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Abstract 
Time lapse, characteristic of aging, is a complex process that affects the reliability and security of 
biometric face recognition systems. This paper reports the novel use and effectiveness of deep 
learning, in general, and convolutional neural networks (CNN), in particular, for automatic rather 
than hand-crafted feature extraction for robust face recognition across time lapse. A CNN archi-
tecture using the VGG-Face deep (neural network) learning is found to produce highly discrimina-
tive and interoperable features that are robust to aging variations even across a mix of biometric 
datasets. The features extracted show high inter-class and low intra-class variability leading to 
low generalization errors on aging datasets using ensembles of subspace discriminant classifiers. 
The classification results for the all-encompassing authentication methods proposed on the chal-
lenging FG-NET and MORPH datasets are competitive with state-of-the-art methods including com- 
mercial face recognition engines and are richer in functionality and interoperability than existing 
methods as it handles mixed biometric datasets, e.g., FG-NET and MORPH. 
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1. Introduction 
Time lapse characteristic of face aging is a complex process that has been studied in various disciplines includ-
ing biology, human perception and more recently in biometrics. The effects of aging alter both the shape and 
texture of the face and vary according to age, time lapse and demographics such as gender and ethnicity. From 
birth to adulthood, the effects are encountered mostly in the shape of the face, while from adulthood through old 
age aging affects the face texture (e.g., wrinkles). Face aging is also affected by external factors such as envi-
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ronment and lifestyle. Face recognition across time lapse belongs to the general topic of face recognition in un-
controlled or wild settings and affects security solutions that involve human biometrics. The challenge is sub-
stantial since the appearance of human subjects in images used for training or enrollment can vary significantly 
from their appearance during the ultimate recognition. To address these challenges, robust age-invariant me-
thods must be developed. Age invariance can be implemented either at the feature extraction level or at the 
training and/or recognition level. At the feature extraction level, the goal is to derive image descriptors that are 
robust to intra-class aging variation. At the training and testing level, one thrives for low generalization errors in 
the presence of aging. This paper mostly copes with aging variation at the feature extraction level and leverages 
a deep learning approach for automatic feature extraction using cascaded convolutional neural networks (CNN). 
The approach advanced and described in this paper further copes with training and testing aspects using ensem-
bles of classifiers driven by such features for authentication and ultimately is shown able to cope with mixed 
biometric datasets. This is characteristic of interoperability or equivalently of cross-training and testing across 
mixed datasets [1]. Interoperability is mostly concerned with domain adaptation, in general, and transfer learn-
ing, in particular, for cross-modal generalization over features and parameter settings.  

Rather than deriving and using hand-crafted features, this paper advances the utility and feasibility of using 
convolutional neural networks for automatic feature detection for the purpose of face recognition subject to time 
lapse. Automatic feature extraction using convolutional neural networks (CNN) [2] can provide highly intero-
perable descriptors that are robust to aging variations and add much flexibility when deployed and used in bio-
metric systems. We show later on that (a) encodings of facial images using CNN compare favorably to existing 
methods using generic but hand-crafted features such as Gabor-based descriptors, SIFT, or LBP, and that (b) 
coupling of CNN for feature extraction with ensemble of subspace discriminants (ESD) [3] yields robust and 
competitive methods for face recognition on the challenging FG-NET [4] and MORPH [5] aging datasets. 

The outline of the paper is as follows. Section 2 reviews related work on the biometrics of face aging. Section 
3 provides background on CNN. Section 4 presents the overall biometric architecture proposed for face aging 
subject to time lapse. This includes preprocessing, feature extraction using CNN and classification (for the pur-
pose of identification). Section 5 reports on experimental design, datasets used, and results obtained. Section 6 
provides a comparative performance evaluation of our CNN-inspired method and current face aging methods. 
Section 7 discusses the motivation behind CNN, impact of our novel approach, and directions for future R&D 
on face aging. Section 8 concludes the paper.  

2. Related Work 
Existing methods for face recognition across time lapse can be divided into two main groups, generative and 
discriminative. In the generative approach, the system leverages an aging model that can simulate and synthesize 
the face appearance at various ages. The better the simulation, the better the recognition. Learning such a model 
can be challenging due to the dependence of the aging process on several uncontrolled external factors. On the 
other hand, discriminative methods seek to match images directly for authentication without the intermediary 
step of synthesizing faces, as would be the case in generative methods.  

2.1. Generative Methods 
Early research on face recognition across time lapse has been reported by Cootes [6]-[8] and involved develop-
ing a generative statistical model to simulate aging effects. Cootes et al. have found that the aging process is best 
modeled by a second order polynomial and that a single statistical model cannot be applied to all faces since the 
aging process is influenced by many factors such as health, gender, and lifestyle. Consequently, they refined 
their model and developed aging functions that take into consideration the lifestyle of the subject. Wang et al. [9] 
proposed a method similar to Cootes et al. where they learn an aging function augmented with aging way classi-
fication that characterizes how each subject ages. Once the age is estimated, the facial image of the subject can 
be synthesized at a different target age. Their method is based on Principal Component Analysis (PCA) and the 
results reported show that the use of age simulation models yields significant improvements in recognition ac-
curacy compared to recognition without age simulation. Park et al. [8] use 3D morphable models to learn the 
aging patterns of shape and its corresponding texture. Since acquiring 3D scans is not practical in an operational 
scenario, they adapted their 3D models directly from the 2D FG-NET image dataset. While their 3D model pro-
vided better representation of the craniofacial features, such as better localization of muscle fibers and genera-
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tion of wrinkles, the results obtained were similar to those achieved using only 2D models. 

2.2. Discriminative Methods 
Biswas et al. [10] have proposed a discriminative approach based on the observation that facial appearance 
changes in a coherent manner and therefore matching can be done by analyzing the coherency of the drift of 
feature vectors across age progression. They proposed a simple metric to measure the drift between pairs of im-
ages. If two images are of the same subject, then the drift will be small and coherent; if they are of different 
subjects, then the drift will be extreme and incoherent. They measured drift coherency in both children and 
adults and presented promising preliminary results. Ling et al. [11] used discriminant image descriptors based 
on Gradient Orientation Pyramids (GOP). They found that GOP representation combined with SVM classifica-
tion is more invariant to aging effects compared to other methods, and that the difficulty involved in face verifi-
cation saturates for age gaps between 4 years and 10 years. Klare et al. [12] used a discriminative approach to 
show that training to improve performance in the presence of aging has a negative effect on performance in a 
non-aging scenario. They suggested that in order to improve performance on a given time lapse, the system 
should be trained using samples from that specific time lapse. They adopted a technique based on Random LDA 
subspaces (RS-LDA) [13]. 

3. Convolutional Neural Networks 
Convolutional neural networks (CNN) [2] expand on traditional neural networks by including both fully-con- 
nected hidden layers and locally-connected convolutional layers. In the traditional neural network, each hidden 
layer node is fully-connected to all nodes in the preceding layer. For large raw input images, full-connectivity 
becomes computationally intensive and does not take advantage of the local correlations in natural images. In-
spired by the biology of human vision, convolutional neural networks take advantage of the spatial correlation in 
natural images and restrict the connectivity of each node to a local area known as its receptive field. In addition, 
convolutional neural networks use parameter sharing, pooling, and dropout to greatly reduce the number of pa-
rameters (“features”) learned by the CNN.  

In spite of the efficient architecture of convolutional neural networks, they still require a large number of im-
ages for training. Using a small dataset for training leads to over-fitting. This requirement restricts the use of 
convolutional neural networks for classification purposes to large datasets only. However, recent research has 
shown that the output of the locally-connected convolutional layers produces highly discriminative descriptors. 
Consequently, a convolutional neural network pre-trained on a large image dataset can be used as a feature ex-
tractor for other closely related datasets. Reusing a learned model in another domain or task is known as transfer 
learning. 

Several CNN architectures have been proposed in the literature and some have been shown to produce better 
results than the most advanced state-of-the-art recognition methods. In our work, we use face descriptors based 
on the VGG-Face [2] deep architecture described in the next section. 

VGG-Face 
The VGG-Face descriptors are based on the VGG-Very-Deep-16 CNN architecture described in [2]. The net-
work is composed of a sequence of convolutional, pool, and fully-connected (FC) layers. The convolutional lay-
ers use filters of dimension 3 while the pool layers perform subsampling with a factor of 2. The architecture of 
the VGG-Face network is shown in Figure 1.  

Table 1 provides additional details on the CNN layers. The volume column represents the width, height, and 
depth or each layer, respectively. The parameters column shows the number of parameters learned in each layer. 

In our experiments, we use a pre-trained implementation of the VGG-Face CNN. The pre-trained CNN was 
learned from a large face dataset containing 982,803 web images of 2622 celebrities and public figures. While 
the pre-trained VGG-Face CNN can only identify the subjects in its training dataset, it can however be used as a 
feature extractor for any arbitrary face image by running the image through the entire network, then extracting 
the output of the first fully-connected layer, FC-1 shown in Table 1. The extracted feature is a highly discrimin-
ative, compact, and interoperable encoding of the input image. Once the features are extracted from the FC-1 
layer of the VGG-Face CNN, they can be used for training and testing arbitrary face classifiers as will be shown 
in the next section. We use the MatConvNet toolbox [14], which consists of a library of MATLAB functions  
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Figure 1. VGG-Face CNN architecture. 

 
Table 1. VGG-Face CNN layers. 

Layer (1-11) Volume Parameters Layer (12-22) Volume Parameters 

INPUT 224 × 224 × 3 0 CONV3-512 28 × 28 × 512 (3 * 3 * 256) * 512 = 1,179,648 

CONV3-64 224 × 224 × 64 (3 * 3 * 3) * 64 = 1,728 CONV3-512 28 × 28 × 512 (3 * 3 * 512) * 512 = 2,359,296 

CONV3-64 224 × 224 × 64 (3 * 3 * 64) * 64 = 36,864 CONV3-512 28 × 28 × 512 (3 * 3 * 512) * 512 = 2,359,296 

POOL2 112 × 112 × 64 0 POOL2 14 × 14 × 512 0 

CONV3-128 112 × 112 × 128 (3 * 3 * 64) * 128 = 73,728 CONV3-512 14 × 14 × 512 (3 * 3 * 512) * 512 = 2,359,296 

CONV3-128 112 × 112 × 128 (3 * 3 * 128) * 128 = 147,456 CONV3-512 14 × 14 × 512 (3 * 3 * 512) * 512 = 2,359,296 

POOL2 56 × 56 × 128 0 CONV3-512 14 × 14 × 512 (3 * 3 * 512) * 512 = 2,359,296 

CONV3-256 56 × 56 × 256 (3 * 3 * 128) * 256 = 294,912 POOL2 7 × 7 × 512 0 

CONV3-256 56 × 56 × 256 (3 * 3 * 256) * 256 = 589,824 FC-1 1 × 1 × 4096 7 * 7 * 512 * 4096 = 102,760,448 

CONV3-256 56 × 56 × 256 (3 * 3 * 256) * 256 = 589,824 FC-2 1 × 1 × 4096 4096 * 4096 = 16,777,216 

POOL2 28 × 28 × 256 0 FC-3 1 × 1 × 2622 4096 * 2622 = 10,739,712 

 
implementing CNN architectures for computer vision applications. MatConvNet provides the pre-trained im-
plementation of the VGG-Face CNN that we use for feature extraction. 

4. Face Recognition Using Convolutional Neural Networks  
We describe here the modular face aging recognition approach in terms of image preprocessing, feature extrac-
tion using CNN (see Figure 1 for the VGG-Face CNN architecture), and classification functional blocks (see 
Figure 2 for the architecture of our face aging recognition system). Image preprocessing is about face detection 
and subsequent image normalization in terms of pose and image size. Feature extraction is about capturing face 
descriptors using CNN rather than hand-crafted features as current face aging methods do. The classification 
methods used include nearest neighbor (NN), linear discriminant analysis (LDA), and ensemble of subspace 
discriminants (ESD). Dimensionality reduction for efficiency reasons using principal component analysis (PCA) 
is done prior to classification using NN and LDA, but not for ESD as PCA was found to degrade its perfor-
mance. 

4.1. Image Preprocessing 
All images are normalized using in-plane rotation to horizontally align the left and right eyes. For FG-NET, the 
eye coordinates are available from the metadata provided with the dataset. For MORPH, the eyes are localized 
using an automatic eye detector based on the Viola-Jones object detection algorithm [15]. Face images are 
cropped and rescaled to a standard 224 × 224 dimension. The datasets contain a mix of grayscale and RGB im- 
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Figure 2. Authentication architecture using VGG-Face CNN feature descriptors. 

 
ages. No additional gray scaling is performed and images are input to the convolutional neural network in their 
original color channels. A sample of preprocessed images for FG-NET and MORPH is shown in Figure 3 and 
Figure 4. 

4.2. Feature Extraction 
We use the VGG-Face network architecture provided by the MatConvNet toolbox [14] for feature extraction. 
The VGG-Face network described in section 3.1 has a deep architecture composed of 3 × 3 convolution layers, 2 
× 2 pooling layers, and 3 fully-connected layers. While the network can perform classification on its own, the 
output layer of the network is not used in our experiments and 4096-dimensional descriptors are instead ex-
tracted from the FC-1 layer shown in Table 1. To extract features from an image, the image is preprocessed and 
fed to the CNN as a multidimensional array of pixel intensities. For RGB images, the input is a 224 × 224 × 3 
array, while for grayscale images the input is a 224 × 224 × 1 array. Each convolutional layer performs a filter-
ing operation on the preceding layer resulting in an activation volume which in turn becomes the input of the 
following layer. Pooling is used throughout the network to reduce the number of nodes by down sampling the 
activation maps using the max operation. The fully-connected layers of the network are used for learning the 
classification function. The feature descriptors are extracted from the output of the first fully-connected layers 
(FC-1), then L2-normalized by dividing each component by the L2-norm of the feature vector. The normalized 
features are then used for training and testing. 

4.3. Classification Methods 
The performance and interoperability of our authentication (“identification”) method is evaluated across a suite 
of classifiers, which consists of nearest neighbor (NN) [16], linear discriminant analysis [17], and ensemble of 
subspace discriminant [3] classifiers. The nearest neighbor classifier uses the 1-nearest neighbor rule and Eucli-
dean distances. To improve NN performance, we apply principal component analysis (PCA) (see Section 4.3.1) 
to the extracted features. Linear discriminant analysis (LDA) assumes that images for each subject are drawn 
from Gaussian distributions and the training data is used to learn linear boundaries that discriminate between 
human subjects. We again apply PCA to the extracted features prior to LDA to improve performance. The sub-
space discriminant method employs an ensemble of 200 weak learners based on decision trees. 

Principal Component Analysis (PCA) 
PCA is used to project the CNN features to a lower dimensional subspace [18] in order to improve the perfor-
mance of the nearest neighbor and linear discriminant analysis classifiers. Given n CNN feature vectors X1, 
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X2, …, Xn, one constructs the matrix X = [X1, X2, …, Xn] where each Xi is a 4096-dimension FC-1 feature vec-
tor. One computes then the mean vector M and subtracts it from the vectors Xi such that Xi  Xi - M. One then 
computes the covariance matrix C = XTX where XT is the transpose of X. Finally, one computes the eigenvec-
tors of C and selects only the top eigenvectors corresponding to the largest eigenvalues while preserving 95% of 
the data variability. The top eigenvectors are used to project the CNN features to the low-dimensional PCA 
subspace. 

5. Experimental Results 
We evaluate the performance of the proposed approach in the identification of subjects where there is a signifi-
cant time lapse between the enrolled and probe images. For each subject, a subset of the corresponding images is 
used for enrollment while the remaining subset contains the probe images used for testing. In the case of linear 
and subspace discriminant models, the identity of each subject in the probe dataset is determined directly by the 
classification model. In the nearest neighbor classifier, probe images are assigned the identity of their respective 
nearest neighbors based on Euclidean distances. This section details the biometric datasets used, the perfor-
mance of CNN descriptors and the classifier methods described earlier (see Sect. 4.3) for face recognition across 
time lapse, and as a unique characteristic, the ability for interoperability on the mix of FG-NET and MORPH. 

5.1. Time Lapse Biometric Datasets 
We use the FG-NET [4] (see Figure 3) and MORPH [5] (see Figure 4) datasets, which are publicly available. 
These datasets contain multiple images per subject reflecting variability in age, in addition to other variability 
such as pose, illumination and expression. Image normalization and preprocessing includes in-plane rotation and 
scale. FG-NET contains 1002 images of 82 subjects where subjects’ ages vary between 0 and 69. MORPH con-
tains 55,134 images of 13,000 subjects collected over four years. CNN descriptors were extracted from the da-
tasets and used for both training and testing. 

5.2. Time Lapse Biometric Performance on FG-NET 
After image preprocessing as described in section 4.1, we extract 4096-dimensional feature vectors from each of 
the 1002 images in FG-NET, then train the proposed suite of classifiers. We use 5-fold cross-validation such that 
for each fold, 80% of the images of each subject are used for training and 20% are used for testing. The perfor-
mance reported is the average performance found for each fold. Figure 5 shows the recognition performance 
(“rank-1 identification”) of each of the classifiers described in Section 4.3. The best performance is 80.6% and 
was achieved using an ensemble of subspace discriminant learners (ESD) [3]. No PCA dimensionality reduction 
was applied to the ESD learner in order to achieve maximum performance. One of our experiments showed that 
PCA has a negative effect on the ESD learner performance due to the loss of information. The performance of 
the linear classifier was slightly lower than ESD, however, it has the additional benefit of requiring significantly 
less time to train. 

5.3. Time Lapse Biometric Performance on MORPH 
We repeat the same experimental setting as in the previous subsection (for FG-NET) using a random subset of 
1002 images from MORPH corresponding to 267 subjects. The results are shown in Figure 6. The best perfor-
mance is 92.2% and was achieved again using the ensemble of subspace discriminant classifiers. The perfor-
mance on MORPH was better than FG-NET due to lower intra-class variability in the dataset. 

5.4. Time Lapse Interoperability on Mixed (FG-NET and MORPH) Dataset 
Using the same experimental setup as for FG-NET and MORPH, we construct a dataset composed of a 50/50 
mix of images from the 2 datasets. Such biometric functionality and corresponding experiments is novel in na-
ture and is thus more important for interoperability purposes. The results obtained show good cross-modal ge-
neralization and support a high-level of interoperability. Figure 7 shows recognition performance for each clas-
sifier. The best performance is 86.9% and was achieved again using an ensemble of subspace discriminant 
learners [3]. 
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Figure 3. FG-NET images [4]. 

 

 
Figure 4. MORPH images [5]. 

 

 
Figure 5. Time lapse performance on FG-NET using various classification methods. 

 

 
Figure 6. Time lapse performance on MORPH using various classification methods. 
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Figure 7. Time lapse performance on mixed (FG-NET and MORPH) dataset using various classification methods. 

6. Comparative Time Lapse Performance Evaluation 
Table 2 summarizes the performance results of the 3 classification methods on FG-NET, MORPH, and the 
mixed (FG-NET and MORPH) dataset. The ensemble of subspace discriminants provides the most robust classi-
fication method across all datasets. Despite their simplicity, the nearest neighbor and linear discriminant clas-
sifiers achieve reasonably good performance in the presence of variability due to aging and other factors such as 
pose, illumination and expression.  

Figure 8 shows the performance of competing methods on the FG-NET dataset. A description of each method 
is provided in Table 3. It can be observed that our approach consistently outperforms state-of-art methods in-
cluding commercial face recognition engines such as FaceVACS commercial face recognition engine. This de-
monstrates the effectiveness and interoperability of automatic CNN-based feature extraction across datasets and 
classification methods.  

7. Motivation and Impact and Directions for Future Research  
The use of robust age-invariant recognition is important for biometrics-based security applications. Our method 
uses deep learning for the automatic extraction of CNN features and shows significant improvement in face 
recognition across time lapse. Age-invariant methods can further reduce the overall operational cost of biome-
trics security systems by minimizing the need for reenrollments due to time lapse. 

Our methodology is holistic where the face image is considered as a single component rather than a collection 
of semantically separate parts, e.g., eyes, nose, and mouth. Recent research in parts-based recognition has shown 
that partitioning the face into distinct components can lead to performance improvement. Future work combin-
ing CNN features and recognition-by-parts can significantly enhance performance. Towards that end, one should 
perform visualization driven ablation and sensitivity studies [26] to assess the relative importance of different 
parts and intermediate CNN layers.  

Traditional classification methods assume that the distribution of training and test data remains unchanged. 
However, in real-world face recognition subject to time lapse, the distributions of samples used for training and 
testing may be quite different. This challenge is known as covariate shift and is inherent in face recognition sys-
tems operating in uncontrolled settings in the wild. An interesting direction for future research is to design CNN 
driven robust classification methods that can cope with covariate shift and minimize the generalization error. 
Again visualization driven ablation and sensitivity studies [26] can overcome covariance shift using principled 
importance weighting. 
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Table 2. Time lapse performance on FG-NET and MORPH using various classification methods. 

 FG-NET MORPH FG-NET and MORPH 

Nearest Neighbor 70.4% 88.7% 82.1% 

Linear Discriminant 78.4% 92.2% 86.7% 

Subspace Discriminant 80.6% 92.2% 86.9% 

 
Table 3. Overview of competing time lapse methods on FG-NET. 

Publication Feature Extraction Method Classification Method Rank-1 

Mahalingam et al. (2010) 
[19] 

Feature points extracted using Local Feature 
Analysis (LFA) Graph matching 

50% 

LBP 42% 

Park et al. (2010) [20] Face VACS Commercial FR Engine 38% 

Li et al. (2011) [21] 
SIFT, MLBP Multi-feature Discriminant Analysis 47.5% 

Face VACS Commercial FR Engine 26% 

Mahalingam et al. (2011) 
[22] 

Gabor phase and magnitude encoded through 
Local Gabor Binary Pattern (LGBP) histograms Histogram intersection 34% 

Yadav et al. (2013) [23] 
LBP using oldest images 

Bacteria foraging fusion algorithm 
64.5% 

LBP using youngest images 31.2% 

Wang et al. (2013) [24] C1-S texture and shape features based on HMAX 
model Nearest neighbor with Mahalanobis distance 33.9% 

Yang et al. (2014) [25] Local Gabor Binary Pattern His- 
togram Sequence (LGBPHS) Factorized Graph Matching 64.47% 

 

 
Figure 8. Comparative time lapse performance of competing methods on FG-NET. 

8. Conclusion 
This paper advances a novel approach for age-invariant face recognition using automatic, highly discriminative 
and interoperable deep learning driven CNN descriptors across both single source and mixed (multiple source) 
biometric datasets. The paper illustrates the feasibility and utility of a pre-trained CNN for automatic (rather 
than hand-crafted) feature extraction yielding performance comparable to state-of-the-art methods on the chal-
lenging FG-NET and MORPH datasets. Additional merit of the deep learning/CNN methodology comes from 
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the interoperability aspect where performance holds steady around 80% - 90% across single source and mixed 
datasets. Future venues for R&D include the coupling of domain adaptation and transfer learning, on one side 
and recognition-by-parts rather than holistic biometric authentication, on the other side. Recognition-by-parts 
will serve as the counterpart to subspace discrimination, weak learners, and ensemble methods. 
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