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Abstract: Face recognition is required in various applications, and major progress has been witnessed
in this area. Many face recognition algorithms have been proposed thus far; however, achieving high
recognition accuracy and low execution time remains a challenge. In this work, a new scheme for
face recognition is presented using hybrid orthogonal polynomials to extract features. The embedded
image kernel technique is used to decrease the complexity of feature extraction, then a support
vector machine is adopted to classify these features. Moreover, a fast-overlapping block processing
algorithm for feature extraction is used to reduce the computation time. Extensive evaluation of
the proposed method was carried out on two different face image datasets, ORL and FEI. Different
state-of-the-art face recognition methods were compared with the proposed method in order to
evaluate its accuracy. We demonstrate that the proposed method achieves the highest recognition
rate in different considered scenarios. Based on the obtained results, it can be seen that the proposed
method is robust against noise and significantly outperforms previous approaches in terms of speed.

Keywords: face recognition; orthogonal polynomials; orthogonal moments; feature extraction; block
processing

MSC: 68T45; 68U10

1. Introduction

Face recognition has been used in various fields, such as personal identification [1,2]
descriptions of gender and gestures [3], victim identification, surveillance security systems,
medical diagnosis, multimedia communication, and human–computer interfaces [4,5].
The face has different cues that help to uniquely identify an individual human. These cues
have been widely utilized by authentication and verification algorithms to extract diverse
discriminative features, achieving accurate identification [4,6]. The wide spectrum of facial
features has enabled face recognition challenges to attract broad interest compared to other
biometric systems, and it has become one of the most important topics of research [7–9]. In
addition, the robustness of the face localization and normalization processes are considered
the core of an efficient feature extraction process [10].

Even though many face recognition methods have been studied, system accuracy
and processing time remain critical issues and need to be treated carefully. Generally,
the results of well known methods do not provide the required accuracy with a fast
execution time. Therefore, careful investigation of an accurate and fast face recognition
method is required. Moreover, to the best of our knowledge, most of the existing works do
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not take into consideration the effect of noise in input images. Noise may appear mainly in
non-cooperative applications, where the lighting conditions are beyond control.

In order to address the above-mentioned challenges, the present paper proposes a
robust face recognition algorithm by using a kind of Hybrid Orthogonal Polynomials
(HOPs), specifically, Squared Krawtchouk–Tchebichef polynomials (SKTP) [11], and a fast
overlapping block processing algorithm for feature extraction. These HOPs have been
used widely in the literature on image and signal processing because of their powerful
capabilities in feature extraction. In addition, the use of the fast algorithm for overlapping
block processing [12] provides the construction of auxiliary matrices, which virtually
extends the original image and makes it possible to avoid time-consuming computation
loops. The introduced solution reaps the benefits of adopting the SKTP model in multiple
dimensions. The energy compaction and localization properties of the SKTP outperform the
existing orthogonal polynomials (OPs) and other hybrid-form OPs, which helps to represent
the images efficiently and reduces the computation cost of feature extraction. In addition,
the extraction of moments from overlapped blocks increases the robustness of the features,
which in turn increases the recognition rate. One of the main advantages of the proposed
solution is its high robustness to noise in the input images. This is achieved by standard
Gaussian smoothing implemented in a novel way: the Gaussian kernel is embedded into
the moment calculation step, meaning that it does not increase the computation time.

1.1. Literature Review and Discussion

There are several well known classes of image feature extraction methods: deep
learning methods, the eigenface and Fisher face methods, texture-based methods, and
projection-based methods. This last approach “projects” facial images on a functional basis
and uses these projection coefficients as features. The basis is usually formed by a set of
orthogonal functions such as wavelets, harmonic functions or polynomials [2]. The method
we propose in this paper falls into this category.

Deep learning-based approaches have a high level of recognition accuracy; however,
they require a large amount of data to perform better than other methods and provide an
extreme level of computational complexity [13–17]. In the OM-based methods, the features
of faces can be computed effectively using Orthogonal Polynomials (OPs) [11]. In recent
works, OPs and their moments have been intensively used for image analysis, shape de-
scriptors, and pattern recognition [18]. In the moment domain, image components are
represented in a transform domain, offering a powerful capability for analyzing them [11].
Orthogonal moments (OMs) can be defined as scalar quantities that are utilized to charac-
terize the function and capture its significant features. In addition, they are the coordinates
of an image in the orthogonal polynomial function [19,20]. Furthermore, OMs have the
ability to extract features from images that have different geometric invariants, such as
translation, scaling, and rotation [2].

Different types of moments are used in image processing systems. First, geometric
moments have been introduced over other kinds of moments due to their explicit geometric
meaning and simplicity [21]. Zernike and Pseudo-Zernike moments are utilized to represent
the image with minimal redundancy of information [22], while fractional quaternion
Zernike moments have been used for detection of color image copy–move forgery [23]
because fractional-order polynomials can represent functions better than integer-order
polynomials [2]. Fractional-order Zernike moments have been used efficiently in plant
disease recognition [24]. Legendre moments were used in [25] to reduce block artifacts.
For image analysis, Zernike and Legendre polynomials are used as kernel functions for
Zernike and Legendre moments, respectively [26]. In addition to the ability of Zernike
moments to store information about images with minimum redundancy, they have the
property of invariance. However, these moments require image coordinate transformations
for discrete situations, as they are defined specifically in the continuous domain [27].

Recently, discrete orthogonal moments have been adopted to overcome the compu-
tational cost of image analysis of continuous moments [28]. Mukundan presented a set
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of moments to analyze the image using discrete Tchebichef polynomials [29]. In addition,
Tchebyshev moments have been implemented in watermarking algorithms and image
encryption algorithms [30]. For face recognition, an adaptively weighted patch of pseudo-
Zernike moments has been used [31]. Different OMs have been used in this field, such as
higher-order OMs [32], Fourier–Mellin moments [33], rotation-invariant complex Zernike
moments [34], discrete Krawtchouk moments [35], Tchebichef moments [36], orthogonal
exponent Fourier moments [37], 2D orthogonal Gaussian–Hermite moments [38], and 2D
Krawtchouk moments [21]. The 2D Krawtchouk OMs provided good results in condi-
tions with noise, tilt, and changes in expression [39]. In comparison with other moments,
Gaussian–Hermite moments are considered very robust against noise [28,40]. Gaussian–
Hermite moments can bne used as a set of useful features to capture the facial expression
from face images [39,41]. Generally, the extraction methods of image features are classified
into two groups: global features-based methods (termed Holistic approaches [42]) and
local features-based methods (termed Component-based methods [42] or Block Processing-
based methods). The former method captures the features from an entire image of a human
face, while the local feature extraction method can extract features from certain areas of
the face image, such as the eyes, mouth, and chin [39]. There are various global feature
extraction methods, such as Eigenfaces [43], Fisher faces [44], Linear Discriminant Analy-
sis [45], Discrete Cosine Transform [46], Independent Component Analysis [47], and others.
The global features-based method has achieved superior performance when implemented
with different imaging conditions [48].

In block processing-based methods the extraction of image features can be performed
locally using OMs, meaning that processing of the image blocks takes place after parti-
tioning. Block processing is implemented in different applications of signal processing in
which signals (images and videos) are partitioned into blocks. These blocks are converted
to the transform domain in order to extract the features, which are stored in a memory
location equivalent to the image block for processing in the next steps [12]. In general, block
processing-based methods perform better than holistic-based methods [42]. Local Binary
Patterns is one of local feature extraction methods, it is used to partition face image into
sub-images where feature distribution is extracted and fused together [49]. This method is
a good descriptor to represent local structures [50,51]. A combination of global and local
methods, that is called a Fusion (or hybrid) algorithm, is also adopted to achieve a desired
face recognition with high accuracy [39,48].

Block processing that represents local feature extraction provides high accuracy at the
expense of increased computation cost. Different types of transforms have been used for
this purpose. Gabor transform [52] has been used widely to extract the local features [53,54],
alhough the extracted face features are particularly sensitive to noise. In addition, face
recognition methods that use local feature are dependent on face localization and the
registration model [39]. In [55], an algorithm for face recognition was proposed in which
Krawtchouk polynomials with different values of parameters were used for noise-free and
noisy environments. This algorithm can overcome the problem of numerical instability
by utilizing symmetry properties across polynomials’ diagonals to address the effect of
their parameter on feature extraction. The computation cost of this method is considered
relatively high. Partitioning of the images using image block processing extracts the blocks
of the images and processes them sequentially. This process is not sequential from the
perspective of the memory, however, which is considered a key drawback in terms of
computation performance and results in an essential gap between CPU speed and memory.
Accessing the entire matrix in sequence maintains the spatial locality, although it causes
more cache misses and replacements [12]. Exclusion of further processes accelerates the
extraction of local features; in other words, the extraction of local features from the image
blocks by discrete transformation decreases computational complexity. This is called the
fast overlapping block processing algorithm [12].
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1.2. Contributions

The main contributions of this paper are: (1) design of a robust face recognition method
for multiple imaging conditions following the shape-invariant concept; (2) use of powerful
hybrid OPs called SKTP to extract image features; (3) utilization of a fast-overlapping
block processing algorithm for feature extraction in order to decrease computation time;
and (4) application of an embedded filter to suppress noise and maintain the speed of
feature extraction.

The rest of this paper is organized as follows: Section 2 introduces the preliminaries of
the fundamental OPs used to form the SKTP; in Section 3, the methodology is presented;
Section 4 introduces and discusses the obtained results; finally, in Section 5, the conclusions
of this work are drawn.

2. Preliminaries of Orthogonal Polynomials and Moments

In this section, the mathematical model of the utilized orthogonal polynomials and
the computation of their moments for two-dimensional signals are presented.

2.1. Squared Krawtchouk–Tchebichef Polynomials

The concept of discrete orthogonal polynomials is to project a signal on the orthogonal
polynomial basis. In image analysis, we consider 2D signals. Discrete orthogonal polynomi-
als are used to describe the signal efficiently and without redundancy [56]. Discrete orthog-
onal polynomials are defined using two variables (x and n), forming a two-dimensional
matrix. The variable x represents the index (coordinate) of the signal, and the variable
n represents the order of the polynomial. The coefficients of the matrix are the values
of the discrete orthogonal polynomials. In this paper, Squared Krawtchouk—Tchebichef
Polynomials (SKTP) and their moments are used. SKTPs are formed from the combination
of the Krawtchouk polynomials (KPs) and Tchebichef polynomials (TPs). This combination
results in a polynomial with the properties of both KP and TP, i.e., an SKTP shows localiza-
tion and energy compaction compared to other types of polynomials [57]. Thus, SKTPs
leverage the accuracy of face recognition. The nth order of the SKTP Sn(x; p) is defined in
terms of KP (K) and TP (T) for n, x = 0, 1, · · · , N − 1 as follows [11]:

Sn(x; p) =
N−1

∑
i=0

N−1

∑
j=0

N−1

∑
l=0

Kj(i; p)Kl(n; p) Tj(x) Tl(i) (1)

where p represents the polynomial parameter. The definition of SKTP can be written in
matrix form as follows:

RS = (RK RT)
2 (2)

where RK and RT represent the matrices of the KP and TP.
Orthogonal polynomials can be efficiently calculated by recurrent relations, which is a

way that is fast and prevents precision loss due to overflow/underflow. The algorithms
used for evaluation of KP and TP in this paper are provided in Appendix A.

2.2. Squared Krawtchouk–Tchebichef Moments

It is well known that the discrete moments are considered essential tools in different ap-
plications [19,58]. Specifically, the discrete moments are used for signal representation due
to their being, at least to an extent, robust to noise effects [59]. In addition, the moments are
scalar quantities and as such are able to reveal the small changes that appear in signals [60].
For these reasons, discrete moments are utilized in face recognition. As mentioned earlier,
the discrete moments are scalar quantities, and are produced for a 1D signal from the projec-
tion of the signal onto the discrete orthogonal polynomial basis functions. In addition, they
can be produced for 2D signals (images) from the projection of the images on the discrete
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orthogonal polynomials’ basis images [56]. In this paper, Squared Krawtchouk–Tchebichef
moments (SKTM) are used, and are computed as follows:

MSKTM(n, m) =
Nx−1

∑
x=0

Ny−1

∑
y=0

f (x, y) Sn(x; p, Nx) Sm(y; p, Ny) (3)

Generally, discrete moments represent the descriptors (features) in two folds: the low-
order moments and the high-order moments. The low-order moments preserve the signal
information, while the high-order moments represent the details of the signal [60]. Thus,
for feature extraction, the low order moments (no and mo) need to be utilized as follows:

n =
Nx

2
− 1,

Nx

2
, . . . ,

Nx − no

2
,

Nx − no

2
− 1 (4)

m =
Ny

2
− 1,

Ny

2
, . . . ,

Ny −mo

2
,

Ny −mo

2
− 1 (5)

The moments are computed using matrix multiplication as

MSKTM = RSy I RT
Sx (6)

where (·)T represents the matrix transpose.

3. Methodology

In this section, the feature extraction process and the recognition process for face
recognition are described. The flowchart of the proposed face recognition method is shown
in Figure 1.

𝐐𝒙 𝐐𝒚

𝐐𝒙 𝐐𝒚

𝑶𝑽𝒙𝐬𝐢𝐳𝐞 𝑶𝑽𝒚𝐬𝐢𝐳𝐞 𝑵𝒙 𝑵𝒚 𝒑𝑩𝒙𝒔𝒊𝒛𝒆 𝑩𝒚𝒔𝒊𝒛𝒆

𝑯𝒙 𝑯𝒚 𝑼𝒙 𝑼𝒚

𝑾𝒙 𝑾𝒚

𝐄𝒙/𝐄𝒚
𝑵, 𝑩𝒔𝒊𝒛𝒆 𝑶𝑽𝒔𝒊𝒛𝒆

𝐐𝒙/𝐐𝒚
𝐐 = 𝐒 × 𝐄

𝐒𝒙/𝐒𝒚
𝐒 = ⊗𝐖

𝐐𝒙/𝐐𝒚

Figure 1. Flow diagram of the presented face recognition system.

The feature extraction process is the main part of any recognition system. For the
sake of accurate results, instead of using a global feature, local feature extraction is used
to enable more efficient face recognition. Local features are considered more robust and
leverage the recognition accuracy when compared to global features [61–63]. Therefore, in
order to increase the robustness of recognition accuracy, the face image is partitioned into
blocks with a block size of Bysize × Bxsize . The TP and KP are generated using the procedures
in Appendices A.1 and A.2, respectively. Note that the KP is generated with a localization
parameter p. After obtaining the two matrices of KP and TP, the SKTP matrices (Ux / Uy)
are generated using Equation (2).
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Most face recognition algorithms have concentrated on a collaborative scenario in a
noise-free environment. In a noisy environment, the face recognition process is degraded
and the face recognition accuracy is significantly affected. Thus, face image preprocessing
is needed to reduce the noise effect without excessively increasing the computation cost.
The use of embedded image kernels to reduce computation cost was proposed in [64], and
we adopt this idea here. In order to embed a smoothing kernel in the generated SKTP
matrices (Ux / Uy), Toeplitz matrices (Hxs / Hys) are generated [65] using a Gaussian
smoothing kernel:

hxs =
1

2πσ2
x

e
− x2

2σ2
x (7)

hys =
1

2πσ2
y

e
− y2

2σ2
y (8)

where σ determines the effective size of the kernel (most often σx = σy). Thus, (Hxs / Hys)
can be generated as follows [65]:

Hxs =



h0
xs h1

xs · · · hm
xs 0 0

0 h0
xs h1

xs · · · hm
xs 0

... 0 h0
xs h1

xs · · · hm
xs

0
... 0

. . . . . .
...

0 0
... 0 h0

x h1
x

0 0 0 · · · 0 h0
x


(9)

Hys =



h0
ys 0 0 · · · 0 0

h1
ys h0

ys 0 0 · · · 0
... h1

ys h0
ys 0 · · · 0

hm
ys

... h1
ys

. . . . . .
...

0 hm
ys

...
. . . h0

ys 0
0 0 hm

ys · · · h1
ys h0

ys


(10)

where m and l are the lengths of the smoothing kernels hxs and hys, respectively. To this
end, the embedded SKTP matrices (Wx / Wy) can be formulated as follows [64]:

Wy = Uy Hys, (11)

Wx = Ux HT
xs. (12)

After generating the SKTP matrices with embedded smoothing kernels, we are ready
for the feature extraction step. However, the use of traditional methods to extract local
features leads to a high computation cost [66], as they extract the local features directly
from the small blocks. Most applications utilize non-overlapped block processing to
extract local features. However, overlapped block processing increases the recognition
accuracy [67–69]. Thus, in this paper, overlapped block processing is performed. It is well
known that overlapped block processing increases the computation cost considerably. In
order to overcome this problem, we utilize the fast overlapped block processing method
presented in [12]. The main concept of fast overlapped block processing (FOBP) is based
on the creation of auxiliary matrices that extend the image and eliminate the need for a
nested loop. The elimination of the nested loops greatly reduces the computation cost of
the feature extraction process.

Suppose an image I has Ny rows and Nx columns. The image is partitioned into
overlapped blocks with a size of Bysize × Bxsize , with overlap size OVxsize in the x-direction and
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OVysize in the y-direction such that the total blocks are equal to Blky× Blkx =
Ny

Bysize−2OVysize
×

Nx
Bxsize−2OVxsize

. Suppose the matrix IB represents the extended image version of I; it can be
generated as follows [12]:

IB = Ey I ET
x (13)

where Ey and Ex are rectangular matrices with a size of (Bysize · Blky × Ny) and (Bxsize ·
Blkx × Nx), respectively. For further elucidation, the matrix Ey is provided by

Ey =



O
. . .

O

I
I

I
I



(14)

where I represents the identity matrix, with a size of Bysize × Bysize . Now, the moments for
the overlapped block can be computed as follows:

M = Sy IB ST
x (15)

= Sy Ey I ET
x ST

x (16)

= Qy I QT
x (17)

where Qy = Sy Ey and Qx = Sx Ex. To obtain the matrices Sx and Sy, they can be
formulated as follows [12]:

S = I⊗W (18)

where ⊗ represents the Kronecker product and I represents the identity matrix. Because
these matrices are independent of the image, they are computed first, stored, and utilized
repeatedly [12].

After generating the required matrices (Qx and Qy), the images are sent to the next stage
for feature extraction and classification. Note that the extracted features are normalized.

After the normalized feature vector has been obtained, a label (ID) is applied to each
input face image. The feature vector is considered as an input to the classifier. The classifi-
cation itself is performed by a support vector machine (SVM) classifier. The SVM approach
was chosen because of its ability to optimize the margin between two hyperplanes sep-
arating the classes [70]. In addition, SVM is suitable for recognition, as it is more robust
to signal fluctuation than nearest-neighbor classifiers [71]. In this paper, LIB-SVM was
applied [72].

4. Experiments and Analysis

In this section, two different datasets are employed to evaluate the performance of
the face recognition algorithm. The datasets used in the experiments are the ORL [73]
and FEI datasets [74]. The ORL Face Database from AT&T [73] is a well-known datset
which has been used by many researchers for evaluation purposes. The ORL dataset
includes 40 distinct classes (persons). Each class has ten images, which are acquired at
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different position and lighting conditions to form 400 images, and each image has a size of
92× 112 [75]. Figure 2 shows samples of the ORL face dataset.

For the ORL dataset, the block size in the x and y directions was set to 16 and 20,
respectively. The overlap sizes in the x and y directions were set to {(0,0), (2,2), (4,4), (8,8)}.
The size of the smoothing kernel was set to {3, 5, 7}. In addition, the test was performed
with noise-free and noisy environments and with Gaussian and Salt and Pepper noise.
The Gaussian noise was generated with the standard deviation 0.005, and 0.01, respectively.
The Salt and Pepper noise was generated with densities 0.05 and 0.1. Figure 3 depicts
samples of images with different types of noise. Table 1 summarizes the average results for
20 runs, and the detailed results of individual runs can be found in Appendix B.

Figure 2. Samples of the ORL dataset.

Figure 3. Samples of ORL database with different environments.
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For SVM implementation, we used LIB-SVM [72]. In the training phase, five-fold cross-
validation was employed to obtain stable values of the SVM parameters.

First, an experiment was carried out for the proposed algorithm using two cases, with
and without a smoothing kernel. This experiment was performed to highlight the effect
of the smoothing kernel on the recognition accuracy. The experiment was performed for
different overlap sizes of {(0,0), (2,2), (4,4)} and different environments (noise-free and noisy
environments), as shown in Table 2. Note that the results reported in Table 2 represent
the average results for 20 runs; the detailed results of individual runs can be found in
Appendix C. The results show that the recognition accuracy of the proposed algorithm
is higher with a smoothing kernel than that without, with average recognition accuracy
showing an improvement ratio of ∼0.5%.

Another experiment was performed to identify the best block overlap size and smooth-
ing parameter σ, which determines the kernel size (the kernel size was always taken as 4σ
to maintain more than 95% of the ideal Gaussian filter). The optimal σ of course depends
on the noise level and on the images themselves; in our case, we conclude that σ = 1 is the
best choice, providing the highest recognition performance (see Table 1). As for the block
overlap, it can be observed that while the differences are slight, the overlap (4,4) mostly
yields the best results.

The effect of the smoothing kernel on the recognition rate can be shown through the
following experiment. An image was selected from the ORL dataset and two Gassuain
noise levels were applied to the image with standard deviations of 0.01 and 0.05. The noisy
image was processed using the smoothing kernel with different kernel sizes and different
smoothing parameters using SKTP. Then, the PSNR between the original image and the
resulted image was measured. The results are shown in Figure 4. It is clear that a kernel
size of 5 and smoothing value of 1.0 is the best choice for both noise densities.

Table 1. ORL recognition rates (%) under different parameters.

Environment σsmoothing
Overlap Size

(0,0) (2,2) (4,4)

Noise-free

0.5 97.73 97.68 97.65

1.0 97.75 97.73 98.23

1.5 97.78 97.58 97.98

Gaussian
0.005

0.5 97.73 97.70 97.55

1.0 97.65 97.85 98.23

1.5 97.78 97.70 97.98

Gaussian
0.010

0.5 97.70 97.63 97.68

1.0 97.60 97.80 98.18

1.5 97.60 97.60 98.00

Salt&Pepper
0.05

0.5 97.63 97.40 97.70

1.0 97.50 97.85 97.95

1.5 97.63 97.70 97.78

Salt&Pepper
0.10

0.5 97.53 97.00 97.35

1.0 97.05 96.98 97.58

1.5 97.18 96.90 97.28
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Table 2. ORL recognition rates (%) using the proposed approach with/without smoothing kernel

Environment

Without Smoothing Kernel With Smoothing Kernel

Overlap Size Overlap Size

(0,0) (2,2) (4,4) (0,0) (2,2) (4,4)

Noise-free 97.35 97.50 97.60 97.75 97.73 98.23

Gaussian 0.005 97.33 97.53 97.60 98.65 97.85 98.23

Gaussian 0.010 97.40 97.58 97.55 97.60 97.80 98.18

Salt&Pepper 0.05 97.60 97.60 97.58 97.50 97.85 97.95

Salt&Pepper 0.10 97.08 97.10 97.23 97.05 96.98 97.58

Average 97.35 97.46 97.51 97.51 97.64 98.03

𝜎𝑠𝑚𝑜𝑜𝑡ℎ𝑖𝑛𝑔

0.5 1.0 1.5

𝜎𝑠𝑚𝑜𝑜𝑡ℎ𝑖𝑛𝑔

23.0193

(a)

𝜎𝑠𝑚𝑜𝑜𝑡ℎ𝑖𝑛𝑔

0.5 1.0 1.5

𝜎𝑠𝑚𝑜𝑜𝑡ℎ𝑖𝑛𝑔

20.0647

(b)

Figure 4. PSNR values for smoothing kernel test using Gaussian noise with standard deviation of
(a) 0.01 and (b) 0.05.
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A comparison with existing algorithms which do not utilize block processing is shown in
Figure 5. The results with the proposed algorithm show higher accuracy than the existing algo-
rithms presented in [11,55] in the presence of noise. Measured by average accuracy, the proposed
algorithm shows an improvement of 1.29% and 8.44% compared to [11,55], respectively.

In order to show the promising performance of the proposed algorithm, a comparison
was made with traditional methods in terms of computational cost as well. The experiment
was performed for ten runs; the average computation time for each image is reported in
Table 3. The experiment was performed with a block size of 20, smoothing kernel sizes of 3,
5, and 7, and overlap sizes of (0,0), (2,2), and (4,4). It can be observed that the computation
time using the proposed algorithm is less than that of the traditional methods, and the
improvement ratio increases as the overlap size increases. This is obviously because the
proposed algorithm performs the computation for the entire image only once, while the
traditional methods repeat the computation in a loop over all blocks.

Noise-free G-0.005 G-0.01 SP-0.05 SP-0.10 Average

84

86

88

90

92

94

96

98

100

91.85
91.45

90.9

89.45

85.15

89.76

97 96.85 96.9 96.9

96.2
96.77

98.23 98.23 98.18 97.95
97.58

98.03

R
ec

og
ni

ti
on

ac
cu

ra
cy

%

Algorithm in Abdulhussain 2018 Algorithm in Abdulhussain 2019 Proposed Algorithm

Figure 5. Comparison of recognition rate (%) between the proposed algorithm and the algorithms
in [11,55]. Note: G-0.005, and G-0.01 represent Gaussian 0.005 and 0.01, respectively, and SP-0.05,
and SP-0.10 represent Salt and Pepper 0.05 and 0.10, respectively.

Finally, a comparison was performed between the proposed algorithm and existing
algorithms in terms of recognition accuracy; the results are listed in Table 4. It can be clearly
observed that the proposed algorithm outperforms the existing algorithms in terms of
recognition accuracy.
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Table 3. ORL time (milliseconds) with different parameters for the proposed and traditional algorithms.

Kernel
Size

Overlap
Size

Traditional
Algorithm

Proposed
Algorithm

Speedup
Ratio

3 0 9.461 1.172 8.07

3 2 14.385 1.198 12.01

3 4 29.601 1.212 24.42

5 0 10.207 1.168 8.74

5 2 15.590 1.172 13.30

5 4 31.965 1.193 26.79

7 0 12.974 1.177 11.02

7 2 19.855 1.185 16.75

7 4 41.193 1.214 33.93

Table 4. Comparison with existing algorithms for ORL Database

Algorithm Reference Accuracy %

DWT–PCA [76] 96.75

DCT–PCA [77] 96.00

OLPP [78] 93.50

Wavelet + PCA [79] 94.20

Wavelet + LDA [79] 97.10

GELM [80] 96.30

NPE [81] 94.33

ENPE [81] 95.78

TSLDA [82] 93.75

Improved TSLDA [82] 94.58

DIWT-LBP [51] 97.00

MLDV [83] 85.36

RLD [42] 97.49

DLCDRC [84] 96.39

DLGWT [7] 96.00

RMDL [85] 95.00

Proposed Algorithm (smoothing kernel size = 5, overlap size = (4,4)) 98.23

The second dataset is the FEI dataset [74] which is a Brazilian facial dataset. The FEI
dataset is composed of 100 faces, including males and females. In the experiment we
included ten images for each person, with a size of 640× 480. The participants’ images
have a neutral background, their age is between 19 and 40 years, and the dataset consists of
faces with facial expressions and poses of various types. Figure 6 shows samples of the FEI
face dataset.

The experiment wass performed for three different image sizes: the original size
(480× 640 pixels), downsampled by a factor of two, and downsampled by a factor of four.
Various block overlaps were tested. The accuracy is reported both for noise-free and noisy
environments. The noise was Gaussian with two variance values and Salt and Pepper with
two density values as depicted in Figure 7. The obtained results are reported in Table 5.
The results show that the best overlap size for this dataset is one sixth of the block size.
For example, with a block size of 48× 48, the best overlap size is (8,8), for a block size of
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24× 24, the best overlap size is (4,4), and for a block size of 12× 12, the best overlap size is
(2,2). As these results were obtained from a large image database, it is highly probable that
these conclusions are valid for other datasets of a similar kind.

Figure 6. Samples of the FEI dataset.

Table 5. The reported face recognition accuracy (%) for the FEI dataset using the proposed algorithm.

Image Size Block Size Environment Overlap Size

480× 640 48× 48

(0,0) (2,2) (4,4) (8,8) (12,12)

Noise-free 95.50 97.00 96.75 97.50 96.50

Gaussian 0.01 94.50 95.50 95.50 95.75 95.25

Gaussian 0.05 94.00 95.00 95.00 96.00 95.50

Salt&Pepper 0.05 95.50 96.75 97.00 97.00 96.25

Salt&Pepper 0.10 95.25 95.50 96.50 96.75 96.75

Average 94.64 95.89 96.11 96.46 96.04

240× 320 24× 24

(0,0) (2,2) (4,4) (6,6) (8,8)

Noise-free 95.50 96.50 97.50 96.50 96.75

Gaussian 0.01 94.50 95.50 95.75 95.25 95.25

Gaussian 0.05 94.00 94.50 95.75 95.25 95.25

Salt&Pepper 0.05 95.50 96.50 97.50 96.50 97.00

Salt&Pepper 0.10 95.25 96.50 97.25 96.75 96.50

Average 94.64 95.82 96.61 96.00 95.93

120× 160 12× 12

(0,0) (1,1) (2,2) (3,3) (4,4)

Noise-free 95.75 96.25 97.25 96.50 96.50

Gaussian 0.01 95.00 94.50 95.25 95.50 94.50

Gaussian 0.05 93.75 95.00 95.00 94.50 94.50

Salt&Pepper 0.05 95.50 96.25 97.00 96.00 96.50

Salt&Pepper 0.10 94.25 95.75 96.50 96.00 96.50

Average 94.54 95.29 96.00 95.54 95.64
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In order to illustrate the efficiency of our fast block processing method, the proposed
algorithm was compared to an algorithm that processes the blocks sequentially. The
experiment was performed with an image size of 480× 640, a block size of 48× 48, and
for different overlap sizes, as shown in Table 6, where the runtime in seconds is provided.
The results show that the proposed algorithm outperforms the traditional one for all overlap
sizes (obviously, larger overlap sizes lead to a higher improvement). The average incease
in speed is about 50 times, which is quite impressive.

Table 6. FEI time (milliseconds) of different methods.

Overlap Size Traditional Proposed Improvement

(0,0) 55.278 1.806 30.60

(2,2) 65.585 1.967 33.35

(4,4) 76.684 2.055 37.31

(8,8) 115.391 2.293 50.32

(16,16) 447.883 4.915 91.12

Finally, we compared the proposed algorithm to eleven state-of-the-art face recognition
algorithms. The recognition rates are shown in Table 7. It can be observed that, at least on
this database, the proposed algorithm outperforms all compared algorithms.

Table 7. Comparison with existing algorithms on FEI Database.

Algorithm Reference Accuracy %

LFLM–SIFT [86] 85.3

PCNC [87] 94.17

NFLS-II [88] 93

DWT–PCA [76] 96.25

DCT–PCA [77] 95.85

DIWT-LBP [51] 91.14

LDF [89] 88.2

SESRCLDF [89] 89

SESRC [89] 83.98

RLD [42] 93.57

PTGSP-CWP [90] 93.3

DL-MFR [91] 90.11

DL-RTHF [92] 94.00

Proposed Algorithm 97.5
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Figure 7. Samples of FEI database with different environments.

5. Conclusions

In this paper, we have proposed a new face recognition method. It belongs to the
category of “handcrafted” features-based techniques. Unlike deep learning methods, it
does not require any time-consuming massive training on augmented datasets. The method
is a cascade of several steps. The image is partitioned into overlapping blocks, which makes
the method robust to local changes. Each block is described by orthogonal moments with
respect to a carefully chosen polynomial basis. A noise-suppression filter is embedded into
moment calculation with almost no overheads. This makes the method particularly efficient
in recognition of noisy faces. High computational efficiency is ensured by an original fast
block processing method that avoids treatment of blocks in slow loops. All these ideas
together, when implemented into a single framework, result in a fast, robust, and reliable
face recognition method, as demonstrated in this paper by numerous experiments. To
increase the recognition accuracy, future research could further examine noisy environments
using a non-local mean filter as an alternative to the embedded Gaussian filter.
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Abbreviations
The following abbreviations are used in this manuscript:

2D Two-dimensional
FOBP Fast Overlapped Block Processing
HOP Hybrid Orthogonal Polynomials
KPs Krawtchouk polynomials
OP Orthogonal Polynomials
OM Orthogonal Moments
PSNR Peak Signal-to-Noise Ratio
SKTM Squared Krawtchouk–Tchebichef Moment
SKTP Squared Krawtchouk–Tchebichef polynomials
TPs Tchebichef polynomials

Appendix A. Computation of the KP and TP Coefficients

Appendix A.1. Computation of the KP Coefficients

This section introduces the utilized recurrence relation for the KP. Recurrence rela-
tions are commonly used for the sake of numerical stability and speed when evaluating
orthogonal polynomials.

The procedure used to generate the KP of the n-th order and size Nk is as follows
(please refer to Figure A1 for the parts of the KP) [93]:

Figure A1. Parts of the KP.

1. The initial values are computed as follows:

1.1. The value at n = 0 and x = x0 is computed by

K0(x0; p) = exp
(

k0

2

)
, (A1)

where k0 = ln Γ(Nk) + (Nk − 1) ln(1− p) − log Γ(Nk − x0) − log Γ(x0 + 1) −
x0 ln

(
1−p

p

)
. Note that ln Γ(·) represents the logarithmic Gamma function.

1.2. The value at n = 0 and x = x1 is computed by

K0(x1; p) =

√(
Nk

pNk + 1
− 1
)
·
(

p
1− p

)
K0(x0; p) (A2)
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1.3. The value at n = 1 and x = x0, and x1 are computed by

K1(x0; p) =
p√

p(1− p)(Nk − 1)
K0(x0; p) (A3)

K1(x1; p) =
p + 1√

p(1− p)(Nk − 1)
K0(x1; p) (A4)

1.4. The values in the range n = 2, 3, . . . , x and x = x0, x1 are computed by

Kn(x; p) =
p(Nk − 2n + 1) + n− x− 1√

pn(1− p)(Nk − n)
Kn−1(x; p)−√

(Nk − n + 1)(n− 1)
n(Nk − n)

Kn−2(x; p) (A5)

2. The values in part P1 (n = 0, 1, . . . , x0 and x = x0, x0− 1, . . . , n) are computed as follows:

Kn(x− 1; p) = − (Nk − 2x− 1)p− n + x√
px(1− p)(Nk − x)

Kn(x; p)−√
(Nk − x− 1)(x + 1)

x(Nk − x)
Kn(x + 1; p) (A6)

with the condition |Kn(x; p)| < 10−5 and |Kn(x + 1; p)| < 10−7. This condition is
used to prevent underflow in high orders of the Krawtchouk polynomials.

3. The values in part P2 are computed as follows:

3.1. the values in the range (n = 0, 1, . . . , x0 and x = x0, x0 + 1, . . . , N − n− 1) are
provided by

Kn(x + 1; p) =
p(Nk − 2x− 1)− n + x√

p(1− p)(x + 1)(Nk − x− 1)
Kn(x; p)−√

x(Nk − x)
(x + 1)(Nk − x− 1)

Kn(x− 1; p) (A7)

with the condition |Kn(x; p)| < 10−5 and |Kn(x + 1; p)| < 10−7.

3.2. The values in the range (x = x1, x1 + 1, · · · , Nk/2 − 1; and n = x) are pro-
vided by

Kn+1(x + 1; p) =
p(Nk − 2n− 1) + n− x− 1√
p(1− p)(n + 1)(Nk − n− 1)

Kn(x + 1; p)−√
n(Nk − n)((Nk − 2x− 1)p + x− n + 1)2

p(1− p)(n + 1)(x + 1)(Nk − n− 1)(Nk − x− 1)
Kn−1(x; p)+√

nx(Nk − n)(Nk − x)
(n + 1)(x + 1)(Nk − n− 1)(Nk − x− 1)

Kn−1(x− 1; p) (A8)

3.3. The values in the range (n = x1, x1 + 1, Nk/2− 2 and n + 2 ≤ x ≤ Nk − n + 1)
are provided by Equation (A7).

4. To compute the rest of the KP coefficients, the following relations are used:

4.1. The values in the range x = 0, 1, . . . , N/2− 1 and n = x+ 1, x+ 2, . . . , Nk− x− 1
are computed using

Kn(x; p) = Kx(n; p) (A9)
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4.2. The values in the range x = 0, 1, . . . , Nk− 1 and n = Nk− x, Nk− x+ 1, . . . , Nk−
1 are computed using

Kn(x; p) = (−1)Nk−n−x−1KNk−n(Nk − x; p) (A10)

The reason for using the algorithm presented in [93] is that it shows high stability in
computation of the KP coefficients.

Appendix A.2. Computation of the TP Coefficients

The algorithm presented in [94] is utilized to compute the coefficients of the TP.
The procedure presented in [94] to compute the n-th order with a size of Nt is as follows
(please see Figure A2):

Figure A2. Parts of the TP.

1. The initial set of values are computed as follows:

1.1. The initial value at T0(0) is computed by

T0(0) =
1√
Nt

(A11)

1.2. The initial values at the range x = 0 and n = 2, 3, . . . , Nt − 1 are computed by

Tn(0) = −
√

N − n
N + n

√
2n + 1
2n− 1

Tn−1(0) (A12)

1.3. The initial values at the range x = 1 and n = 1, 2, . . . , Nt − 1 are computed by

Tn(1) =
(

1 +
n(1 + n)

1− N

)
Tn(0) (A13)
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2. The values in the range n = 0, 1, . . . , Nt − 1; and x = 2, 3, . . . , Nt
2 − 1 are computed

by

Tn(x) =
−n(n + 1)− (2x− 1)(x− Nt − 1)− x

x(Nt − x)
Tn(x− 1)+

(x− 1)(x− Nt − 1)
x(Nt − x)

Tn(x− 2) (A14)

3. The values in the range n = 0, 1, . . . , Nt − 1 and x = Nt/2, Nt/2 + 1, . . . , Nt − 1 are
computed using the relation

Tn(Nt − 1− x) = (−1)n Tn(x) (A15)

Appendix B. Detailed Results of the Individual Runs for Different σ Values for the
Used Smoothing Kernel

This section presents the detailed results of the 20 runs for different environments
using different values of σ for the utilized smoothing kernel.

Table A1. The results of the runs for noise-free environment using different values of σ.

Run ID

σ = 0.5 σ = 1.0 σ = 1.5

Overlap Size Overlap Size Overlap Size

(0,0) (2,2) (4,4) (0,0) (2,2) (4,4) (0,0) (2,2) (4,4)

1 97.00 98.00 97.50 97.50 97.50 97.50 97.50 97.00 97.50

2 99.00 99.00 99.00 99.00 98.50 99.50 99.50 98.50 99.50

3 97.00 98.00 97.00 97.00 96.00 97.00 96.00 95.50 97.50

4 98.00 97.50 97.50 98.00 97.50 98.00 97.50 97.50 97.00

5 98.50 98.00 97.50 99.00 98.00 98.00 98.50 97.50 98.50

6 97.50 97.50 98.00 97.50 98.50 99.00 98.50 98.00 99.00

7 96.50 96.50 97.00 97.00 97.00 97.50 97.00 97.00 97.50

8 98.50 97.50 98.00 97.50 98.00 98.50 97.50 98.00 98.00

9 96.50 96.00 96.50 96.50 96.00 97.00 96.50 95.50 97.00

10 97.50 97.50 98.00 97.50 98.50 99.00 98.50 98.00 99.00

11 98.00 98.00 97.00 98.50 98.50 98.50 99.00 99.00 99.00

12 98.00 98.00 98.00 98.00 97.50 98.00 97.00 97.00 96.50

13 95.00 95.50 96.00 96.00 96.00 96.50 96.50 96.00 97.00

14 98.50 98.50 98.00 99.00 98.50 99.00 99.00 98.50 98.50

15 99.00 99.00 99.00 98.50 98.50 99.00 98.50 99.00 98.50

16 98.50 98.50 98.00 98.50 99.00 99.00 98.50 99.00 98.50

17 98.50 98.00 96.50 98.00 98.00 98.50 97.50 97.50 98.50

18 97.00 97.50 97.00 98.00 97.50 98.50 98.50 97.50 97.00

19 97.50 97.50 98.50 97.50 98.00 98.50 97.50 98.00 98.00

20 98.50 97.50 99.00 96.50 97.50 98.00 96.50 97.50 97.50

Average 97.73 97.68 97.65 97.75 97.73 98.23 97.78 97.58 97.98
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Table A2. The results of the runs for Gaussian noise with standard deviation of 0.01 using different
values of σ.

Run ID

σ = 0.5 σ = 1.0 σ = 1.5

Overlap Size Overlap Size Overlap Size

(0,0) (2,2) (4,4) (0,0) (2,2) (4,4) (0,0) (2,2) (4,4)

1 97.00 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50

2 99.00 99.00 99.00 99.00 98.50 99.50 99.50 98.50 99.50

3 97.00 97.50 96.50 97.00 96.00 97.00 96.00 96.00 97.50

4 98.50 98.00 97.50 98.00 98.00 98.00 97.50 97.50 97.00

5 98.50 98.50 98.00 99.00 98.50 98.00 98.50 98.00 98.50

6 97.00 97.50 98.00 97.50 99.00 99.00 98.50 98.00 99.00

7 96.50 96.50 96.50 97.00 97.00 97.50 97.00 97.00 97.50

8 98.00 97.50 98.00 98.00 98.00 98.50 97.50 99.00 98.00

9 97.00 96.50 96.50 96.50 96.00 97.00 96.50 96.00 97.00

10 97.00 97.50 98.00 97.50 99.00 99.00 98.50 98.00 99.00

11 98.00 98.00 97.50 98.50 98.50 98.50 99.00 99.00 99.00

12 98.50 97.50 97.50 97.50 98.00 98.50 97.00 96.50 96.50

13 94.50 95.50 95.50 95.50 96.00 96.50 96.50 96.00 96.50

14 98.50 98.50 98.00 99.00 98.50 99.00 98.50 98.50 98.50

15 99.50 99.00 99.00 98.00 99.00 99.00 98.50 99.00 98.50

16 98.50 98.50 98.00 98.50 99.00 99.00 98.50 99.00 98.50

17 98.00 98.00 96.50 98.00 98.00 98.50 97.50 97.50 98.50

18 97.50 97.50 96.50 97.00 97.50 98.00 98.50 97.50 97.00

19 97.50 98.00 98.50 97.50 97.50 98.50 97.50 98.00 98.50

20 98.50 97.50 98.50 96.50 97.50 98.00 97.00 97.50 97.50

Average 97.73 97.70 97.55 97.65 97.85 98.23 97.78 97.70 97.98

Table A3. The results of the runs for Gaussian noise with standard deviation of 0.05 using different
values of σ.

Run ID

σ = 0.5 σ = 1.0 σ = 1.5

Overlap Size Overlap Size Overlap Size

(0,0) (2,2) (4,4) (0,0) (2,2) (4,4) (0,0) (2,2) (4,4)

1 97.00 97.50 98.00 97.50 97.50 97.50 97.50 97.50 97.50

2 99.00 99.00 98.50 99.00 98.50 99.50 99.50 98.00 99.50

3 97.00 98.00 97.00 96.00 96.00 97.00 96.00 96.00 97.00

4 98.50 97.50 98.00 98.00 98.00 97.00 96.50 97.50 97.00

5 98.50 98.00 97.50 99.00 98.50 98.50 98.50 98.00 99.00

6 97.50 97.50 98.00 97.50 98.50 99.00 98.00 98.00 99.00

7 96.50 96.50 97.00 97.00 97.00 97.50 97.00 97.00 97.50

8 97.50 98.00 98.50 97.50 98.00 98.50 97.50 98.00 98.00

9 96.50 96.00 96.00 96.00 96.00 97.00 96.50 95.50 97.50

10 97.50 97.50 98.00 97.50 98.50 99.00 98.00 98.00 99.00
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Table A3. Cont.

Run ID

σ = 0.5 σ = 1.0 σ = 1.5

Overlap Size Overlap Size Overlap Size

(0,0) (2,2) (4,4) (0,0) (2,2) (4,4) (0,0) (2,2) (4,4)

11 98.00 97.50 97.00 98.50 98.50 98.50 99.00 99.50 98.50

12 98.50 98.50 98.00 97.50 98.00 98.00 96.50 97.00 96.50

13 95.50 95.50 95.50 96.00 96.00 97.00 96.00 96.00 97.00

14 98.50 98.50 98.50 99.00 98.50 99.00 99.00 98.50 98.50

15 99.00 98.50 99.00 98.00 98.50 99.00 98.50 99.00 98.50

16 98.50 98.50 98.00 98.50 99.00 99.00 98.50 99.00 99.00

17 98.00 98.00 97.50 98.00 98.00 98.50 97.50 97.50 98.50

18 97.00 97.50 97.00 98.00 97.50 98.50 98.50 97.00 97.00

19 97.50 98.00 98.50 97.50 98.00 98.00 97.50 98.00 98.00

20 98.00 96.50 98.00 96.00 97.50 97.50 96.00 97.00 97.50

Average 97.70 97.63 97.68 97.60 97.80 98.18 97.60 97.60 98.00

Table A4. The results of the runs for Salt and Pepper noise with density of 0.05 using different values
of σ.

Run ID

σ = 0.5 σ = 1.0 σ = 1.5

Overlap Size Overlap Size Overlap Size

(0,0) (2,2) (4,4) (0,0) (2,2) (4,4) (0,0) (2,2) (4,4)

1 97.50 97.50 98.50 97.50 98.00 97.50 97.50 98.00 97.50

2 99.50 98.50 99.50 99.00 99.00 99.50 99.00 99.00 99.50

3 96.50 97.50 97.50 96.50 97.00 97.00 96.00 96.00 97.00

4 97.50 97.00 97.00 97.50 96.50 96.50 97.00 96.50 96.50

5 98.50 98.50 98.00 99.00 98.50 99.00 98.50 98.50 99.00

6 97.50 97.50 97.50 97.50 99.00 98.50 98.00 98.50 98.50

7 97.00 96.00 97.00 97.00 97.00 97.50 97.00 97.00 97.50

8 98.50 97.50 98.50 97.50 98.00 98.50 97.50 98.50 98.00

9 96.50 96.00 96.00 96.00 96.50 96.50 96.00 96.00 96.50

10 97.50 97.50 97.50 97.50 99.00 98.50 98.00 98.50 98.50

11 97.50 98.00 97.50 98.00 98.50 98.50 99.00 99.50 98.50

12 98.00 97.00 97.00 97.00 96.50 97.00 96.50 96.00 95.50

13 96.00 95.00 96.50 95.50 97.00 96.50 96.50 96.50 97.00

14 99.00 98.50 98.50 99.00 98.50 99.00 98.50 98.50 98.50

15 98.00 98.50 98.50 98.00 98.50 98.50 98.50 98.50 98.50

16 98.50 98.50 98.00 98.50 99.00 99.00 98.50 98.50 99.00

17 97.50 98.00 97.50 97.50 98.50 98.00 97.50 97.50 98.00

18 97.50 97.50 97.50 97.50 98.00 98.50 98.50 98.00 97.50

19 97.50 97.50 98.50 98.00 97.00 98.00 98.00 97.50 98.00

20 96.50 96.00 97.50 96.00 97.00 97.00 96.50 97.00 96.50

Average 97.63 97.40 97.70 97.50 97.85 97.95 97.63 97.70 97.78
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Table A5. The results of the runs for Salt and Pepper noise with density of 0.10 using different values
of σ.

Run ID

σ = 0.5 σ = 1.0 σ = 1.5

Overlap Size Overlap Size Overlap Size

(0,0) (2,2) (4,4) (0,0) (2,2) (4,4) (0,0) (2,2) (4,4)

1 98.00 97.50 98.00 97.50 97.00 98.00 98.00 97.00 97.00

2 98.00 98.50 97.50 98.00 98.50 99.50 99.00 98.50 99.50

3 98.00 97.50 97.50 96.00 97.00 96.50 96.00 95.00 96.50

4 97.50 95.00 97.00 96.50 96.50 96.00 96.50 96.00 96.50

5 98.50 97.50 97.50 98.50 97.50 98.50 98.00 98.00 98.00

6 97.50 98.00 97.50 97.50 97.50 98.50 97.00 97.50 98.50

7 97.00 96.00 97.00 97.00 97.00 97.50 97.00 97.00 97.50

8 99.00 97.50 98.50 97.50 97.00 98.50 97.50 98.00 98.50

9 96.50 95.00 96.00 95.50 95.50 96.00 95.50 95.00 95.50

10 97.50 98.00 97.50 97.50 97.50 98.50 97.00 97.50 98.50

11 97.00 96.50 96.50 97.00 98.00 98.00 97.00 98.00 97.50

12 96.50 95.50 96.00 95.00 94.50 95.50 95.50 94.50 94.00

13 95.00 95.00 94.50 95.00 94.00 95.00 94.50 94.50 94.50

14 99.00 98.50 98.50 98.50 98.50 98.50 98.50 98.50 98.50

15 98.50 98.50 98.50 98.00 98.50 98.50 98.50 98.50 98.00

16 98.50 98.00 98.00 98.50 98.00 98.50 98.50 98.00 98.00

17 98.00 98.50 98.00 97.00 98.00 98.00 97.50 97.50 98.00

18 97.50 97.50 97.00 97.00 97.00 98.00 97.50 97.00 96.50

19 97.50 96.50 98.50 97.50 96.50 97.50 98.00 96.50 98.00

20 95.50 95.00 97.50 96.00 95.50 96.50 96.50 95.50 96.50

Average 97.53 97.00 97.35 97.05 96.98 97.58 97.18 96.90 97.28

Appendix C. The Detailed Results of the Individual Runs with and without
Smoothing Kernel

In this section, the detailed results of the 20 runs for different environments with and
without a smoothing kernel are shown.

Table A6. The results of the runs for noise-free environment.

Run ID
Without Smoothing Kernel With Smoothing Kernel

Overlap Size Overlap Size
(0,0) (2,2) (4,4) (0,0) (2,2) (4,4)

1 97.50 98.00 97.00 97.50 97.50 97.50
2 98.50 99.00 99.00 99.00 98.50 99.50
3 96.00 98.00 97.50 97.00 96.00 97.00
4 97.50 97.00 98.50 98.00 97.50 98.00
5 97.50 98.50 98.50 99.00 98.00 98.00
6 97.50 97.00 97.50 97.50 98.50 99.00
7 97.00 96.50 96.50 97.00 97.00 97.50
8 98.00 97.00 97.50 97.50 98.00 98.50



Mathematics 2022, 10, 2721 23 of 28

Table A6. Cont.

Run ID
Without Smoothing Kernel With Smoothing Kernel

Overlap Size Overlap Size
(0,0) (2,2) (4,4) (0,0) (2,2) (4,4)

9 96.00 96.50 97.00 96.50 96.00 97.00
10 97.50 97.00 97.50 97.50 98.50 99.00
11 97.00 97.00 98.00 98.50 98.50 98.50
12 97.00 97.50 97.50 98.00 97.50 98.00
13 95.00 95.00 94.50 96.00 96.00 96.50
14 98.00 98.50 98.50 99.00 98.50 99.00
15 99.00 99.00 99.50 98.50 98.50 99.00
16 98.00 98.50 98.50 98.50 99.00 99.00
17 96.50 98.00 97.00 98.00 98.00 98.50
18 97.00 97.50 97.00 98.00 97.50 98.50
19 98.50 97.00 97.50 97.50 98.00 98.50
20 98.00 97.50 97.50 96.50 97.50 98.00

Average 97.35 97.50 97.60 97.75 97.73 98.23

Table A7. The results of the runs for Gaussian noise with standard deviation of 0.01.

Run ID
Without Smoothing Kernel With Smoothing Kernel

Overlap Size Overlap Size
(0,0) (2,2) (4,4) (0,0) (2,2) (4,4)

1 97.00 97.50 97.00 97.50 97.50 97.50
2 98.50 99.00 98.50 99.00 98.50 99.50
3 96.50 98.00 97.50 97.00 96.00 97.00
4 97.50 97.50 98.00 98.00 98.00 98.00
5 97.50 98.50 98.50 99.00 98.50 98.00
6 97.50 97.00 97.00 97.50 99.00 99.00
7 96.50 96.50 96.50 97.00 97.00 97.50
8 98.00 97.00 98.50 98.00 98.00 98.50
9 96.00 96.50 96.50 96.50 96.00 97.00
10 97.50 97.00 97.00 97.50 99.00 99.00
11 97.00 97.00 98.00 98.50 98.50 98.50
12 96.50 97.00 97.50 97.50 98.00 98.50
13 95.00 95.00 94.50 95.50 96.00 96.50
14 98.00 98.50 98.50 99.00 98.50 99.00
15 99.00 99.00 99.50 98.00 99.00 99.00
16 98.00 98.50 98.50 98.50 99.00 99.00
17 96.50 98.00 97.50 98.00 98.00 98.50
18 97.00 97.50 98.00 97.00 97.50 98.00
19 98.50 97.50 97.50 97.50 97.50 98.50
20 98.50 98.00 97.50 96.50 97.50 98.00

Average 97.33 97.53 97.60 97.65 97.85 98.23
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Table A8. The results of the runs for Gaussian noise with standard deviation of 0.05.

Run ID
Without Smoothing Kernel With Smoothing Kernel

Overlap Size Overlap Size
(0,0) (2,2) (4,4) (0,0) (2,2) (4,4)

1 98.00 98.00 97.00 97.50 97.50 97.50
2 98.00 99.00 98.50 99.00 98.50 99.50
3 97.00 98.00 97.50 96.00 96.00 97.00
4 97.50 96.50 98.50 98.00 98.00 97.00
5 97.50 98.50 98.00 99.00 98.50 98.50
6 98.00 97.50 97.50 97.50 98.50 99.00
7 97.00 96.50 96.50 97.00 97.00 97.50
8 98.00 98.00 97.50 97.50 98.00 98.50
9 96.00 96.00 96.00 96.00 96.00 97.00
10 98.00 97.50 97.50 97.50 98.50 99.00
11 96.00 97.00 97.50 98.50 98.50 98.50
12 98.00 98.50 98.00 97.50 98.00 98.00
13 95.50 95.00 95.00 96.00 96.00 97.00
14 98.00 98.50 98.50 99.00 98.50 99.00
15 98.50 99.00 99.00 98.00 98.50 99.00
16 98.00 98.50 98.50 98.50 99.00 99.00
17 97.00 98.00 98.00 98.00 98.00 98.50
18 96.50 97.50 97.00 98.00 97.50 98.50
19 98.50 97.50 97.50 97.50 98.00 98.00
20 97.00 96.50 97.50 96.00 97.50 97.50

Average 97.40 97.58 97.55 97.60 97.80 98.18

Table A9. The results of the runs for Salt and Pepper noise with density of 0.05.

Run ID
Without Smoothing Kernel With Smoothing Kernel

Overlap Size Overlap Size
(0,0) (2,2) (4,4) (0,0) (2,2) (4,4)

1 98.00 98.50 97.50 97.50 98.00 97.50
2 98.50 99.00 99.00 99.00 99.00 99.50
3 97.50 99.00 96.50 96.50 97.00 97.00
4 96.50 97.00 97.50 97.50 96.50 96.50
5 97.50 98.50 98.00 99.00 98.50 99.00
6 97.50 97.50 97.50 97.50 99.00 98.50
7 97.00 96.00 97.00 97.00 97.00 97.50
8 98.00 97.50 98.50 97.50 98.00 98.50
9 96.00 96.50 97.00 96.00 96.50 96.50
10 97.50 97.50 97.50 97.50 99.00 98.50
11 97.00 97.50 97.50 98.00 98.50 98.50
12 97.00 97.00 98.00 97.00 96.50 97.00
13 97.00 95.50 96.00 95.50 97.00 96.50
14 98.50 98.50 99.00 99.00 98.50 99.00
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Table A9. Cont.

Run ID
Without Smoothing Kernel With Smoothing Kernel

Overlap Size Overlap Size
(0,0) (2,2) (4,4) (0,0) (2,2) (4,4)

15 99.00 98.50 98.00 98.00 98.50 98.50
16 98.00 98.50 98.00 98.50 99.00 99.00
17 97.50 98.00 97.50 97.50 98.50 98.00
18 97.50 97.50 97.50 97.50 98.00 98.50
19 98.50 97.00 97.50 98.00 97.00 98.00
20 98.00 97.00 96.50 96.00 97.00 97.00

Average 97.60 97.60 97.58 97.50 97.85 97.95

Table A10. The results of the runs for Salt and Pepper noise with density of 0.10.

Run ID
Without Smoothing Kernel With Smoothing Kernel

Overlap Size Overlap Size
(0,0) (2,2) (4,4) (0,0) (2,2) (4,4)

1 97.00 98.00 97.50 97.50 97.00 98.00
2 98.00 98.50 98.00 98.00 98.50 99.50
3 97.00 98.50 95.50 96.00 97.00 96.50
4 96.00 96.00 97.00 96.50 96.50 96.00
5 97.50 98.50 98.00 98.50 97.50 98.50
6 97.50 98.00 97.50 97.50 97.50 98.50
7 96.50 96.00 97.00 97.00 97.00 97.50
8 98.50 97.50 99.00 97.50 97.00 98.50
9 96.00 95.00 96.50 95.50 95.50 96.00
10 97.50 98.00 97.50 97.50 97.50 98.50
11 96.00 96.50 97.00 97.00 98.00 98.00
12 96.00 95.50 96.50 95.00 94.50 95.50
13 94.50 94.50 95.50 95.00 94.00 95.00
14 98.50 98.00 99.00 98.50 98.50 98.50
15 97.50 98.50 98.50 98.00 98.50 98.50
16 98.00 98.00 98.00 98.50 98.00 98.50
17 98.00 98.50 97.00 97.00 98.00 98.00
18 96.50 97.00 96.50 97.00 97.00 98.00
19 98.00 96.50 97.50 97.50 96.50 97.50
20 97.00 95.00 95.50 96.00 95.50 96.50

Average 97.08 97.10 97.23 97.05 96.98 97.58
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