are included in Table 3. For “same-pose, different illumination,” the
task is essentially face recognition across illumination separately for each pose. In
this case, it makes little sense to try eigen light-fields since we know how poorly
eigenfaces performs with illumination variation. Fisher light-fields becomes Fisher
faces for each pose which empirically we find outperforms FaceIt. Example illumi-
nation “confusion matrices” are included for two poses in Figure 11.
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(a) Fisher LF - Pose c27 vs. c27 (frontal) (c) FaceIt - Pose c27 vs. c27
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(b) Fisher LF - Pose c37 vs. c37 (right 3/4) (d) FaceIt - Pose c37 vs. c37

Fig. 11. Example “confusion matrices” for the “same-pose, different illumination” task.
For a given pose, and a pair of distinct probe and gallery illumination conditions, we
color-code the average recognition rate. The superior performance of Fisher light-fields is
witnessed by the lighter color of (a–b) over (c–d).

For “different pose, same illumination,” the task reduces to face recognition
across pose but for a variety of different illumination conditions. In this case there
is no intra-class variation and so it makes little sense to apply Fisher light-fields.
This experiment is the same as Experiment 1 in Section 2.3 but the results are
averaged over every possible illumination condition. As we found for Experiment 1,
eigen light-fields outperforms FaceIt by a large amount.

Finally, in the “different pose, different illumination” task both algorithms per-
form fairly poorly. However, the task is very difficult. If the pose and illumination
are both extreme, almost none of the face is visible. Since this case might occur in
either the probe or the gallery, the chances that such a difficult case occurs is quite
large. Although more work is needed on this task, note that Fisher light-fields still
outperforms FaceIt by a large amount.

4.2 Illumination Invariant Bayesian Face Subregions

In general, an image I(x, y) is regarded as product I(x, y) = R(x, y)L(x, y) where
R(x, y) is the reflectance and L(x, y) is the illuminance at each point (x, y) [27].



Face Recognition Across Pose and Illumination 21

Original PIE images

Processed PIE images

Fig. 12. Result of removing illumination variations with our algorithm for a set of images
from the PIE database.

Computing the reflectance and the illuminance fields from real images is, in general,
an ill-posed problem. Our approach uses two widely accepted assumptions about
human vision to solve the problem: 1) human vision is mostly sensitive to scene
reflectance and mostly insensitive to the illumination conditions, and 2) human
vision responds to local changes in contrast rather than to global brightness levels.
Our algorithm computes an estimate of L(x, y) such that when it divides I(x, y) it
produces R(x, y) in which the local contrast is appropriately enhanced. We find a
solution for L(x, y) by minimizing

J(L) =

∫∫

Ω

ρ(x, y)(L − I)2dxdy + λ

∫∫

Ω

(L2

x + L2

y)dxdy (8)

Here Ω refers to the image. The parameter λ controls the relative importance of the
two terms. The space varying permeability weight ρ(x, y) controls the anisotropic
nature of the smoothing constraint. See [21] for details. Figure 12 shows examples
from the CMU PIE database before and after processing with our algorithm. We use
this algorithm to normalize the images of the combined pose and illumination subset
of the PIE database. Figure 13 compares the recognition accuracies of the Bayesian
Face Subregions algorithm for original and normalized images using gallery images
with frontal pose and illumination. The algorithm achieves better performance on
normalized images across all probe poses. Overall the average recognition accuracy
improves from 37.3% to 44%.

5 Conclusion

One of the most successful and well-studied approaches to object recognition is the
appearance-based approach. The defining characteristic of appearance-based algo-
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Fig. 13. Recognition accuracies of the Bayesian Face Subregions algorithm on original and
normalized images using gallery images with frontal pose and illumination. For each probe
pose the accuracy is determined by averaging the results for all 21 different illumination
conditions. The algorithm achieves better performance on normalized images across all
probe poses. The probe pose is assumed to be known.

rithms is that they directly use the pixel intensity values in an image of the object
as the features on which to base the recognition decision. In this chapter we de-
scribed an appearance-based method for face recognition across pose based on an
algorithm to estimate the eigen light-field from a collection of images. Unlike previ-
ous appearance-based methods our algorithm can use any number of gallery images
captured from arbitrary poses and any number of probe images also captured from
arbitrary poses. The gallery and probe poses do not need to overlap. We showed
that our algorithm can reliably recognize faces across pose and also take advan-
tage of the additional information contained in widely separated views to improve
recognition performance if more than one gallery or probe image is available.

In eigen light-fields all face pixels are treated equally. However, differences exist
in how the appearance of various face regions change across face poses. We described
a second algorithm, Bayesian face subregions, which derives a model for these dif-
ferences and successfully employes it for face recognition across pose. Finally, we
demonstrated how to extend both algorithms towards face recognition across both
pose and illumination. Note, however, that for this task recognition accuracies are
significantly lower, suggesting that there still is room for improvement. For example
the model-based approach of Romdhani [41] recently achieved better results across
pose on the PIE database then the appearance-based algorithms described here.
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